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Abstract 

Spatial dispersion has emerged as an extremely important concept in modeling metamaterials, including macro-, micro-, and 
nano-structured composites. However, the incorporation of spatial dispersion requires a considerable complication of the 
usual Ohm's law relationship with which students are familiar. In this note, the drift-diffusion equation is shown to be 
equivalent to the usual form of spatial dispersion in simple isotropic plasmas and metamaterials. It is suggested that the drift­
diffusion equation is physically clear and intuitive, and, therefore, can be effectively used to help teach concepts of spatial 
dispersion to beginning graduate students. Furthermore, the drift-diffusion equation leads to a simple treatment of charge 
screening, which is important for fundamental understanding, and for the electromagnetics of nanostructures. 

Keywords: Metamaterials; local and nonlocal homogenization; spatial dispersion; drift-diffusion equation; electromagnetic 
propagation in nonhomogeneous media; electromagnetic propagation in plasma media; electromagnetic analysis 

1. Introduction 

S
patial dispersion (non-locality) is associated with important 
physical phenomena, such as natural optical activity, bianisot­

ropy, and excitonic effects [1-3]. However, the effect is very small 
for many natural materials, and may often be neglected. This is 
particularly true below THz frequencies. As an example, for ordi­
nary metals at room temperature, spatial dispersion is quite impor­
tant near the plasma frequency (in the optical or UV range) [3], but 
far below these frequencies it can usually be ignored (although at 
low temperature, one encounters the anomalous skin effect [4]). 
The concept of spatial dispersion has gained great importance in 
the engineering electromagnetics community in recent years, due 
to its occurrence in artificial materials (metamaterials) at relatively 
low GHz frequencies, and to the strength of its contribution [5-10]. 
For example, in a wire medium consisting of metallic rods, at GHz 
frequencies we can ignore spatial dispersion in the rods them­
selves, but not in the effective medium formed by the rods. More­
over, spatial dispersion is important in the electromagnetic analysis 
of nanostructures, and for the analysis of charge screening. There­
fore, there are many different reasons to teach concepts of spatial 
dispersion to beginning graduate students, or even to advanced 
undergraduates. 

Physical understanding of the non-local nature of spatial dis­
persion can be difficult to grasp for students accustomed to the 
usual form of Ohm's law. It is suggested here that the connection 
between spatial dispersion and the drift-diffusion model of charge 
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transport - more often used in modeling semiconductors [11] - can 
be exploited to teach concepts of spatial dispersion. It is shown that 
the most common form of spatial dispersion (associated with a 
"warm " plasma) is equivalent to the seemingly local drift-diffusion 
model [12, 13], the latter being straightforward to understand from 
an intuitive basis. 

Aside from explaining spatial dispersion in plasmas, the drift­
diffusion equation can be used to quite simply determine static 
screening from a conductor [14], avoiding more-complicated 
Thomas-Fermi treatments. One can argue that this topic, which is 
often absent from electromagnetic textbooks, is too important to 
ignore in developing an understanding of the electric-field behav­
ior in conductors. Furthermore, for the electromagnetic analysis of 
nanoscale materials, charge screening is quite important, as sizes 
may approach the screening length. In the following, a time-har-
monic variation, ejOJl, is assumed and suppressed. 

2. Current Due to Diffusion 

In much of frequency-domain electromagnetics, we consider 
the constitutive relation J (r,aJ) = 0" ( aJ) E( r,aJ) , Ohm's law, 
which provides the (drift) current associated with charge move­
ment due to fields. We can also have charge movement due to dif­
fusion, which is charge moving from an area of high charge con­
centration to an area of low concentration. Diffusion is a natural, 
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fairly infuitive process that is important in many areas of science, 
including biology and chemistry. The topic of charge-carrier diffu­
sion was nicely presented in [14, Section II], from which most of 
the material in this section is taken. 

The current associated with charge diffusion is given by 
Fick's law, J diff (r,m) = -D( m)V p( r,m), where D is the diffu-

sion constant ( m2 Is) and p is the charge density (e/m3). The 
negative sign is due to the fact that charge moves from an area of 
high concentration to an area of low concentration, whereas the 
gradient points from low to high concentration. The total current in 
the drift-diffusion model for an isotropic, homogeneous medium is 
thus 

J (r,m) = 0" ( m )E(r,m)-D( m)V p( r,m). (I) 

The diffusion term is applicable when m < r = 1/, , where r is the 
collision frequency and , is the time between collisions. This con­
dition means that there should be lots of particle collisions in each 
cycle of oscillation. The drift-diffusion equation is derived in the 
appendix using a hydrodynamic model (alternatively, it can be 
derived from Boltzmann's equation). 

In terms of frequency dependence, we can write the 
conductivity and diffusion constants as 

(2) 

D(m)=� 1+ jm, 

(3) 

where m; = neq; / Gome is the plasma frequency. The static diffu­

sion constant for an electron plasma is Do = {J" where 

(J = (v2 ) /3 ,  with (v2 ) being the mean-square velocity of the 

charge carrier. For good metals, 

(4) 

where vF is the electron Fermi velocity vF = n ( 3Jl"2 ne t3 /me, ne 

is the electron density ( m  -3), n is the reduced Planck's constant, 
and me is the electron mass. Therefore, 

Dmetal _ I 2 � o -- vF'· 5 
(5) 

As an example, for copper, ne = 8.45 x 1028 I m3 , , =  2.47 x 10-14 s 

(at room temperature), vF = 1.57 x 106 mis, and D = 0.0122 m2 Is. 
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For a semiconductor or a low-density plasma, v = vthermal' 
where 

(6) 

and where k8 is Boltzmann's constant and T is temperature In 
kelvin. We therefore obtain 

Dplasma _ k8T 
o --- , 

me 

(7) 

where 0"0 = e2 ne, /me is the usual dc conductivity ( -e is the 
charge of an electron). In terms of mobility, f.I, 

Dt'asma = !!.k8T , 
e 

(8) 

which is known as the Einstein relation. For a semiconductor, 
similar relations can be developed for the hole density. 

As an example, at room temperature, intrinsic Si has electron 
and hole mobilities of f.le =0.1350 m2/V-s and 

f.lh = 0.045 m2 Iv -s , leading to the diffusion constants 

De =0.00349 m2/s and Dh=0.00116 m2/s .  Comparing with 

Dcopper = 0.0122 m2 Is ,  we see that Do only differs by approxi­
mately one order of magnitude between a very good conductor and 
a fairly poor conductor. 

The units of Dare m2 Is ,  and the meaning is that the time 
taken for a particle to diffuse a distance L is 

(9) 

Note that in a good conductor, we typically don't need to 
consider diffusion, unless we are interested in the screening of 
fields that occurs over very small (sub-angstrom) distances at the 
surface of the conductor (as discussed later). From the continuity 
equation (assuming J = O"E ), we have 

where r p = G /0" is the characteristic time for charge to disperse in 

a material. Assuming 0" = 107 Sim and G = GO as for a good metal, 

then 'p - 9 x 10-19 s. Any excess charge thus moves to the surface 
almost instantaneously, and we don't have any charge-density gra­
dients in the material bulk (i.e., V p = 0 ,  unless we are considering 

times less than 10-18 s). In a bulk semiconductor this is not the 
case, and charge-density gradients are important for times short 
compared to 'p. For intrinsic Si, ne = np = 1016 m-3, so that 

O"=ef.lene+ef.lpnp =0.00028 S/m. Assuming GSi =12 , then we 

have, p = 0.379I1s, thus allowing V p"* 0 to exist over moderately 

long time scales. Perhaps more importantly, in semiconductor 
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junctions (e.g., a pn junction) or metal-semiconductor junctions at 
equilibrium, there are charge-density gradients over macroscale 
distances, which do not occur for metal-metal junctions. 

3. Connection Between Spatial Dispersion 
and Drift-Diffusion 

For the case of a homogeneous material, a general linear rela­
tionship between current density and field is [4] 

J(r,m) = J O'(r -r',m).E(r',m )d\' , (10) 

with the local case recovered from 0' (r -r', m) = 0' ( m) 0 (r -r') . 
Upon using a spatial Fourier transform, r B q , and the convolu­
tion theorem, we have 

J (q,m) = 0'( q,m)oE( q,m). (11) 

It is shown next that the "local " drift-diffusion relation, Equa­
tion (1), leads to an equation of the same form. 

Using the continuity equation, p(r,m)=-VoJ(r,m)/jm , 
the drift-diffusion equation, Equation (1), becomes 

or 

J (r,m) = 0" ( m )E(r,m)+ D� m) V [V oJ (r,m)], Jm (12) 

(13) 

where 1 is the identity dyadic. Just as the local form of Ohm's 
law, E(r,m) = 0" ( m fl J (r,m), is an extension of the circuit form 

of Ohm's law (V(m)=G(mfIJ(m), where G-1(m)=Z(m) is 
the conductance and Z is the impedance) to vector functions of 
position, Equation (13) is a non-local extension of Ohm's law. 
Non-locality is easy to grasp in the differential form of an expres­
sion, since the nature of a derivative is to sample the quantity that 
it acts on not only at the point in question, but also at nearby 
points. For example, in this sense Faraday's law 
V xE(r,m)=-jmB(r,m) is also non-local, where the magnetic 

field at r depends on the electric field not only at r ,  but at nearby 
points. 

The form of Equation (13) is not particularly surprising, since 
it says that the electric field at r associated with a current density 
depends not only on the value of the current density at r ,  but also 
at nearby points. Although this is not the case for the usual local 
Ohm's law, E(r,m)=O"(mfl J(r,m), it is actually a typical case 
in electromagnetics, and, in particUlar, in antenna and other source­
excited problems. For example, consider a homogeneous space 
characterized by scalar permittivity Ii and scalar permeability J1, 
where the wavenumber is k = mJ;i. The electric field due to a 
current J E n is 
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1 -JkR( r,r') 
E(r,m)=-.-(k2+V V o) f, e 

( ,)J(r',m)dr' , (14) Jmli n 41lR r,r 

where R ( r, r') = Ir -r'l and n is the support of the current. In this 
case, the electric field at r is the superposition of the response of 
the current over all points r' where J (r', m) '* 0 (and we can have 
r En, and also r = r' ). In a sense, Equation (14) (even without 
the VV  term), or any spatial superposition, is also a non-local rela­
tionship. However, spatial superposition is a somewhat trivial form 
of spatial non-locality. 

The real point in understanding non-locality in the sense of 
spatially-dispersive materials is to invert Equation (13) as 

(15) 

and to view E as the driving field that produces current J. In this 
form, non-locality means that the response of the current density at 
r is due not only to the driving field at r, but also to the value of 
the driving field at points near to r. 

We can obtain the form of Equation (11) upon a spatial 
Fourier transform of the above expression, leading to (see also [15] 
for a similar expression) 

O'(q,m) = O"(m{l + Dj�) qqr (16) 

We can easily perform the inversion in Equation (16) . The term 1 
is the 3 x 3 identity matrix. Assuming any coordinate direction for 
q, q = aqa, where a = x or y or z, and the term qq is a 3 x 3 
diagonal matrix with one non-zero entry. Adding these two matri­
ces results in a 3 x 3 diagonal matrix that is trivially inverted, 
resulting in 

O'(q,m)= O"(m)[l D(m) qq] . 
jm +D(m)q2 (17) 

Fourier inversion of the expression J ( q, m) = 0' ( q, m) 0 E ( q, m) 
obviously leads to the general form of Equation (10). Therefore, 
starting with the drift-diffusion model for a homogeneous, iso­
tropic medium, we obtain the usual non-local form, Equation (10). 
Although not shown above, it turns out that, conversely, starting 
from the non-local form Equation (10), and assuming an isotropic, 
homogeneous medium in which only the longitudinal response 
exhibits spatial dispersion (in which case 
0'( q,m) = qqO" d q,m )+(l-qq)O"( m), which is equivalent to 

Equation (17) when 0" d q, m) = a ( q, m) 0" ( m) , one obtains the 
drift-diffusion equation. For 0' (q, m) having a more-general form 
(including spatial dispersion in the transverse component, which 
can be important in some plasmas), one obtains a modified drift­
diffusion equation. 

Parenthetically, it should be noted that the inverse transform 
of Equation (17) can easily be performed to obtain 0'( r,m). The 
term associated with the identity dyadic is obviously the local 
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term, leading to 0" t m) 0 t r ) 1. The other term can be evaluated 
using complex-plane analysis, since the only singularities are sim­
ple poles occurring at q p = ±�- jm/ D( m) . 

Since we have taken a spatial Fourier transform, we have a 
wave propagating in the direction q. In a homogeneous local 
medium, there would only be a transverse component of field E, 
perpendicular to q. However, in a homogeneous spatially disper­
sive medium, we also have a longitudinal component of E, parallel 
to q (we also obtain a longitudinal field component in a local 
inhomogeneous medium, such as a planar dielectric waveguide or 
optical fiber, but this is a different matter). This naturally leads to 
the concepts of a transverse and longitudinal conductivity, which 
arise from the dyadic quantity of Equation (\ 7). To see this, it 
becomes necessary to separate currents and fields into transverse 
and longitudinal (to q) components, 

Substituting into Equation (\5), we obtain 

J L (q,w) = O"L (q,m)EL (q,m), 

JT (q,m) = O"T (m)ET (q,m), 

where 

O"(m) O"dq,m)= 
D(m) \+_

.
_ q2 

jm 

(18) 

(\9) 

(20) 

(2\ ) 

This shows that spatial dispersion manifests itself in the longitudi­
nal - and not the transverse - conductivity (adding other deriva­
tives to the drift-diffusion model could lead to the transverse con­
ductivity being q-dependent, but this is beyond the scope of the 
present treatment). 

A more-familiar form is provided by forming the complex 
effective permittivity. If 8r (m) = 8' -j8" is the relative permittiv-

ity (8 = 8,80) associated with polarization, the associated relative 
complex permittivity that accounts for polarization and charge 
movement is 

( )  , . "  • 0" 8r m =8 -j8 -j--. m80 

Then, using Equation (2), 

L ( ) , . " • -.::0" L,--,-( q=--, m-"- ) 8, q,w =8 -j8 -j� m80 

m2 
=8' -j·8"- P 

m(m-jy)-f3q 

(22) 

(23) 

2 ' (24) 

which is the usual form for non-local permittivity. As such, the 
form for the spatial-dispersion parameter f3 is f3 = DolT, where 

IEEE Antennas and Propagation Magazine, Vol. 52, No.5, October 2010 

Do. is the static diffusion constant. The transverse permittivity aris­
ing from O"T = 0" is the usual local result, 

2 T T ( ) mp 8, (q,m)=8, m =1- ( . ) " 
w m-jY (25) 

Note that up to this point all equations have been exact, and no 
approximations have been made. For small q, it is sometimes use­
ful to expand the denominator in a power series in q, resulting in 

L ( ) , ." 2[ 1 2 f3 1 8r q,m =8-j8 -mp ( . )+q 2 . 2+···' mW-jY m (m-JY) 
(26) 

highlighting the connection between spatial dispersion and spatial 
derivatives of the response. 

In summary, starting with the drift-diffusion model of Equa­
tion (I), we can obtain the non-local relation Equation (\0), and 
also identify the transform-domain conductivity tensor Equa­
tion (\7). From this, we obtain the usual form of the non-local 
permittivity, Equation (24), used in simple plasma calculations. 
Since diffusion is an intuitively clear physical process, this 
approach may be useful in teaching spatial-dispersion concepts. 

4. Drift-Diffusion for Artificial Plasmas 

The longitudinal permittivity, Equation (24), is also of the 
form often assumed for the effective permittivity of metamaterial 
plasmas. For example, for a wire medium, this is the form of the 
permittivity along the wire's axis [5]. However, in that case we are 
not interested in what may be viewed as microscopic or electronic 
spatial dispersion, where mp and f3 = (v2) /3 refer to electron 

motion, but to macroscopic electromagnetic quantities, where mp 
and f3 refer to properties of the electromagnetic wave in the artifi­

cial medium. For example, in a wire medium, we use f3 = v�, 
where vp is the phase velocity of the wave in the host medium of 

the wires, and k p = mp /v p is a plasma wavenumber correspond­

ing to the wire-medium's plasma frequency (which is a function of 
the wire's lattice period and the wire radius). The result for a wire 
medium consisting of perfectly conducting, infinitely long parallel 
wires (i.e., an artificial material formed by a two-dimensional lat­
tice of infinite wires with period small compared to wavelength) is 
[5] 

2 L kp 8r (q,m)=1--2-- 2, k -q 
(27) 

where k =m/vp and k� = (2n/a2)/[ln (a/2i'Z"R ) + 0.5275] . where 

a is the lattice period and R is the wire's radius. The permittivity 
transverse to the wire's axis is 

(28) 

where 8, (m) is the host medium permittivity. However, this 
medium is anisotropic, complicating the formation of an equivalent 
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Figure 1. An example of a homogeneous, isotropic metamate­
rial consisting of a triple array of connected metal wires. 

drift-diffusion equation. Instead, we consider an isotropic meta­
material, such as a triple array of connected wires [16] as depicted 
in Figure I. In this case, the effective medium is isotropic and spa­
tially dispersive. 

For this type of material, we can form a drift-diffusion equa­
tion for the polarization. In simple materials, the relationship 
between polarization and electric field is 

P( r,m) = &oX( m) E( r,m) 
(29) 

For the polarization in a metamaterial, we will write 

p( r,m) = Ph (r,w) + Peff (r,m), (30) 

where Ph is the dynamic polarization associated with the host 
material (the dielectric background), and Peff is the effective 

polarization that accounts for the presence of the metamaterial 
inclusions. In analogy with Equation (I), we will assume the form 

P(r,m) = &oX( m )E(r,m )+&oD( m)V Peff (r,m), (31) 

where Peff is an effective polarization charge density (C/ m3 ) and 

X is the susceptibility of the host medium. The relation between 
current density and polarization is 

J (r,t) = � p( r,t) � J (r,m) = jmP(r,m), at 
(32) 

and so we can rewrite Equation (31) in terms of polarization cur­
rent as 
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where D p ( m ) = j m&oD ( m) has units of m 2 / S , as expected for a 

diffusion constant. Therefore, Equation (34) is a drift-diffusion 
equation for polarization current in a metamaterial. 

The drift-diffusion equation for current in conducting media 
is well established, and the manipulations in the previous section 
are straightforward. consequences of this relationship. For meta­
materials, the situation is not so clear. However, since the longitu­
dinal permittivity, Equation (24), often occurs in metamaterials, 
the ansatz, Equation (31), can be justified if it leads to a non-local 
permittivity of the known form. So, in the following we will 
assume the form of Equation (31) and see what material-response 
function is obtained. 

Using 

v .P(r,m) = V· Ph (r,m)+ V .Peff (r,m) 

(since the uniform background polarization, Ph' is independent of 
position), then, 

p( r,m) = &oX( m) E( r,m) -&oD( m )'11'11. P( r,m). (35) 

Upon Fourier transformation, we have 

p( q,m) = &oX( m )E( q,m) +&oD( m)qq . p( q,m), (36) 

so that 

[1-&OD( m )qq} p( q,m) = &oX( m)E( q,m), (37) 

or 

p( q,m) = &oX( m)[ 1-&oD( m)qqr' .E( q,m). (38) 

The inversion is easily performed in the same manner as in the last 
section (inversion of a 3 x 3 diagonal matrix) to yield 

or 

p(q,m)= [I+ coD 
2 qq J .&ox(m)E, 

1-&oDq 

p( q,m) = &oi( q,m ).E, 

where 

i(q,m)= x(m)[I+ coD 
2 qq J, 1-&oDq 

analogous to Equation (17). 

Defining the relative permittivity as 

c(q,m)=l+ i(q,m), 

we obtain 

(39) 

(40) 

(41) 

(42) 
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&"(q,liJ)=I+X(liJ)(I+ coD 
2qq) 

1-&oDq 
(43) 

(44) 

(45) 

(46) 

which is the usual form for the spatially-dispersive permittivity 
tensor for a homogeneous isotropic medium [4, 16], where we 
added and subtracted qq [X ( liJ ) + I J/ q q  in the second line. 

To identifY the diffusion constant for a homogeneous wire­
mesh medium, we compare Equation (46) with the form of &TIL 
given in [16]. In terms of susceptibility, 

i (q, liJ) = &" (q, liJ)-1 

where 

L I X = 2' A( liJ )+aq 

with [16] 

(47) 

(50) 

(51) 

(52) 

In the above expressions, &m is the relative permittivity of the 

wire, Iv 0= 1r R2 / a2 is the volume fraction of wires where R is the 
radius of the wire and a is the lattice constant, kp is the plasma 

wavenumber defined above, c is the speed of light, and 10 is a 
dimensionless geometrical parameter of the lattice (10 � 3 ). Then, 

XL (q,liJ)-X(liJ) _ _  aq 2  
X(liJ) - A+aq 2  ' 

(53) 

so that 
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i (q,liJ) 0= X (liJ)[1 + -a 
2qq] . 

A (liJ) + aq 
(54) 

If we compare this expression with Equation (41), we identify the 
diffusion constant for a homogeneous wire-mesh medium as 

D(liJ)= t) . A liJ &0 
(55) 

The dimensions of coD are m2. 

As discussed in [9], spatial dispersion arises from charge 
accumulation on the wires comprising the metamaterial (more gen­
erally, due to charge accumulation on the inclusions). It is there­
fore not surprising that spatial dispersion can be related to diffu­
sion of polarization charge associated with the inclusions. If no 
charge build-up occurs, then diffusion will be absent, and spatial 
dispersion will vanish. 

5. Application of Drift-Diffusion to 
Charge Screening in Spheres 

Aside from the usefulness of the drift-diffusion equation in 
understanding spatial dispersion in plasmas, and its obvious 
importance in semiconductor modeling, an interesting application 
of the drift-diffusion equation is to the static screening of fields in 
conductors. For good conductors, this screening occurs over ang­
strom distances, which is why it is often ignored in undergraduate­
engineering electromagnetics textbooks. However, it seems a 
rather essential process in developing an understanding of how 
conductors screen electric fields. The usual statement that any con­
ductor, not only perfect conductors, completely screens electric 
fields is unduly simplistic (the argument being that if electric field 
penetrated a conductor then current would flow, which is not con­
sistent with static equilibrium). Moreover, as attention is focused 
on the electromagnetic analysis of nanostructures, this becomes an 
important consideration. The topic of screening in a planar con­
ductor was covered in [14], and here we consider the case of 
screening in an imperfectly-conducting sphere as a tractable exam­
ple assessable to beginning graduate students. 

It should be noted that screening is a completely different 
phenomenon than skin effect. For nanospheres, the radius is much 
less than the skin depth () 0= J2/ liJJ.loO" , even for the best conduc­
tors through at least optical frequencies. Therefore, based on skin 
depth alone, one would gather than a time-varying field is uniform 
throughout a metallic nanosphere. It turns out that a time-varying 
field is indeed uniform throughout a small sphere, except in a very 
thin region near the surface, related to diffusion. As frequency 
approaches zero, this transition region grows, and eventually the 
field decreases linearly inside the sphere, yielding the static (diffu­
sion) result. Only when diffusion is absent does the field inside a 
conductor go to zero. The time-varying case is much more compli­
cated than the static case, and so here we consider the static case 
arising from the drift-diffusion model, and merely present the time­
varying result from another method. 

5.1 Screening in Material Spheres from the 
Drift-Diffusion Equation 

Consider a static field E =zEo (leading to 
¢applied = -Eoz = -Eor cos e) applied to an imperfectly conducting 
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material sphere having permittivity Bin and radius a, immersed in 
a lossless homogeneous medium having permittivity Bout. The 
Poisson's equation in each region is 

(56) 

(57) 

where p is free charge. Ignoring diffusion, the solutions for the 
potential and for the polarizability are the well-known results for a 
dielectric sphere ( a-= 0 ), 

do d = -E cose[r - a3 ( Bin -Bout J] �w 0 2 ' 
r Bin + 2Bout 

and for a perfectly conductor sphere ( a- � 00 ), 

pc -4 3 
a - ;ra Bout. 

(58) 

(59) 

(60) 

(61 ) 

(62) 

(63) 

To see what happens when we include diffusion, using the 
relationship of Equation (I) with the total current set to zero at 
static equilibrium, inside the sphere we have 

(64) 

and so 

(65) 

where kb = a-/ BinD = I/Ib is called the Debye wavenumber, and 
I D is the Debye length. Thus, 

(66) 

If we choose C=O, then V2 ¢in =-P/Bin =k2 ¢in, so that 

¢in = -P / ( k2 Bin ) . Assuming that f v pdV = 0, we then have that 

the average of ¢in over the sphere is zero. 
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If we let p2 = -kb, then the equations to solve are 

(67) 

(68) 

The solution is subject to the usual boundary conditions (i.e., the 
same boundary conditions as for the local dielectric sphere). There 
is no need for an additional boundary condition. Specifically, the 
boundary conditions are that the potential must be finite at r = 0 , 
as r � 00 the potential must approach the unperturbed potential 
¢applied, and that the tangential E and normal D fields must be 

continuous. The solution is 

(69) 

leading to the polarizability 

(71) 

Note that the drift-diffusion results, Equations (69)-(71), become 
those of the dielectric sphere as kD � 0 (i.e., a- � 0 ), and those 
of the, perfectly conducting sphere for kD � 00 (a- � 00 ) . 

The potential ¢in shows the very thin screening depth in met­
als associated with the Debye length ID = I/kD. By considering 

that for metals kD _1010 m-I (and so ID _10-10 m), we can 
assume that kDa» I through visible frequencies, even for nano­
scale spheres. Then, 

and so the spatial dependence of ¢in varies as 

JI(JkDr) = (1 __ 1 
J
ekDa(�-I) 

JI (JkDa) kDr � 
a 

(72) 

(74) 
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This function is exceedingly small unless r is very close to a (for 
poorer conductors, the Debye length can be considerably longer). 
The nonuniform potential arising from the drift-diffusion model is 
associated with an electric field, which indeed drives currents. 
However, there is diffusion of charge in the opposite direction, and 
the net current is zero at static equilibrium. The reason that diffu­
sion is important for this example is that the applied field brings a 
lot of charge to the surface, but that high concentration of charge 
tends to diffuse back towards the interior until equilibrium is 
reached. Results will be shown in Figure 2 in the next section. 

The concept of Debye length is familiar from ionospheric 
propagation, which makes sense since the ionosphere is modeled 
as a plasma, similar to the simple electron-gas model of a metal 
(which ignores band theory). In the ionosphere electron densities 
are much lower than for metals, and so Debye lengths are macro-
scopic. Assuming an ionospheric electron density of ne = 1012m-3 

and T = 103 [21], the Debye length is AD = 2 x 10-3 m. Screening is 
thus a macroscale phenomena for low electron densities, but 
becomes nanoscopic for metal-like densities. 

5.2 Other Non-Local Models 

There are a few methods for spheres based on other non-local 
(spatially dispersive) models. For scattering from spheres or simi­
lar objects, these are quite a bit more complicated than the drift­
diffusion model presented in the previous section, and require an 
additional boundary condition. However, they are applicable at 
arbitrary frequencies. In particular, in [17] Ruppin extended the 
Mie theory to account for a non-local sphere, and in a series of 
papers [18-20], Fuchs approximately solved the spatial-transform-
domain problem using cf: ( q, OJ). In Fuchs' method, it was shown 
that the potential varies as 

(75) 

where jl is the first-kind spherical Bessel function, and C is a con­
stant (expressions for C and for !/Jour were given in [20]). Numeri­
cal agreement between results for the spatial-dispersion model 
arising from the drift-diffusion equation, Equation (69), and those 
from Fuchs' spatial dispersion model, Equation (75), in the de limit 
was found to be excellent. 

In Figure 2, a plot of the static potential normalized by its 
value at the surface (computed by the drift-diffusion model) is 
shown for the drift-diffusion model of Equations (69)-(70) (DD); 
the Fuchs' model, Equation (75); and the simple PEC model for a 
gold 10 nm radius sphere. The non-local Fuchs' model and the 
drift-diffusion model showed excellent agreement, whereas the 
PEC model gave the incorrect field inside the sphere, as expected. 
The Debye length was I D = 0.046 nm. Note that the Debye 
wavenumber depends on conductivity, such that the degree of 
screening varies depending on the density of free electrons, which 
makes physical sense. 

However, it should be kept in mind that despite the form of 
Equations (2)-(3) and (23), Equation (25), the resulting potentials, 
Equations (69)-(70), arise from the static MaxwelI's equations, and 
are essentially static results, since 
kb=a(OJ)/cinD(OJ)=aolcinDo is independent of frequency 
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Figure 2. The static potential !/J (r ) normalized by !/Js =!/J (r = a) 
for the drift-diffusion model, the Fuchs' model, and the simple 
PEC model for a gold 10 nm radius sphere. 
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Figure 3. The quasi-static potential at 10 MHz for a 10 nm 

radius gold sphere, computed using the drift-diffusion, Fuchs', 
local conductor, and PEC models. 

(other than possibly through Cin '" Co for a typical metal). For 
example, the quasi static potential at 1 0 MHz is shown in Figure 3 
for the same gold sphere, where we added the local conductor 
result obtained from the usual dielectric-sphere case, Equa­
tions (58)-(59), using cin (OJ) = (1- ja I OJco) Co (on the scale of the 
plot, the local result may appear discontinuous, but it is not). It can 
be seen that the Fuchs model captures both the non-locality of the 
response (associated with the small transition region near the sur­
face of the sphere) and the expected behavior of the quasistatic 
potential well inside the sphere (i.e., the uniform interior field well 
inside the sphere, predicted by skin-depth considerations). How­
ever, the drift-diffusion model exhibits the static behavior. 

The spatially-dispersive model provides a smooth transition 
between time-varying and time-static cases (here, as above, for the 
time-varying case we use Fuchs' model). Considering Figure 3, as 
frequency was lowered, the breakpoint where the Fuchs' model 
changed from decreasing to essentially constant (note the log 
scale) moved to the left. For f = 10 MHz, the breakpoint occurred 
at ria'" 0.91, as shown in Figure 3, whereas at f = I Hz, the 

breakpoint occurred at approximately rl a = 0.85 . At f = 10-3 Hz, 
the breakpoint was at ria = 0.8 . The breakpoint moves progres­
sively to smaller values as frequency is lowered, providing a 
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smooth transition from the time-varying case to the static case 
shown in Figure 2. A purely local model can not capture these 
dynamics. 

6. Conclusions 

The drift-diffusion equation, normally used for semiconduc­
tor modeling, was shown to be equivalent to spatial dispersion in a 
warm plasma, both for natural materials and artificial metamateri­
als. Given the physical clarity and intuitive nature of the drift-dif­
fusion equation, it was suggested that this can be helpful for 
teaching the concepts of spatial dispersion to beginning graduate 
students. Furthermore, the use of the drift-diffusion equation in 
determining charge screening in imperfect conductors was high­
lighted, a topic which is important in the emerging area of nano­
e1ectromagnetics. 
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8. Appendix: 
Hydrodynamic Derivation of the 

Drift-Diffusion Model 

The derivation of the drift-diffusion equation, Equation (I), is 
particularly simple, assuming a hydrodynamic model [14, Sec­
tion 16; 21]. We assume a neutral warm plasma and ignore the 
motion of ions and ion-electron interactions. The usual equation of 
motion for electrons is 

(76) 

where v d is the average electron drift velocity (we neglect the ran­
dom thermal velocity). We will neglect the small magnetic-field 
contribution. To account for diffusion, we add a pressure term, 
which leads to a force (gas pressure on the walls of a container 
being force per area). From the kinetic theory of gasses, pressure is 

(77) 

where ne is the number density and (v2 ) is the mean-square 

velocity. Assuming that pressure changes sufficiently slowly in 
space (slowly compared to the average separation between parti­
cles for a neutral gas, or compared to the screening length), we can 
use a fluid model for pressure. The pressure force per unit volume 
is 
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f 
-=-'Vp 
V 

(78) 

Writing the electron number density in terms of charge density, 
"lip = -eVne, we have 

(79) 

We need (average) force per particle, since we're writing a force 
law for an individual (average) electron, and so 

such that 

m dvd +m yv =_eE+[me(v
2 ) 

"lip] , e dt e d 
3nee 

(80) 

(81) 

Notice that electric field will drive electrons in one direction, and 
the' pressure will tend to drive electrons in the opposite direction 
(i.e., the forces are opposing). We can write 

With J = -neev d, this becomes 

so that 

Time-harmonic variation leads to 

n e2 
J(jm+y)=_e-E-/Np. 

me 

Obviously, 

n e2 fJ J(r,m)= 
(
: 

) 
E(r,m)--. -Vp(r,m) 

me }m+y }m+y 

(82) 

(83) 

(84) 

(85) 

(86) 
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= 0" ( m )E(r,m) - D( m)V p(r,m), (87) 

which is the drift-diffusion model of Equation (1). 
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