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Classical Emulation of Bright Quantum States

Svetlana Vlasenko, Alexander Mikhalychev, Samaneh Pakniyat, George Hanson,
Amir Boag, Gregory Slepyan, and Dmitri Mogilevtsev*

The way to emulate classically a number of fundamental quantum mechanical
experiments is shown, such as Hong-Ou-Mandel interference, phase
measurements with NOON states and specifically structured “revivals” in
Jaynes-Cummings model using coherent states with large number of photons.
It is also shown that certain classes of bright non-classical states can be
efficiently emulated by our technique independently of the average photon
number of these states.

1. Introduction

As long as one stays within the few-photon few-mode limit and
near the optical region, one can enjoy nearly complete freedom in
generating, processing, and detecting photonic quantum states
of the propagating field. A number of versatile methods exist
to produce deterministically or conditionally such non-classical
states.[1–3] Remarkable measurement toolsets were developed for
verification and exploitation of quantum properties (here one
just cannot refrain from mentioning photon-number resolving
photodetectors[4–8]). However, the situation is much less opti-
mistic when one moves to large numbers of photons. The space
of states grows exponentially, and the number of ways to pro-
duce required states become rather limited. The possibility to
infer quantum states suffers even more, despite remarkable re-
cent progress in rising efficiency of tomographic procedures[9–12]

and development of such efficient ways of partial diagnostics as
much-discussed “classical shadows”.[12,13] In fact, only specific
classes of bright non-classical states are available for propagat-
ing light. First of all, the Gaussian ones using the well-developed
technique of three-wave mixing for producing them.[14,15] An-
other class is the result of “hybridizing” of available few-photon
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non-Gaussian states with multi-photon
Gaussian ones (be it by simple beam-
splitting of few-photon states with a
bright state,[16–18] photon adding and
subtracting,[19–21] or conditional gener-
ation from entangled Gaussian states
with the help of photon-number resolving
detectors[22,23], etc.).
When one moves away from the near-

optical wavelength region, the situation
worsens considerably. Non-classical prop-
agating multi-mode Gaussian states are

still available by means of superconducting circuitry.[24,25] How-
ever, even generation of propagating few-photon non-Gaussian
states is challenging, as well as detection on the level of few
photons (nevertheless, some remarkable progress with single-
photon microwave detectors has been recently made[26–28]).
Here, we suggest circumventing the difficulties in researching

quantum effects which stem from the application of bright non-
Gaussian states using an emulation procedure rather than actual
generation of such states. In computer science, the term “emula-
tion” stands for running a program designed for a different plat-
form, by simulating behavior of the other system. We extend this
notion to quantum states generation and detection (Figure 1). In
a quantum experiment, the “program” describes manipulation
andmeasurement of quantum states, while the “platform” is rep-
resented by the physical quantum systems and their particular
input states. The essence of the proposed emulation technique is
representation of a quantum state as a mixture of classical probe
states (typically, coherent state projectors), with positive and neg-
ative weights. For emulation, the probe states are to be randomly
sampled from the preconstructed set with probabilities corre-
sponding to the normalized absolute values of the weights. In-
formation about a particular weight sign is encoded using an ad-
ditional degree of freedom (or ancillary system). Then, the com-
pound system (i.e., signal plus ancilla) is subjected to the mea-
surement.
The emulation procedure is constructed to ensure that the ex-

pectation values of the chosen set of observables remain the same
as for the original target states (in the spirit of the “classical shad-
ows” tomography[12,13]). This set of observables might be a com-
plete one suitable for the state reconstruction. In that case, one
actually has to build a high-fidelity representation of the quantum
signal as a mixture of classical probes with positive and negative
weights. Notice that non-classicality of the original state to be em-
ulated is actually retained by enlarging the state space.
The proposed emulation technique also resembles computa-

tional ghost imaging,[29,30] where generation of a correlated quan-
tum state of two beams is replaced by sampling classically mod-
ulated states of one beam and postprocessing the measurement
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Figure 1. Generalization of the concept of emulation from computer science to quantum optics: the “platform” corresponds to input states, while the
“program” is represented by measurement of quantum states.

results with the help of additionally supplied classical informa-
tion about the sampled states.
The classical emulation framework can be designed prior to se-

lecting the concrete program to be run and is suitable for any pro-
gram from a particular subset. Similarly, the proposed quantum
emulation can also be applied to an arbitrary “program” (state
manipulation and measurement) from a certain class of states
and measurements. The emulation platform remains essentially
quantum (even when it is constructed from “classical” coherent
probe states) and is suitable for sensing and exploring a quantum
measurement setup. Also, the proposed quantum emulation pro-
cedure cannot be superseded by a classical computer simulation
unless full and accurate description of the measurement setup is
available, which is typically not the case for realistic quantum ex-
periments.
Recently, we have elaborated a procedure for emulation of sev-

eral fundamental quantum optical effects, namely, the Hong-
Ou-Mandel (HOM) interference, non-classicality witnessing, and
Bell testing with the platform of few-photon coherent states.[31]

Now, we extend the emulation technique to the platform of bright
coherent states and present protocols of both “scaled” emula-
tion of fundamental few-photon effects and representation and
emulation of several important classes of bright non-Gaussian
states: sub-Poissonian states (diagonal in the Fock-state basis)
and the result of “hybridizing” Gaussian states with few-photon
non-Gaussian states. Remarkably, while the complexity of the
original protocol crucially depends on the number of photons in
the target state to be emulated, our suggested extension allows
one to emulate the considered classes of bright states efficiently
independently of their average photon number. So, one can use
our emulation approach not only for resource-economical test-
ing and verification ofmeasurement setups, but also for verifying
quantum effects predicted formulti-photon states which are hard
to produce on the current level of experimental technology. For
example, one needs such sub-Poissonian non-Gaussian states for
producing specific structured atomic population “revivals”[32] in
the Jaynes-Cummings scheme.[33]

We suggest and discuss the approach of “scaled” emu-
lation of such fundamental quantum experiments as HOM
interference[34] and interferometric phase measurement with
NOON states[35] using bright coherent states and linear power

detectors. Also, we propose an emulation scheme for observ-
ing effects of two-level atom interaction with non-Gaussian sub-
Poissonian state (in particular, extension of the population re-
vivals structure[36,37]).
We show the feasibility of our emulation method for bright

non-classical states, demonstrate its robustness with respect to
noise of used coherent sources. Also, we discuss in details the
way to performing HOM interference experiment by emulating
single-photon inputs with sequences of randomly phased large
coherent pulses amplitudes sampled from a small set of values.
We describe how to choose this set in an optimal way so as to
minimize the number of samples for a given accuracy level.
The outline of the paper is as follows. In Section 2, we describe

essential features of the emulation method and limitations of its
feasibility. In Section 3, we discuss emulation of fundamental
quantum experiments (HOM scheme and phase measurement
with two-photon NOON states) by “scaling” few-photon states (in
particular, the single-photon one). Using linear response inten-
sity detectors enables scaling the coherent-state amplitudes, used
for representation of the non-classical state, by multiplying them
by a constant factor and dividing the resulting signals by the same
quantity. In Section 4 we consider production of emulated multi-
photon states by unitary mixing of few-photon emulated states
with bright classical ones. In Section 5 we present emulation of
bright diagonal sub-Poissonian non-Gaussian states, and show
that the efficiency of their representation by a few phase-averaged
coherent states is independent of the average number of photons
in the target state. In Section 6 we describe how to emulate effects
of the atom-field interaction with sub-Poissonian states and ob-
serve extended structured revivals.

2. Essence of Emulation

Here, we briefly outline the idea of the emulation procedure de-
scribed in the recent work.[31] Let us assume that we have a sig-
nal state described by a density matrix 𝜌, and a set of observables
{Oj}. The purpose of the emulation procedure is to reproduce
the expectation values oj = Tr{Oj𝜌} by performing similar mea-
surements with certain easy-to-generate probe states instead of
an “expensive” quantum state 𝜌.
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According to the general formalism of quantum theory, the
ability to decompose a density matrix 𝜌 in the form[38]

𝜌 =
∑
k

pk𝜌k (1)

with non-negative weights pk ≥ 0 suggests a way to generate the
state 𝜌. If the source produces states 𝜌k with probabilities pk, its
output state will be described exactly by the target state 𝜌. How-
ever, it is not possible to decompose any non-classical state 𝜌 in
terms of classical states 𝜌k according to Equation (1) with non-
negative weights pk ≥ 0.[39] Still, one can succeed in constructing
an approximate representation

𝜌 ≈ 𝜌approx =
∑
k

c(+)k 𝜌
(+)
k −

∑
k

c(−)k 𝜌
(−)
k (2)

where classical probe states from the subset {𝜌(+)k } are multiplied
by positive factors {c(+)k }, while the remaining states {𝜌(−)k } have
negative weights {−c(−)k }. Here,

∑
k
c(+)k −

∑
k
c(−)k = 1 and c(±)k > 0,

∀k. The signs of the coefficients cannot be captured by the prob-
abilities of the probe states sampling by the source and require
additional marking of the state by a classical bit of the sign infor-
mation. Notice that very possibility of the approximate represen-
tation Equation (2) stems from non-orthogonality of used classi-
cal states {𝜌(±)k }, which underlies a number of important applica-
tions of such states in quantum communications, for example,
in developing secure quantum key distributions.[40–43]

Physically, one can introduce an ancilla with two mutually or-
thogonal states |±⟩, encoding the sign, and consider a two-system
state

𝜌em =
∑
k

c̄(+)k 𝜌
(+)
k ⊗ |+⟩⟨+| +∑

k

c̄(−)k 𝜌
(−)
k ⊗ |−⟩⟨−| (3)

where the coefficients of the mixture

c̄(±)k = c(±)k ∕C, C =
∑
k

c(+)k +
∑
k

c(−)k (4)

are real, positive, and sum up to unity. Since the coefficients c̄(±)k
have all the properties of probabilities, the state 𝜌em can be easily
generated by sampling the states 𝜌(±)k ⊗ |±⟩⟨±|with the probabil-
ities c̄(±)k .
To decode the sign, one can introduce an observable over the

ancilla

A = C
(|+⟩⟨+| − |−⟩⟨−|) (5)

where the multiplier C is used for compensation of the normal-
ization factor, which connects the coefficients c(±)k with the corre-
sponding probabilities c̄(±)k .
The essence of the emulation is to build such a density matrix

𝜌em that the results of measuring the joint observable Oj ⊗ A for
the state 𝜌em accurately reproduce the measurement ofOj for the
target non-classical state 𝜌:

|oj − Tr{(Oj ⊗ A)𝜌em}| ≤ 𝜖 (6)

for the acceptably small predefined 𝜖.

Practically, the information carried by the orthogonal states |±⟩
of the ancilla, is classical and can be provided to the measuring
site by classical means. In that case, one should sample random
pairs (k,±) according to the probabilities distribution c̄(±)k , gen-
erate corresponding states 𝜌(±)k , perform the measurement of Oj,
multiply the result by the normalization factor C, and sum the
results with the corresponding signs ±.[31]
The advantage of the outlined procedure comes from the

premise that the probe states 𝜌(±)k are more easily generated than
the signal state (for example, they may be classical Gaussian
states such as coherent ones). Moreover, in some quite impor-
tant cases it is sufficient to implement only a few classical probes
for accurate emulating quantum effects. In particular, we have re-
cently shown that using less than ten few-photon phase-averaged
coherent states one can feasibly emulate the HOM effect, non-
classicality witnessing, phase measurements with few-photon
NOON states, and even Bell testing ref. [31]. Here, one has to no-
tice that using just few-photon states[31] actually allowed in some
cases to build signal representation for a tomographycally com-
plete set of the observables Oj (to get a high-fidelity approxima-
tion of the original signal density matrix, 𝜌). In that case, the pa-
rameter 𝜖 in the bound given by inequality (6) would be limited
just by this fidelity.
It should be emphasized that one can fix a set of observables

{Oj} which is not tomographically complete, and reduce the re-
quirement 𝜌 ≈ 𝜌approx in Equation (2) to oj ≈ Tr(Oj𝜌approx). This re-
quirement is weaker and allows more flexibility in construction
of the decomposition and design of resource-efficient emulation
schemes. Such schemes can provide a simple inexpensive way
to test a measurement setup, developed for observation of quan-
tum effects, which are supposed to occur due to non-classical in-
put states.
However, in this particular work we are not seeking simpli-

fications of the procedure described in ref. [31]. We aim at a
higher-end goal. Namely, we show how it is possible to obtain
high-fidelity representations of non-classical states using just a
few classical ones. Such representations allow one to demon-
strate fundamentally quantum effects with a large number of
photons. Further, when writing about “representations” we will
always have in mind high-fidelity ones.
It should be pointed out that there is a severe restriction on the

way of applying the emulation procedure to arbitrary nonclassical
states. The necessity to enlarge the state space and to deliver the
sign information by the joint measurement of the observablesOj
and A during the emulation procedure can lead to excess statis-
tical errors relatively to the measurement of the same observable
Oj with the original signal state 𝜌. Somewhat similar situation
was encountered when simulating Bell inequalities violation by
sampling the positive P-representation of the entangled states.
Enlargement of the phase space led to large statistical errors.[44,45]

The addition to the variance scales as
(∑

k c
(+)
k

)(∑
k c

(−)
k

)
and can

be quite large.[31] Therefore, for practical emulation one needs
to minimize this quantity. For classical signals representable
as a convex mixture of classical probes one can always find a
positive-weight representation with c(−)k = 0, ∀k, which yields no
increase in statistical errors. Negative terms stem from the non-
classicality. Representation with coherent probes is especially il-
lustrative: one needs to have negative terms to ensure zeros of
Husimi Q-function typical for non-classical states.[46,47]
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The representation of Equation (2) was developed in a se-
ries of works on the “data pattern” approach to quantum
tomography.[48–53] Mostly few-photon few-mode states were con-
sidered. In these works, it was shown that when the subspace
containing the signal increases (the mean number of photons
grows), the representation (2) quickly becomes unfeasible. It re-
quires a very large number of probes, high values of coefficients
c(±)k , and, correspondingly, impractically many sampled copies
of probes 𝜌(±)j for reaching acceptable levels of measurement
accuracy.[48–53] Also, for general signal states, the requirement of
semipositive definiteness of the emulated state makes the emu-
lation procedure cumbersome and resource-costly.[52] While all
these considerations are valid for problems requiring represen-
tation of an initially unknown quantum state with a set of pre-
defined probes, the task of decomposing a given fixed state for
its emulation was found to be much easier. Few-photon states
diagonal in a Fock-state basis allow for simple and efficient emu-
lation using several phase-averaged coherent states. Transform-
ing these single-mode few-photon states by linear devices, such
as phase-shifters and beam-splitters, one can emulate more com-
plex states, including entangled ones.[31]

Here, we advance these findings and describe the ways to em-
ulate some specific non-Gaussian non-classical states with large
average number of photons using efficient procedures developed
primarily for few-photon states.

3. Fundamental Experiments with Scaled States

It is established that few-photon non-classical states can be effi-
ciently approximated by sums of coherent state projectors.[48,52]

In particular, phase-averaged coherent states can be used for rep-
resenting the Fock states and NOON states.[31] Now, let us sup-
pose that our set of observables {Oj} contains only normally-
ordered combinations of the creation and annihilation opera-
tors of the same order: Oj ∝ (a†)nj anj ; for example, normally
ordered field correlation functions G(n) ∝ ⟨(a†)nan⟩. Performing
those measurements for probe states with scaled amplitudes
𝛼k → s𝛼k will lead to the same scaling for all the correlation func-
tions of the same order: oj → |s|2nj oj.
Such a scaling of the emulation procedure brings a number of

practical advantages. Firstly, it allows going away from the single-
photon regime and using analog detectors linear in registered
intensity, that is, switching from the platform of few-photon co-
herent states to bright coherent states (Figure 2). Secondly, the
resulting correlation functions can be normalized in such a way
that the scheme becomes robust even to unknown losses as long
as they only affect the scaling parameter s. Thirdly, if the repre-
sentation involves phase-averaged coherent states (as it is for the
decomposition of Fock states), even the interference schememay
become robust with respect to the uncorrelated phase noise.
It is worth noting that, while the emulation technique itself is

quite universal, the scaled version of emulation is tailored specif-
ically for decomposition of the target state in terms of coherent
states andmeasurement of the discussed normally ordered corre-
lation functions. Firstly, the scaling operation |𝛼k⟩ → |s𝛼k⟩ is non-
unitary since it does not preserve the scalar product: ⟨s𝛼|s𝛽⟩ ≠⟨𝛼|𝛽⟩ for 𝛼 ≠ 𝛽 and s ≠ 1. Secondly, when naively extended to
probe states different from the coherent ones by scaling their

Figure 2. Exploiting the platform of bright coherent states by scaled emu-
lation of few-photon quantum experiments. Firstly, the few-photon quan-
tum experiment with single-photon detectors is reformulated in terms of
using linear detectors. Secondly, the emulation of the few-photon exper-
iment with linear detectors and few-photon coherent probe states is de-
signed. Thirdly, the constructed emulation scheme is scaled in order to
exploit bright coherent probe states.

Glauber-Sudarshan functions P(𝛼) → P(𝛼∕s), the operation can
lead to nonphysical results due to violation of the non-negative
semidefiniteness condition.However, the scaling approach yields
accurate and physically correct results when the probe states and
the measurements satisfy the conditions listed above.
Let us illustrate the possibilities of using scaled emulation

technique with bright probe states on the examples of the HOM
interference experiment and enhanced phase measurements
with NOON states.

3.1. Hong-Ou-Mandel Interference

The famous Hong-Ou-Mandel (HOM) experiment shows that
quantum interference on a 50/50 beam-splitter (BS) directs two
identical input single photons to the same output of the interfer-
ometer, prohibiting the symmetric response when both single-
photon detectors click simultaneously[34] (see Figure 3(inset)).
Now, let us consider the setup, shown in the main panel of

Figure 3, with single-photon detectors replaced by linear detec-
tors, measuring the intensities I1 and I2. For the j-th detector with
the efficiency 𝜂, the expectation value of the measured signal Ij is
described by the quantum average of the operator Îj = 𝜂n̂j, where
n̂j is the photon-number operator for the measured field mode.
Due to HOM interference, the coincidence signal ⟨Î1Î2⟩ should
be zero for interference of identical single-photon inputs.
As shown in ref. [31], a single-mode single-photon state can

be represented as a mixture of phase-averaged coherent states
(PCSs)

𝜌PCS(xk) =
1
2𝜋

2𝜋

∫
0

d𝜑|xke−i𝜑⟩⟨xke−i𝜑| (7)

with amplitudes xj > 0 and positive and negative weights ck:

|1⟩⟨1| ≈ ∑
k

ck𝜌PCS(xk) (8)
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Figure 3. (Main panel) Scheme of the setup for the HOM experiment em-
ulation with the bright scaled states. An input coherent state is split into
two parts and subject to the variable losses realizing random sampling of
amplitudes 𝛼j and 𝛼k with weights c̄

(±)
j , c̄(±)

k
as described in the Section 2.

Then a random phase shift 𝜑 is applied in one of the arms. Afterwards,
resulting states interfere on the 50/50 BS and the signals are measured by
the intensity detectors. Inset shows a standard HOM interference scheme
with single-photon states at the BS inputs and single-photon detectors at
the outputs. The element “ 𝜏 ” in both schemes represents an optical delay
line which realizes the time delay 𝜏 between two arms of each scheme.

Therefore, the two-mode two-photon input of the interferometer
has the representation

|1, 1⟩⟨1, 1| ≈ ∑
j,k

cjck𝜌
(1)
PCS(xj)⊗ 𝜌

(2)
PCS(xk) (9)

where 𝜌(l)PCS(xk) denotes the k-th PCS Equation (7) of the l-th input
mode. As it was pointed out in ref. [31], accurate representation
of the input states can be built with just a few distinct amplitudes
of PCSs, while a single laser source and a variable BS are suffi-
cient for emulation of the HOM experiment. The scaling proce-
dure implies change of the PCSs’ amplitudes according to the
rule 𝜌(l)PCS(xk) → 𝜌

(l)
PCS(sxk).

Let us show how such a scheme shown in Figure 3 is func-
tioning. An input coherent pulse is split in two parts and sub-
ject to the variable losses realizing random sampling of ampli-
tudes s𝛼j and s𝛼k with the weights c̄(±)j , c̄(±)k as described in the
Section 2. Then, a random phase shift 𝜑 is applied in one of the
arms producing phase averaging necessary for our single-photon
states’ representation. Afterwards, the resulting states interfere
on a 50/50 BS, with the outcome being recorded by the intensity
detectors. We assume measurement of the intensities I1 = ⟨Î1⟩
and I2 = ⟨Î2⟩ together with the coincidence signal
C12 = ⟨Î1Î2⟩ = 𝜂2

4

⟨
([a†1]

2 + [a†2]
2)(a21 + a22)

⟩
(10)

where aj, a
†
j are the annihilation and creation operators of the j-th

input mode. The results for a particular sampled pair of ampli-
tudes are assigned the sign of the product cjck and multiplied by
the factor C, defined in Equation (4). The estimates for expecta-
tion values of the measured quantities are formed by summing

the collected results for the sampled states and dividing them by
the total number of samples N:

⟨X̂⟩ ≈ N∑
m=1

Xm∕N (11)

where the operator X̂ stands for the measured quantities Î1, Î2,
and Î1Î2; Xm is the measurement result for the quantity X̂ and
the m-th sampled state. In the limit of a large number of sam-
ples, this procedure accurately reproduces the expectation values
of the measured quantities for the target state 𝜌 up to the scaling
multiplier s2 for the intensities I1 and I2 and s

4 for the coincidence
signalC12. It is straightforward to see that if the state Equation (9)
turns the average value ⟨Î1Î2⟩ to zero, then for any s this average
is also zero. Therefore, scaling does not spoil the HOM interfer-
ence effect.
Usually, the HOM interference is demonstrated through the

so-called “Hong-Ou-Mandel dip”, when one makes the interfer-
ence of pulses imperfect and shows how the probability of simul-
taneous counts on both detectors increases for growing degree
of imperfection. This is usually demonstrated by measuring the
normalized intensity correlation function

g̃2 =
⟨Î1Î2⟩⟨Î1⟩⟨Î2⟩ (12)

For the discussed scaled emulation technique, both the numera-
tor and the denominator of the expression scale as s4, thus ensur-
ing independence of g̃2 of the scaling parameter s (up to statistical
noise, which decreases for larger s).
One can make the interference imperfect, for example, by

adding a delay in one of the interferometer arms to make the
pulses partially overlapping on the 50/50 BS. We discuss a real-
ization of the Hong-Ou-Mandel interference scheme in Supple-
ment A. In particular, it is shown that if the extent of the pulses’
overlap is f (e.g., for rectangular pulses of duration T and rela-
tive delay 𝜏, this quantity equals f = |T − 𝜏|∕T) for 𝜏 ∈ [0, T ] and
f = 0 otherwise), one has g̃2 ≈ (1 − f )∕2. The results of numerical
modeling are shown in Figure 4. The plotted correlation function
is re-normalized by its value g̃2 = 0.5 for non-overlapping ideal
single photons.
Notably, as it was discussed for single-photon emulation of the

Hong-Ou-Mandel interference in ref. [31] and was mentioned in
Section 2, suboptimal representation of the single-photon state
can lead to large statistical errors and, consequently, to large num-
ber ofmeasurement runs necessary for demonstrating theHong-
Ou-Mandel interference. In the Supplement B, we discuss the op-
timization of the single-photon state representation using PCSs.
One can see from the results presented in Figure 4 that using just
four bright PCSs, one can reach 2g̃2 ≲ 0.05 for the completely
overlapping pulses for just 107 measurement runs. Notice that
using just coherent states with independently randomly fluctu-
ating phases without the emulation procedure, one always has
2g̃2 ≥ 0.5.[54]

It is also worth noting that our HOM emulation procedure can
be easily realized not only in the optical region, but also with mi-
crowaves, where intensity detectors with linear response are eas-
ily available. In contrast to the optical wavelength region, the mi-

Adv. Quantum Technol. 2023, 2300060 © 2023 Wiley-VCH GmbH2300060 (5 of 16)
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Figure 4. Dependence of the re-normalized second-order correlation func-
tion 2g̃2(𝜃) on the normalized relative shift 𝜏∕T of rectangular pulses with
the duration T. Solid lines indicate the dependence for interference of two
single-photon states. Points and error bars show the values and the stan-
dard deviations for scaled emulation of single-photon states for N = 107

repetitions and effective scaling of photon number 𝜂s2 = 9 (green) and
1010 (black). Dashed line shows the maximal depth of the HOM dip for
the interference of classical states.

crowave HOM experiment was performed only quite recently.[55]

There, generation of microwave single photons was achieved by
independent superconducting circuits. Due to the absence of ad-
equate single-photon detectors, heterodyne detection at the out-
puts of the HOM beam-splitter was used with long trains of
single-photon pulses to measure the second-order correlation
functions.[56]

Finally, it is worth noting that one can develop the representa-
tion (7) using not only PCSs, but any kind of classical states, even
thermal ones.[48,49,57] Notice that just two thermal states are suf-
ficient for representing a single-photon state;[49] also, the density
operator of a heralded single photon produced from an unentan-
gled photon pair is exactly a difference of two thermal states.[57]

In order to make the microwave HOM emulation more feasible,
noisy coherent states can also can be used (Supplement B).

3.2. Phase Estimation

Another quantum experiment feasible for emulation with scaled
bright coherent states is phase estimation with two-mode NOON
states,

|𝜓⟩ = 1√
2

(|n⟩1|0⟩2 + |0⟩1|n⟩2) (13)

Introducing a phase shift 𝜃 for the firstmode adds the n-times en-
hanced phase factor ein𝜃 to the first term of Equation (13), which
can be extracted by an interferometric measurement of the ob-
servable Rn = |n⟩1|0⟩2⟨0|1⟨n|2 + |0⟩1|n⟩2⟨n|1⟨0|2.[35] The depen-
dence ⟨Rn⟩ = cos(n𝜃) yields favourable scaling of the precision
of the phase shift estimation with the number of photons n and
enables reaching Heisenberg limit of quantum measurement
precision.[58,59] It is remarkable that one does not need to build an

Figure 5. Scheme of interferometer for emulation of the experiment for
phase estimation with bright scaled states. Emulated bright single-photon
states are generated as for Figure 3. Then, they are mixed at 50/50 BS and
inputted into the interferometer. Its outputs are measured by the intensity
detectors D1,2. The phase shift 𝜃 is to be estimated.

involved scheme suitable for measurement of the observable Rn.
It is sufficient to register n photons in the symmetric compound
mode a1 + a2, (i.e., to detect the n-photon state after mixing the
modes at a symmetric beam splitter), since the probability of the
event is proportional to 1 + ⟨Rn⟩ for the considered state.[60]
In our previous work,[31] we have demonstrated the way to de-

velop simple and feasible representations of few-photon NOON
states. So, using the scaled emulation procedure for these states
and performing measurement of the nth-order correlation func-
tion of the symmetric compound mode with intensity detec-
tors, it is possible to emulate the phase measurement with
NOON states.
As an example, let us demonstrate how it can be done for

n = 2. For that purpose, one needs only a simple modification of
the scheme shown in Figure 3 with two input emulated single-
photon states. Thismodified scheme is shown in Figure 5. Scaled
emulation of single-photon states is performed in the same way
as in the previous subsection. The signal enters the interferom-
eter with the phase shift 𝜃 in one of the arms through the 50/50
BS. Then, the outputs are measured by the intensity detectors
and the normalized second-order cross-correlation function (12)
is estimated. In Figure 6, the results of the phase shift 𝜃 estima-
tion are shown for optimal representation of the single-photon
state used in the previous subsection. The errors bars are shown
for N = 107 measurement runs. In Supplement C, we discuss
details of the emulation.
It is to be noticed that the scheme of Figure 5 can also be easily

accommodated for an experiment in the microwave region sim-
ilarly to the HOM emulation scheme.

4. “Hybridizing” States

An obvious way of producing bright non-classical states is to
hybridize available few-photon states with bright classical states
transferring non-classical features of a few-photon state to the
bright one. The scheme of the hybridyzing few-photon states with
bright states and its emulation is shown in Figure 7. As an ex-
ample, one can consider mixing a single-photon state |1⟩ with a

Adv. Quantum Technol. 2023, 2300060 © 2023 Wiley-VCH GmbH2300060 (6 of 16)
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Figure 6. Dependence of the normalized second-order correlation func-
tion g̃2(𝜃) on the measured phase shift 𝜃. Solid lines indicate the depen-
dence for the original 2-photon NOON-state. Points and error bars show
the values and the standard deviations for scaled emulation of single-
photon states forN = 107 repetitions and effective scaling of photon num-
ber 𝜂s2 = 9 (green) and 1010 (black).

Figure 7. Exploiting the platform of bright coherent states by emulation of
“hybridized” states. Firstly, non-classical features of a few-photon state are
transferred to a bright state by considering its “hybridization”. Secondly,
an experiment with the “hybridized” state is emulated using bright coher-
ent probe states. The representation of the target “hybridized” state can be
found by constructing the decomposition of the few-photon state and “hy-
bridizing” each of the probe states. For coherent probes, “hybridization”
means just a displacement of the state amplitude.

bright coherent state at a BS. The result of such “hybridization”
is described by the coherent shift:

|1⟩(𝛽) = D(𝛽)|1⟩, D(𝛽) = exp{𝛽(a† − a)} (14)

where for the sake of simplicity the amplitude 𝛽 is taken to be
real. For large 𝛽 ≫ 1, the resulting state |1⟩(𝛽) is bright (its mean
photon number equals 𝛽2 + 1) and retains non-classical features
(the Glauber function of the “hybridized” |1⟩(𝛽) and the origi-
nal |1⟩ states differ by a translation in the phase space only).

Other schemes of “hybridization” by BS mixing, coherent shift-
ing and photon adding[3,16–21] have already beenmentioned above
in the Introduction.
Naturally, one can use these schemes also to produce emulated

bright non-classical states using emulated few-photon states.
Suppose that a few-photon non-classical state 𝜌 = |𝜓⟩⟨𝜓| can be
represented in terms of coherent states projectors with the ampli-
tudes 𝛼k. Then, the state, “hybridized” by coherent shift, has an
obvious decomposition with the same number of probe states,
the same values of their weights, and linearly displaced ampli-
tudes:

𝜌(𝛽) = D(𝛽)𝜌D†(𝛽) ≈
∑
k

ck|𝛼k + 𝛽⟩⟨𝛼k + 𝛽| (15)

One might even expect “hybridizing” to be simpler and more ro-
bust with respect to losses because of the classicality of states
used for emulation.
Since ideal “hybridization” is described by a unitary transfor-

mation, it does not alter the emulation fidelity. Moreover, it pre-
serves the upper bound[31] of the systematic error for emulation
of measuring observables with bounded spectrum of eigenval-
ues (|𝜆k| ≤ M for all k and certain fixedM > 0). For example, this
statement holds for measuring probabilities of certain detection
events. On the other hand, an increase in the statistical errors
of emulated states discussed in Section 2 clearly hints at possi-
ble problems with noise when “hybridizing” emulated states, es-
pecially for observables with unbounded spectra and mean val-
ues scaling with the growth of the mean photon number (for
example, field quadratures). The influence of “hybridizing” on
the statistical errors can be easily estimated from the general re-
sult obtained in our previous work.[31] The difference between
the variance ΔtrueO of an observable O for the original quantum
“hybridized” state and the variance ΔemO calculated for the ob-
servableO⊗ A and the corresponding emulated state 𝜌em equals

ΔemO − ΔtrueO = 4𝜁+𝜁−
(
Tr{𝜌̂O2}

)
(16)

where 𝜁± =
(∑

k c
(±)
k

)
and the density matrix

𝜌̂ =
∑
k

c(+)k

2𝜁+
𝜌
{+}
k +

∑
k

c(−)k

2𝜁−
𝜌
{−}
k (17)

Equation (16) shows that when ⟨O2⟩ increases with the mean
number of photons in the state, one might need significantly
more measurement runs for accurate estimation of O with the
emulated “hybridized” state than with the original emulated few-
photon state.
Now, let us show how emulation affects the influence of noise

of a bright classical state used for “hybridizing” on the example
of a simple coherent displacement. Influence of the amplitude
noise, unavoidable in a realistic experiment, leads to the follow-
ing state

𝜌′(𝛽) = (𝜌(𝛽)) (18)

where

(𝜌(𝛽)) = ∫ d2𝜖p(𝜖)D(𝛽𝜖)𝜌D†(𝛽𝜖) (19)
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is the completely positive trace-preserving quantum operation in-
duced by the complex-valued relative amplitude noise 𝜀 with the
probability distribution p(𝜖). For Gaussian noise with the stan-
dard deviation 𝜎, one has the following expression for the fidelity
of the noised state 𝜌′(𝛽) relatively to the ideal target state 𝜌(𝛽):

F = 1
2𝜋𝜎2 ∫ d2𝜖 exp{−|𝜖|2∕(2𝜎2)}|⟨𝜓|D(𝜖𝛽)|𝜓⟩|2 (20)

In the limit 𝛽2𝜎2 ≪ 1, Equation (20) leads to the following scaling
of infidelity

1 − F ≈ 2𝛽2𝜎2(⟨a†a⟩ + ⟨aa†⟩ − 2⟨a†⟩⟨a⟩) (21)

where the averaging is performed over the original state |𝜓⟩.
Equation (21) confirms the intuition that large coherent displace-
ment (𝛽 ≫ 1) of non-classical states requires highly stable dis-
placing fields (the acceptable relative noise has to be small: 𝜎 ≪
1∕𝛽).
It is worth noting that the noise of the classical states used for

“hybridizing” canmitigate imperfections of few-photon state em-
ulation. According to the general properties of completely pos-
itive trace-preserving maps,[61,62] the overlap between the noisy
states 𝜌′(𝛽) and (D(𝛽)𝜌approxD†(𝛽)) is larger than or equal to the
initial overlap between the original few-photon state 𝜌 = |𝜓⟩⟨𝜓|
and its representation 𝜌approx:

F
(
𝜌′(𝛽), (D(𝛽)𝜌approxD†(𝛽))

) ≥ F
(
𝜌, 𝜌approx

)
(22)

To conclude, the discussed emulation of “hybridized” states
clearly indicates the ability of genuine emulation of certain bright
non-classical states without specific assumptions, which are re-
quired for scaled emulation presented in the previous section. On
the other hand, both the original “hybridized” states and their em-
ulation are vulnerable to noise of the bright classical states used
for the “hybridization”. Therefore, for practical applications, it is
more advantageous to consider inherently bright non-classical
states and to construct their decomposition directly without ex-
ploiting known representations of few-photon states.

5. Emulating Bright Diagonal States

Here, we discuss a quite wide class of non-classical states that
can be efficiently emulated by virtue of being bright and without
any analogies in the few-photon region. The key to this approach
is the possibility to approximate a photon-number distribution of
the true state, 𝜌nn, by a linear envelope of photon number distri-
butions, 𝜌(k)nn, of easily produced classical states

𝜌nn ≈
∑
k

ck𝜌
(k)
nn, ∀n (23)

where the real coefficients ck can be negative. This representation
ensures accurate emulation of the measurement results for the
observables {Oj} and the state 𝜌, if this 𝜌 or all the observables
{Oj} are diagonal in the Fock states basis.
The problem of the fitting (23) can be greatly simplified for

bright states with smooth photon-number distributions, when

one can treat n as a continuous variable, that is, when it is possi-
ble to introduce a smooth photon-number distribution functions
𝜌nn → p(n) and 𝜌(k)nn → pk(n) satisfying

∞∑
n=0

|| p(n) − 𝜌nn|| < 𝜖, ∞∑
n=0

||| pk(n) − 𝜌(k)nn||| < 𝜖, ∀k (24)

for acceptably small 𝜖.
A typical example of such states are coherent ones (including

PCSs). For them, in the limit of a large average number of pho-
tons, ⟨n⟩≫ 1, it is possible to approximate their Poissonian dis-
tribution of the photon numbers with the Gaussian function:[63]

pk(n) =
1√

2𝜋|𝛼k| exp
{
−
(n − |𝛼k|2)2
2|𝛼k|2

}
(25)

where 𝛼k is the amplitude of the k-th coherent probe state.
Let us show how one can develop a fitting procedure using the

representation Equation (23) with the help of bright PCSs with
photon-number distributions described by Equation (25).
An important and practically relevant class of bright sub-

Poissonian states also possesses the discussed smoothness of the
photon number distribution, which can be continuously approx-
imated in the following way:

pQ (n) =
1√

2𝜋(Q + 1)nQ
exp

{
−

(n − nQ )
2

2(Q + 1)nQ

}
(26)

where nQ is an average photon number of the considered non-
classical state, andQ is theMandel parameter describing photon-
number squeezing. It is defined as[64]

Q = Δn2
nQ

− 1 (27)

where Δn2 is the variance of the photon number distribution
in Equation (26). Negative values of Q correspond to non-
classicality, that is, to the states (26) with the photon number-
distribution narrower than for the coherent state with the same
average number of photons, |𝛼|2 = nQ . The state of Equation (26)
is considered in the next Section as the one producing a spe-
cific kind of “revivals” of atomic population in Jaynes-Cummings
model.[33]

5.1. Direct Fitting

Now, let us demonstrate that one can actually develop a scalable
representation Equation (23) for the sub-Poissonian state Equa-
tion (26) in terms of the states Equation (25) with the fidelity in-
dependent of nQ . The problem Equation (23) of finding the real-
valued decomposition coefficients ck and the absolute values |𝛼k|
of the probe coherent states’ amplitudes 𝛼k for the case can be
recast as a problem of minimizing the distance

 = ∫
+∞

−∞
dx

[
pQ (x) −

∑
k

ckpk(x)

]2

(28)

Adv. Quantum Technol. 2023, 2300060 © 2023 Wiley-VCH GmbH2300060 (8 of 16)
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where pk(x) is defined according to Equation (25) for the probe
state with the amplitude 𝛼k. Additionally, to provide the non-
negativity of the representation, the following constraint should
be imposed:∑
j

cjpj(n) ≥ 0 (29)

together with the unity of the trace,
∑

j cj = 1.
Generally, the condition (29) should hold for all n. In practice,

one might look for its fulfillment for n ∈ [nmin, nmax], such that|nQ − nmin,max|≫√
nQ . Positivity outside this region can be en-

sured by requiring positivity of the coefficients ck corresponding
to the maximal and minimal absolute values of the chosen probe
state amplitudes, |𝛼k|.
Let us define the following normalized quantities

𝜀 =
n − nQ√

nQ
, 𝜀k =

|𝛼k|2 − nQ√
nQ

(30)

Then, according to the expressions (25) and (26), the normalized
deviation of the photon number 𝜀 is distributed according to the
probability densities

f (𝜀) = 1√
2𝜋(Q + 1)

exp
{
− 𝜀2

2(Q + 1)

}
(31)

and

fk(𝜀) =
1√
2𝜋

exp
{
−
(𝜀 − 𝜀k)2

2

}
(32)

for the sub-Poissonian state and the coherent probe states, re-
spectively.
Now, let us assume that our probes do not differ much in in-

tensity from the target, such that 𝜀k ∼ 1. Then the distance given
by Equation (28) reduces to

 ≈ 1√
nQ ∫

+∞

−∞
d𝜀

[
f (𝜀) −

∑
j

cjfj(𝜀))

]2

(33)

The average number of photons, nQ goes into Equation (33) as
a multiplier. So, the optimization procedure for the coefficients
{cj} and the normalized photon-number of the probe states, {𝜀j}
does not depend on nQ .
Substituting the expressions (31) and (32) into Equation (33),

we arrive at the following quadratic form for the distance

2
√
𝜋nQD = 1√

(1 +Q)
−
∑
j

bjcj +
∑
j,k

cjAjkck (34)

where

bj =
2√

(1 +Q∕2)
exp

{
−

𝜀2j

4(1 +Q∕2)

}
(35)

Ajk = exp

{
−
(𝜀j − 𝜀k)2

4

}
(36)

Figure 8. Representation of a sub-Poissonian state with Q = −0.4 as a
mixture of 5 PCSs with positive and negative weights. (a) Distribution of
the normalized deviation 𝜀 (Equation (30)) of the photon-number distribu-
tion of emulated (solid orange line), target (sub-Poissonian, dashed blue
line), and coherent (dot-dashed black line) states for the average photon
number nQ ≫ 1. The decomposition was constructed for minimization
of the distance (34) by optimizing the PCSs parameters 𝜀k and the coef-
ficients ck of the representation (23). The parameters of the optimal de-
composition are shown in panel (b).

Figure 8 shows the decomposition of a sub-Poissonian state
Equation (26) with Q = −0.4 and the number of photons nQ ≫
1 in terms of PCSs by minimization of the distance (34). One
can see that the photon-number squeezed state is quite precisely
emulated with only a few phase-averaged coherent probes.
Obviously, the procedure described here can be easily gener-

alized for an arbitrary smooth photon number distribution. This
procedure will provide the emulation independent on the aver-
age number of photons, on condition that the widths of the target
state and the probe states scale in the same way (for example, as
Δn ∝

√⟨n⟩ for coherent states and a sub-Poissonian state with
fixed Q as discussed above).

5.2. Reverse Fitting

Generally, the procedure described in the previous subsection
starts from a particular kind of a sub-Poissonian state (26) and
includes optimization of the coefficients ck to develop a represen-
tation of this target state. The set of the probe PCSs can be either
fixed or optimized simultaneously with the decomposition coef-

Adv. Quantum Technol. 2023, 2300060 © 2023 Wiley-VCH GmbH2300060 (9 of 16)
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Figure 9. Examples of the reverse-fitted distribution obtained by mini-
mization of Q-parameter (37) for different number K of the probes. Both,
the PCSs parameters 𝜀k and the coefficients ck of the representation (23)
were optimized. (a) Dot-dashed black, solid orange, and dashed blue lines
show the normalized deviation of the photon number distribution for the
number of probe states K = 1 (single PCS with Poissonian distribution), 5
(Mandel parameter reaches the valueQ = −0.44), and 9 (Q = −0.58). (b)
Optimal representation of the sub-Poissonian state by K = 9 probe PCSs.

ficients ck. However, the procedure can be reversed and put in the
following way: provided we have a fixed numberK of PCS probes,
what is the minimal Q of a state with a smooth photon number
distribution that we can emulate using this set of probes?
Using Equatios (27) and (30), the Mandel parameter can be

expressed as

Q =
K∑
k=1

ck𝜀
2
k −

( K∑
k=1

ck𝜀k
)2

(37)

Instead of choosing a specific sub-Poissonian state and searching
for its decomposition in terms of PCSs, one can directly mini-
mize the value of Q conditioned by Equation (29).
Figure 9 shows the examples of such a reverse fitting for the

probes numbers K = 5 (solid blue line) and 9 (dashed red line).
For comparison, the black dot-dashed line in panel (a) shows
the photon number distribution for the PCS (K = 1). An exam-
ple of the optimal coefficients ck describing the contribution of
each PCS and the optimal parameters 𝜀k is shown for K = 9
in Figure 9b. The results indicate the possibility to reach larger
photon-number squeezing by relaxing the requirement for the

state to possess the fixed shape (26) of the photon number distri-
bution.

6. Emulation of “Collapses” and “Revivals”

Here, we show that the emulated bright non-classical states de-
scribed in the previous section can be used for demonstrating
quantum effects that are not feasible with the few-photon states.
Namely, these are specific quantum “collapses” and “revivals” in
population dynamics of a two-level system interacting with a sin-
gle quantum field mode.
More than forty years ago, it was discovered that in the Jaynes-

Cummings model[33] of a two-level system interacting with a sin-
gle quantum field mode, initial coherent state of this mode with
sufficiently large average number of photons leads to periodic
“collapses” and “revivals” of the atomic population.[36] This find-
ing attracted a considerable interest in this phenomenon, both
theoretical and experimental. First experimental observation is
dated as far back as 1987with a single-atommaser.[65] The Jaynes-
Cummingsmodel gave rise to a plethora of important theoretical
predictions and experimental observations, such as, for example,
Rabi splitting,[66–68] antibunching and sub-Poissonian statistics of
the intra-cavity field,[69,70] phase and amplitude bistability;[71,72] a
variable source for conditional and unconditional generation of
non-classical states.[73–77]

However, up to this date there are no experiments demonstrat-
ing “collapses” and “revivals” due to atomic interaction with a
single-mode field in a non-Gaussian non-classical state. In par-
ticular, specific “structured revivals” were predicted for the initial
state given by Equation (26). If the mode is prepared in a coher-
ent state, the “collapses” and “revivals” loose their periodic well-
structured character during the system evolution and reduce to
noise-like oscillations. Photon-number squeezing with the initial
state (26) extends the region of regular structure of “collapses”
and “revivals”. But this prediction was not verified due to diffi-
culties in generation of such states. Here, we demonstrate the
feasibility of reproducing such “collapses” and “revivals” using
emulated sub-Poissonian states with a Gaussian photon-number
distribution Equation (26).
The Jaynes-Cummings system consists of a two-level atom

(TLA) interacting with a single quantized field mode a. For the
resonant case, in the rotating-wave approximation and in the
frame rotating with the atomic transition/modal frequency, this
system is described by the following interaction Hamiltonian

H = ℏΩ(𝜎+a + a†𝜎−) (38)

where the atomic raising and lowering operators are 𝜎± =|±⟩⟨∓|, the vectors |±⟩ denote upper and lower atomic levels;
the parameter Ω is the Rabi frequency describing strength of the
atom-field coupling.
For the atom initially in the lower state |−⟩, there is a simple

solution (see Supplement D) for the time-dependent upper-state
atomic population:[33]

P(t) =
∞∑
n=0

p(n) sin2
[
Ω
√
nt

2

]
(39)
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Figure 10. Effect of “Collapses” and “revivals” for small time scale: (a) for
a coherent (blue line) and target sub-Poissonian (orange line) initial state
(26); (b) for an emulated sub-Poissonian state (blue line). The lower or-
ange line in panel (b) shows the difference ΔP(t) between the upper-state
atomic population P(t) for the emulated and the target sub-Poissonian
states. The average photon number is ⟨n⟩ = 100 for all shown states. The
Mandel parameter isQ = −0.58 for the sub-Poissonian states. The 9-state
representation (Figure 9) of the sub-Poissonian state was used for the em-
ulation.

p(n) being a photon-number distribution of the true initial state
of the mode a. For the mode prepared in a Fock state, the solu-
tion (39) describes just harmonic oscillations of the atomic pop-
ulation. The same behaviour would occur for the coherent ini-
tial state with a large amplitude, |𝛼| → ∞. Obviously, for narrow
photon-number distributions (which is typical, for example, for
the small average number of photons of the mode a) only a few
harmonic components would contribute to the sum (39). But sur-
prisingly it appears that when the number of photons increases
to mesoscopic values, the atomic population (39) exhibits regular
intermittent pattern of “collapses” and “revivals” around the equal
population of excited and ground levels.[36] The solid blue line in
Figure 10a illustrates this phenomenon for the initial coherent
state of the fieldmode. One can see that after a fewwell-separated
regular “collapses” and “revivals” the atomic population oscillates
in a noise-likemanner. Intervals between the “revivals” disappear.
Photon-number squeezing allows one to extend the region of the
structured well-separated “collapses” and “revivals” changing re-
spective widths and heights of the “revival” oscillations as well.
In Figure 10b, it is shown that the emulation with quite a modest
number of phase-averaged coherent probes (see Supplement D
for details) allows one to reproduce very precisely an extension of

Figure 11. Scheme of a setup suitable for emulation of “collapses” and
“revivals” in Jaynes-Cummings model. Two-level atoms, initialized in the
ground state, pass through a single-mode cavity and then are subjected
to the population measurement. Varying the speed of the atoms, one can
control the duration t of the atom-field interaction preceding the measure-
ment. Before passage of each atom, the field mode is excited to a PCS 𝜌k,
sampled according to the representation (23).

the structured “collapses” and “revivals” dynamics region typical
for true photon-number squeezed states (26). For the represen-
tation used to obtain Figure 10b, 9 states were used. The average
photon number of the emulated state is 100, Mandel parameter
Q = −0.58; the coefficients ck and the normalized amplitudes 𝜀k
are shown in Figure 9b.
Figure 11 shows a scheme suitable for emulation of “collapses”

and “revivals” employing a setup similar to the one used in ref.
[65]. Two-level atoms, initialized in the ground state, pass through
a single-mode cavity, where the sub-Poissonian state is emulated,
and then are subjected to the population measurement. Repeat-
ing the experiment with different duration t of the atom-field in-
teraction (the time needed for an atom to pass through the cav-
ity), one can measure the dependence of the upper-state atomic
population P(t) on the dimensionless parameter Ωt, shown in
Figure 10.

7. Conclusions

In this work, we have shown how to extend the emulation of non-
classical states suggested in the previous work[31] toward the plat-
form of multi-photon bright coherent states. Direct approaches
to this problem, based on extension of known decompositions of
few-photon non-classical to a larger number of photons, quickly
became unfeasible with the increase of the average number of
photons of the state to be emulated. One needs too many probes.
Correspondingly, one faces too large statistical errors when try-
ing to emulate results of quantum experiments. We have sug-
gested three different approaches for overcoming this problem.
Firstly, we have developed a scaling procedure for emulation of
the few-photon states for demonstrating such fundamental ex-
periments as Hong-Ou-Mandel interference and phase estima-
tion with NOON states. The essence of this approach is to scale
similarly amplitudes of all the coherent probes so as to obtain
the same normalized normally-ordered correlation functions as
for the original few-photon state.We have demonstrated practical
feasibility of the Hong-Ou-Mandel interference experiment with
emulated scaled single-photon states using just four probes.
Secondly, we have demonstrated that one can emulate “hy-

bridizing” bright classical states with few-photon non-classical

Adv. Quantum Technol. 2023, 2300060 © 2023 Wiley-VCH GmbH2300060 (11 of 16)
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states by modifying the probe coherent states accordingly. For
example, one can coherently displace few-photon emulated non-
classical states, add or subtract a single-photon emulated state,
etc. Noise of the bright classical state can even improve fidelity of
the “hybridization” with the emulated state in comparison with
the true one. However, it is better to optimize emulation with
respect to the statistical errors propagation for the “hybridized”
state and not the original few-photon one.
Thirdly, we demonstrated that it is possible to emulate effi-

ciently bright non-classical states, diagonal in the Fock states’ ba-
sis, with smooth localized photon number-distributions in such a
way that the emulation procedure does not depend on the average
photon number of the target state. We have shown that such em-
ulation opens the way for experimental observation of effects that
were not available due to impossibility to generate multi-photon
non-classical states required for this. As an example, we have
shown how one can observe structured “collapses” and “revivals”
in the Jaynes-Cummings model with photon-number squeezed
multi-photon states.
In conclusion, the developed procedures for non-classical em-

ulation of bright states open wide possibilities for testing exper-
imental setups and observing effects that were otherwise unfea-
sible due to problems with generating non-classical states.

Appendix A: Scaled Emulation of Hong-Ou-Mandel
Effect

Figure A1 shows a 4-mode representation of the HOM measurement
with partially overlapping modes. The original 2-photon state with the
overlap f can be represented as

|1, 1⟩(f ) = a†1

(√
f a†2 +

√
1 − f b†2

)|0, 0⟩1|0, 0⟩2 (A1)

After the BS, shown in Figure 3a, the state will be transformed into

|1, 1⟩(f ) →
√
f√
2
(|2, 0⟩1|0, 0⟩2 − |0, 0⟩1|2, 0⟩2)

+
√
1 − f

2
(|1, 1⟩1|0, 0⟩2 − |0, 0⟩1|1, 1⟩2)

+
√
1 − f

2
(−|1, 0⟩1|0, 1⟩2 + |0, 1⟩1|1, 0⟩2) (A2)

Figure A1. Schematic representation of partially overlappingmodes â and
b̂. The overlap f corresponds to the temporal (a) or polarization (b) degree
of freedom.

Further, we assume that the detector D1 (see Figure 3) does not dis-
tinguish between the modes a1 and b1, and the detector D2 does not
distinguish a2 and b2, that is, the detection results are determined by
the photon-number operators n̂1 = a†1a1 + b†1b2 and n̂2 = a†2a2 + b†2b2, re-
spectively. Therefore, the first two lines of Equation (A2) correspond to
the presence of two photons in one arm of the interferometer, while the
third line describes the two photons distributed between the arms yielding
coincident counts.

Direct substitution of the state (A2) into the definition of the normalized
intensity correlation function (12) yields

g̃2 =
1 − f
2

(A3)

for the partially overlapping single-photon inputs of the interferometer.
To calculate the signals and their variances for scaled emulation, it is

useful to consider the interference of two partially overlapping PCSs with
the scaled amplitudes sxj and sxk at the BS. The resulting mean and mean-
squared values of the measured quantities take the following values for a
2-mode probe state 𝜌PCS(sxj)⊗ 𝜌PCS(sxk):

I1(j, k) = I2(j, k) = Ajk, Ajk = 𝜂s2
x2j + x2

k

2
(A4)

C12(j, k) = A2jk − B2jk, Bjk = 𝜂s2
√

f
2
xjxk, (A5)

I21(j, k) = I22(j, k) = A2jk + Ajk + B2jk (A6)

and

C2
12(j, k) = A4jk + 2A3jk + A2jk − 2A2jkB

2
jk − 2AjkB

2
jk +

3B4
jk

2
− B2jk (A7)

According to the emulation protocol, the final expectation value of the
emulated quantity X (X = I1, I2, or C12) equals

X =
∑
j,k

cjckX(j, k) (A8)

while its variance can be calculated as

VarX =
∑
j,k

|||cj|||||ck||X2(j, k) − X2 (A9)

The numerical results are shown in Figure 4. It is worth noting that the
efficiency of the detectors 𝜂 enters the expressions together with the scal-
ing parameter s as a combination 𝜂s2. The expectation values of intensities
and the coincidence signal scale as 𝜂s2 and (𝜂s2)2, respectively, thus en-
suring g̃2 independence of scaling. However, the expressions for the vari-
ances of the measured quantities contain terms growing slower with 𝜂s2

than the main term and vanishing for bright scaled emulation. Figure A2
shows the dependence of the standard deviation of the re-normalized cor-
relation function 2g̃2 on the effective scaling parameter 𝜂s2. One can see
that the effect of scaling with the statistical errors saturates for 𝜂s2 ∼ 10;
the remaining noise is caused by random sampling of the probe states
rather than by their internal noise.

Appendix B: Optimization of Single-Photon State
Representation

Here, we illustrate how one can develop a high-fidelity representation
of a single-photon state in terms of the PCSs. For constructing such a
representation, we minimize the error defined as

d =

√√√√Nmax∑
n=0

||𝜌estnn − 𝜌truenn
||2 (B1)
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Figure A2. Dependence of the standard deviation of the emulated re-
normalized second-order correlation function 2g̃2(𝜃) on the effective scal-
ing parameter 𝜂s2. Dashed horizontal line indicates the asymptotic value
of the standard deviation.

where 𝜌est (true)nn are diagonal elements of the estimated (true) density ma-
trix. We utilize the least-square fitting (LSF) algorithm of the CVX package
in MATLAB, and the genetic algorithm (GA) to optimize the emulation.
The variables of the optimization problem are the amplitudes of the probe
states |𝛼k|, and the decomposition coefficients ck. The constraint condi-
tion is the positivity of the elements of the constructed density matrix. The
number of the probe states K was chosen as the minimal one providing a
reasonable accuracy of the representation for sufficiently small values of
the normalization coefficient C in Equation (4).

As the first example, we assume a uniform distribution for the ampli-
tudes of the coherent states by considering an equidistant linear lattice
with the grid distance 𝛿 (corresponding to the difference between the am-
plitude of two adjacent coherent states). Then, the amplitude sequence

is |𝛼k| = k𝛿 with k ∈ 1…K. By setting 𝛿 as a variable of the GA, we ob-
tain the optimum value of 𝛿 = 0.305 for representation of a single-photon
state by 8 PCSs. Using the LSF algorithm, the weight coefficients are de-
rived and shown in Figure B1(a). Figure B1(b) shows the diagonal terms
of the estimated (true) density matrix by gray (red) bars and the inset plot
is a zoom-in view of the dashed box. As one can see, 𝜌est11 ≈ 1 and the rest
of the diagonal elements are very small as expected. The error distance is
3.66 × 10−5, which indicates an accurate emulation. By changing the con-
straint tolerance in the GA, the accuracy can be further increased if needed.
Since the GA is a stochastic algorithm, the results may slightly change at
each run.

Next, we set |𝛼k| as optimized variables in the GA and derive a set of
amplitudes with nonuniform distribution in a linear lattice as shown in
Figure B1(c) as well as their corresponding weights. For this case, the es-
timated density matrix is illustrated in Figure B1(d), which is well-matched
to the true state with the error distance 1.81 × 10−5.

Generally, noise in PCSs, actually used for emulation, spoils the result-
ing accuracy. However, the effect can be removed by taking the noise into
account initially: when specifying the probe states and constructing the
representation (2). One can aim at representing the target state in terms
of PCSs with noisy amplitude:

𝜌PCS(x, 𝜎) =
1√
2𝜋𝜎

∞

∫
−∞

dy exp
(
−
(y − x)2

2𝜎2

)
𝜌PCS(|y|) (B2)

Numerical results for such representation are shown in Figure B2. If the
probe states are noisy, an increased number of such states becomes nec-
essary.

Appendix C: Scaled Emulation of Phase Estimation

The state (A2), obtained after the interference of 2 photons at a beam-

splitter, is close to the 2-photon NOON-state (|2⟩a|0⟩b − |0⟩a|2⟩2)∕√2

Figure B1. Emulation of a single-photon state by 8 PCSs using (a) an equidistant linear lattice and (c) a nonuniform linear lattice with the corresponding
weights ck. The shown true and emulated density matrices are related to the uniform (b) and nonuniform latices (d).
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Figure B2. Dependence of the fidelity of single-photon state decomposi-
tion (2) in terms of noise PCSs (B2) on the noise amplitude 𝜎 for un-
constrained optimization with 4 probe states (dashed) and constrained
optimization with C ≤ 30 and 4 (dot-dashed) and 7 (solid) probe states.

and, therefore, can be used for sensitivity enhancement in phase estima-
tion. For the scheme, shown in Figure 5, the normalized coincidence rate
takes the following value for interference of a pair of single photons with
the overlap f :

g̃2(𝜃) =
1 − f
2

+
1 + f
2

cos2 𝜃 (C1)

The expressions for the mean and mean-squared values of the mea-
sured observables, similar to Equations (A4)–(A7), take the following form
for a 2-mode probe state 𝜌PCS(sxj)⊗ 𝜌PCS(sxk):

I1,2(j, k) = D(∓)
jk

, D(±)
jk

= 𝜂s2
(
x2j
1 ∓ cos 𝜃

2
+ x2k

1 ± cos 𝜃
2

)
(C2)

C12(j, k) = D(+)
jk

D(−)
jk

− Jjk, Jjk =
𝜂2s4

2
fx2j x

2
k sin 𝜃 (C3)

I21,2(j, k) =
(
D(∓)
jk

)2
+ D(∓)

jk
+ Jjk (C4)

and

C2
12(j, k) = D(+)

jk
D(−)
jk

(
1 + D(+)

jk
)(1 + D(−)

jk

)

+
[(

D(+)
jk

)2
+
(
D(−)
jk

)2
− 4D(+)

jk
D(−)
jk

− D(+)
jk

− D(−)
jk

− 1
]
Jjk +

3J2
jk

2
(C5)

The results, calculated according to the derived expression, are shown
in Figure 6 for N = 107 repetitions.

Appendix D: Expressions for Emulation of
“Collapses” and “Revivals”

The dynamics of atom-field state yielding “collapses” and “revivals” is
descibed by Jaynes-Cummings Hamiltonian (38). In the initial state, the
atom is assumed to be in the lower state |−⟩, while the field mode is in
certain state (a coherent one, a PCS, or a sub-Poissonian state)

𝜌 =
∞∑

m,n=0
𝜌mn|m⟩⟨n| (D1)

The solution of Schrödinger equation with the Hamiltonian (38) and the
initial condition (D1) is

𝜌atom+field(t) =
∞∑

mn=0
𝜌mn|Ψm(t)⟩⟨Ψn(t)| (D2)

where

|Ψk(t)⟩ = |k⟩|−⟩ cos[Ω
√
nt

2

]
− i|k − 1⟩|+⟩ sin[Ω

√
nt

2

]
(D3)

is the solution for the initial k-photon state of the fieldmode. Therefore, the
population inversion is described by Equation (39) with p(n) = 𝜌nn being
the diagonal part of the density matrix of the initial field mode state.

For the initial coherent state 𝜌 = |𝛼⟩⟨𝛼| (blue line in Figure 10a) one
has p(n) = |𝛼|2ne−|𝛼|2∕n! and
P(t) ≡ P(t; |𝛼|) = ∞∑

n=1

|𝛼|2n
n!

e−|𝛼|2 sin2
[
Ω
√
nt

2

]
(D4)

For the initial sub-Poissonian state (orange line in Figure 10b) the expres-
sion (26) was substituted into Equation (39) for calculation of P(t).

According to linearity of quantum dynamics, the population inversion
for the emulated experiment (blue line in Figure 10b) can be calculated in
the following way:

P(t) =
∑
k

ckP(t; |𝛼k|) (D5)

where the population inversion for PCSs is provided by Equation (D4).
Here, one should notice that in the resonant Jaynes-Cummings model,

for a very large number of photons and/or long evolution times and low
loss, the rotating wave approximation eventually breaks down leading to
deviations from behaviour described by Equation (39).[78,79]
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