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In this article, aspects of quantum electro-
magnetics (QEM) are discussed with a view 
toward illustrating basic concepts and mak-
ing some connections with classical EM. 

The similarities and differences between the 
mathematical representations as well as the 
physical interpretations in the quantum and 
classical cases are reviewed, and a brief dis-
cussion of the different objectives and quanti-
ties to be measured/computed in quantum 
and classical regimes is provided. The role of 
the classical Green function in rigorous, fully 
quantum electrodynamics (QED) is highlight-
ed, and an example of quantum state evolution 
in a graphene environment is presented.

INTRODUCTION
QED/QEM is the study of quantized radiation, its 
statistical properties, and its interaction with mate-
rials. It is necessary to invoke QED when only a 
small number of photons are present in a system. 
Although both the quantum and classical cases are 
governed by Maxwell’s equations (the former in 
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operator form), both the questions typically asked and the math-
ematical operations used to answer those questions are quite dif-
ferent. In this article, some of these similarities and differences are 
highlighted, with several examples provided.

QEM requires the use of annihilation and creation operators, 
so familiarity with second quantization notation is assumed. Basic 
quantum optics (QO) are examined in a variety of textbooks [1]–[7].

One of the first things that should be mentioned is the pho-
ton concept. Despite the fact that photon properties are seem-
ingly fairly well understood (that is, how photons act), photons 
lack an intuitive understanding in the sense of how everyday 
objects behave. It seems impossible to answer the question 
“what is a photon?” in a simple manner [8]. The photon is a 
rather mysterious object, hence, the old saying that “a photon 
is what a photon detector detects.” Furthermore, modifying 
from Feynman [9], given that an atom can absorb a photon 
and atoms are pretty small, one may think that a photon must 
be smaller. However, this logic is false. Photons are not tiny 
(hence, localized) particles of energy, because often, photons 

spread out over all space. In very sharp contrast with classical 
electrodynamics, where a radiation mode can take any energy 
value by increasing or decreasing the field amplitude in a con-
tinuous fashion, in quantum EM, the energy of a single mode 
of the field with frequency ~ can only take on values separated 
from each other by multiples of '~ (i.e., the mode energy can 
only be increased or decreased in multiples of '~). This mini-
mum amount of energy is associated with the term photon as 
the quanta of the field.

To have an idea of the large number of EM excitations (pho-
tons) usually present in EM phenomena, assume  ,600 nmm =  
so that each photon carries .E 3 31 10p

19#'~= = -  J of 
energy. An EM wave carrying ( / )W1 J s-n n=  of power consists 
of N 3 1012#=  photons/s, so the granularity of this flow is vir-
tually unobservable. This is usually the case unless great effort is 
taken to reduce the intensity, and hence, the number of photons. 
This is why the discrete nature of light is not easily observed 
in everyday situations. Moreover, in addition to representing 
extremely low intensity light, much of QED phenomena and 
applications rests upon the fact that uniquely quantum energy 
states can be found and manipulated (number states, coherent 
states, squeezed states, and so on).

Figure 1 depicts a dielectric slab in vacuum, with quantum 
“vacuum” fluctuations [7] present in all regions. Scattering, 
waveguiding, surface-plasmon polaritons, and other associ-
ated phenomena occur in both quantum and classical cases and 
share many similarities. One of the basic problems in QEM 
is determining how the space around a natural or artificial 
atom, including the vacuum fluctuations, affects the atom’s 
spontaneous emission rate, statistics of the atom’s florescence, 
and/or whether an atom can form quantum entanglement with 
another object.

SIMILARITIES
It is useful to consider the following similarities and differences 
between classical and QEM:

■■ Maxwell’s equations (and associated equations such as the 
continuity equation) have the same form for both classical 
and quantum fields (operators). Related to this, the bound-
ary conditions imposed on quantum fields are the same as 
those placed on classical fields and, related phenomena, 
such as Snell’s laws, resonance conditions, and so forth also 
apply to quantum fields.

■■ The spatial variation of the field is the same as in the clas-
sical and quantum cases. For example, the quantum field 
of an atomic dipole has the same spatial form as that of 
the classical dipole, albeit with a probabilistic, rather than 
deterministic, interpretation.

■■ The concept and utility of classical Green functions are 
important in both classical (of course) and quantum (not as 
obvious) cases.

DIFFERENCES
■■ In classical EM, electric, magnetic, and associated fields 

have a specific amplitude (and, for vector fields, vector 
direction/polarization) at position r and time t (or frequency ©
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~), which can be measured, whereas in QEM, these 
quantities are replaced by operators that depend on r and 
t or ~. Being operators, they themselves have no intrinsic 
amplitude or polarization, and cannot be, themselves, 
measured; they need to act on a state function to produce 
a value.

■■ In QEM, the energy of the field is quantized in multiples of 
,'~  whereas in classical EM, the field energy is continuous 

and can take any value.
■■ Much of QEM revolves around the concept of discrete 

energy eigenstates (discrete eigenstates of the energy 
operator), how electric and magnetic field operators act 
on these states, the statistics of these states, and how 
these states propagate in an environment or interact with 
objects. In the classical case, discrete energy eigenstates 
are nonexistent (although discrete resonant field modes of, 
say, a cavity, of course exist). The field energy and power 
associated with an EM wave, or even an EM mode in a 
cavity, are certainly important, but these are quantities 
that can take on a continuous range of values and are usu-
ally computed as a secondary calculation after the fields 
are determined.

■■ In the classical case, in the absence of sources (including 
thermal sources, so, e.g., at  ),KT 0=  there is no field. In 
the quantum case, vacuum fluctuations exist that lead to a 
field having zero mean but nonzero variance.

■■ In the classical case, dispersion and absorption are easily 
accounted for. In the quantum case, both, but particularly 
absorption, are quite difficult to take into account.

HARMONIC OSCILLATORS: CLASSICAL MECHANICAL  
AND CLASSICAL EM
The concept of a harmonic oscillator (HO) is central to quantum 
EM. We first discuss a general HO and show that classical cavity 
modes are equivalent to HOs and then show how to quantize 
both cases.

THE CLASSICAL MECHANICAL HO
The prototypical HO is a system consisting of a mass m and 
spring with spring constant K. For small deformations the spring 
will exert a force on the mass F Kx= -  by Hooke’s law. Using 

/ ,F dV dx= -  where V is potential energy, the potential energy 
profile is clearly / .V Kx 22=  This mass-spring system could be 
literally a mass-spring system or it could be, e.g., a mass-spring 
model of an atomic lattice (leading to, when lattice vibrations 
are quantized, phonons). The same quadratic potential energy 
profile is obtained for a particle moving in a potential V(x) near 
an equilibrium point.

The classical equation of motion for the oscillator problem, 
,F ma=  is

	 ,
dt

d x t
x t 02

2

0
2~+ =

^ ^h h � (1)

where / ,K m0~ =  with the solution .cosx t C t0~ z= +^ ^h h  
Although, for a mass-spring system, it is reasonable to retain the 
variable x t^ h to represent physical displacement of the oscil-
lator, in the next section, we show that classical EM fields can 
be written as HOs, in which case the corresponding quantity 
is no longer a displacement of position. Therefore, it is common 
to replace x t^ h by ,q t^ h  which is known as canonical position. 
The energy (Hamiltonian) of the classical oscillator is the sum of 
kinetic and potential energies:

	 ,H E E
m

p t
m q t

2
1

k p

2

0
2 2~= + = +e ^ ^h h o � (2)

where p mv mx mq· ·
= = =  (denoting /d dt·

a a= ). Further-
more, total energy is found to be / ;H m C1 2 0

2 2~= ^ h  energy can 
take any value because the amplitude C can take any value.

THE CLASSICAL EM CAVITY FIELD AS A HO
We now see that the source-free EM field in a cavity is equiva-
lent to a HO. We assume a 1D empty lossless cavity for simplic-
ity, then generalize this result.

Maxwell’s equations for source-free vacuum are

	 · , , · , ,t t0 0E r B rd d= =^ ^h h � (3)

	 , , ,t
t

tE r B r#d
2
2= -^ ^h h � (4)

	 , , .t
t

tB r E r0 0#d
2
2n f=^ ^h h � (5)

For a 1D cavity along the z-coordinate from z 0=  to z L=  
with perfect electrical conductor walls, we assume the elec-
tric field is polarized along the x-coordinate so that EE x= t  
and .BB y= t  The curl equations can be decoupled, leading  
to, e.g.,

	 , , .
z

E z t
t

E z t 02

2
0 0 2

2

2

2

2

2fn- =^ ^h h � (6)

To solve using a separation of variables, assume that 
, ,E z t E z p t=^ ^ ^h h h  so that

	 ,
z

E z k E z 02

2
2

2

2 + =^ ^h h � (7)
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ω
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FIGURE 1. A cartoon depiction of a dielectric slab immersed 
in quantum fluctuations of varying density in all regions  
of space.
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	 ,
t

p t p t 02

2

0 0

2

2

2
fn

b
+ =^ ^h h � (8)

with the separation constraint .k 02 2b- + =  Because 
,E z E z L0 0= = = =^ ^h h  eigenfunctions normalized as 

E z E z dzp
L

q pq
0

d=^ ^h h#  are

	 , , , , , ,sin k k
L

m mE z
L

kz2 1 2 3mk fr= = = =^ ^h h � (9)

where k is the mode index, and therefore

	 , ,E z t p t E z1
k k k

0f
= -^ ^ ^h h h � (10)

where we have included a constant prefactor for later conve-
nience.

The magnetic field is found from the electric field as

	 , ,B z t q t
z

E z1
y k

0 2
2

f
=^ ^ ^h h h � (11)

where we have defined ,p t tq/ o^ ^h h  with the dot denoting 
time differentiation. The Hamiltonian is straightforwardly 
evaluated as a sum over modes, ,H Hk kR=  where

	 , ,H E z t B z t dz
2
1 1

k k k
L

0
2

0

2

0
f

n
= +c ^ ^h hm# � (12)

	 ,( ) ( )p t q t
2
1

k k k
2 2 2~= +^ h � (13)

where / .ck kk 0 0f~ n= =  Comparing with the classical 
oscillator Hamiltonian (2), we see that a classical EM cavity 
mode is equivalent to a classical oscillator with unit mass.

THE QUANTIZED EM CAVITY FIELD: CREATION AND 
ANNIHILATION OPERATORS, AND FOCK/NUMBER STATES
Having found the modal solution for the cavity, the classical 
EM solution is complete. Of course, often one is interested in, 
say, the field due to a source, in which case the modal solutions 
can be used to form a Green function and, in turn, the source-
driven field in the cavity can be found.

In the quantum case, the modal solutions need to be quan-
tized. Because the evolution of energy states plays a promi-
nent role in QEM, the quantum mechanical Hamiltonian is of 
paramount interest. The typical procedure is to start with the 
classical Hamiltonian and then rewrite that in terms of quan-
tum mechanical operators, a procedure known as canonical 
quantization [3], [4], [7]. Therefore, we start with the classical 
Hamiltonian and elevate the momentum p t^ h and position 
q t^ h functions to operators for momentum p tt ^ h and canonical 
position :q tt ^ h

	 , .H q q p p
m

p
m q

2 2
1

2

0
2 2" " ~= +t t t

t
t^ h � (14)

As we will see, the key ingredient in doing this is to adopt as a 
basic postulate of quantum mechanics that we enforce that the 
commutator be

	 , ,q p qp pq i I'= - =t t t t t t6 @ � (15)

where the identity operator I is typically dropped. The impor-
tance of this commutator relation (and similar relations that 
will follow) cannot be overstated, as it implies/enforces the 
Heisenberg uncertainty principle, upon which quantum 
theory rests.

We then have quantized electric and magnetic field operators

	 , ,E z t p t E z1
k k k

0f
= -t t^ ^ ^h h h � (16)

	 , .B z t q t
z

E z1
k k k

0 2
2

f
=t t^ ^ ^h h h � (17)

The operators pt  and qt  are Hermitian and correspond to 
observable quantities. An alternative procedure would be to 
raise the wave equation (6) to operator level and formally solve 
that equation in a similar manner, enforcing appropriate com-
mutators to yield the necessary energy expression.

The energy of the classical HO was previously found to be a 
continuous quantity, ( / ) .H m C1 2 0

2 2
classical ~=  For the quantum 

HO, the eigenvalue problem H E} }=t  leads to energy eigen-
functions, which are Hermite polynomials, and energy eigenval-
ues are found to be discrete [10]

	 ,   , , , ,nE n
2
1 0 1 2n 0' f~= + =c m � (18)

and are equally spaced according to the index n. Because of this, 
we often write the energy eigenequation as

	 ,H n E nn=t � (19)

where ( / )n n 1 2 0'~= +^ h  indicates that the state has 
n quanta of EM energy. This is known as a Fock state or 
number state, and these states are exceedingly important in 
QEM. Of course, similar HO problems and number states 
arise from the time-independent Schrödinger’s equation 
(SE), where, for a particle in a parabolic potential, the time-
independent SE is an eigenvalue equation ,H n E n=t  
where Ht  is (14).

The lowest possible energy state is the vacuum state 
/ ;0 1 2 0'~= ^ h  this state has zero photons but has energy

	 ,E
2
1

0 0'~= � (20)

which is not zero as occurs for the classical oscillator. This zero-
point energy arises from the noncommutativity of qt  and .pt  So, 
e.g., a crystal lattice has zero-point energy /1 2 k'~^ h  even when 
phonons are absent, and the EM field has zero-point energy 

/1 2 k'~^ h  even when photons are absent. To understand why 
the noncommutativity of qt  and pt  results in zero-point energy, 
consider that for the classical oscillator, energy E 00 =  when 
the amplitude of oscillation is zero. However, in the quantum 
case, this would correspond to the state , ,q p0 0= =  which 
is forbidden by the uncertainty principle (which applies to 
noncommutative operators). Therefore, the vacuum state is 
necessary for the preservation of the commutators and the self-
consistency of the quantum theory.
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ENERGY STATES—CREATION AND  
ANNIHILATION OPERATORS
At this point, we have quantized the HO problem, which may 
represent, e.g., photons or phonons. However, it is useful to 
introduce new operators [7], [10] (m 1=  for the EM case):

	 , ,a m q i
m
p

a m q i
m
p

2 2' '
~

~
~

~
= + = -@t t

t
t t

tc cm m � (21)

which satisfy the commutation relation

	 , .a a 1=@t t6 @ � (22)

The operators at  and a@t  are not Hermitian, and so, they are not 
observable/measurable.

It is easy to show that

	 .H a a
2
1 '~= +@t t tc m � (23)

The operator n a a= @t t t  is called the number operator, because 
it counts the quanta (in units of '~). The operator at  is called 
the annihilation or lowering operator, and a@t  is called the cre-
ation or raising operator, because the action of these opera-
tors is

	 ,a n n n 1= -t � (24)

	 .a n n n1 1= + +@t � (25)

Because Ht  is a nonnegative operator, there is a lowest (vacuum) 
state devoid of photons, such that .a 0 0=t  This is an imposed 
condition, called a termination condition because it terminates 
the “ladder” operator .at  Furthermore, a given number state can 
be created from the vacuum state as

	
!

.n
n

a 0
n

=
@t^ h � (26)

Finally, we can mention that because Ht  and nt  are Hermitian, 
number states are orthogonal and form a complete set:

	 | , | .n n n n Inn
n 0

Gd= =
3

=

l l / � (27)

In the Heisenberg representation, the time evolution of 
operators satisfies [7]:

	 , ,
dt
d o t i o t H

'
= -t t t^ ^h h6 @ � (28)

which leads to free evolution in the absence of other fields/oper-
ators/objects, / ,da t dt i a t~= -t t^ ^h h  and so, .a t a e0 i t= ~-t t^ ^h h

The final form for the quantized 1D cavity EM field is

	 , ,E z t i a t a t E z
2

k
k k k

k 0

'
f
~

= - @t t t^ ^ ^ ^h h h h6 @/ � (29)

	 , ,B z t a t a t
z

E z
2 k

k k k
k 0

'
2
2

f ~
= + @t t t^ ^ ^ ^h h h h6 @/ � (30)

with the equal-time commutators (i.e., commutators evaluated 
at the same time instant)

	 , , ,a t a t a t a t 0k k k k= =@ @
l lt t t t^ ^ ^ ^h h h h6 6@ @ � (31)

	 , .a t a tk k kkd=
@
l lt t^ ^h h6 @ � (32)

Accounting for the normalization of the modal field, an ampli-
tude constant /E Lk0 0' f~=  (V/m), where L is the length of 
the cavity, is roughly the field amplitude “per photon” because

	 , ,sinE z t
L

kz0 1k
k

0

'
f
~

=t ^ ^h h � (33)

and so, in the one-photon state, the amplitude is .E0  This quan-
tity is also the expectation value of the fluctuating vacuum field 
[see, e.g., (53)], which has recently been measured, and found 
to be in good agreement with E0  [11]. It can be seen that the 
quantum aspects of the field/mode are contained in the ampli-
tude and time dependence, and that the space dependence is 
the same for both the quantum and classical fields (that is, both 
obey the same boundary conditions).

3D QUANTIZED CAVITY FIELD
For the 3D empty cavity problem, rather than the 1D wave 
equation (6), we have

	 , , .t
t

tE r E r 00 0 2

2
# #d d

2

2n f+ =^ ^h h � (34)

Rather than ( / ) ,sinE z L kz2k =^ ^h h  we now have 3D cavity 
eigenfunctions ,E rk^ h  which incorporate the size and shape of 
the cavity. These satisfy the usual source-free Helmholtz equation

	
c

E r E r2

2

k
k

k# #d d
~

=^ ^h h� (35)

and are normalized as

	 .dE r E r r3
k k kk$ d=l l^ ^h h# � (36)

The field operators are

	 , ,t i a t a t2E r E r
0

k

k
k k k

'
f
~= - @t t t^ ^ ^ ^h h h h6 @/ � (37)

	 , ,t a t a t2r E rB
kk 0

k k k#' d
~ f

= + @t t t^ ^ ^ ^h h h h6 @/ � (38)

and the equal-time commutators are the same as (31) and (32) 
with the scalar k replaced by the triplet k. It can be shown that 
various scalar components of the electric and magnetic fields 
are uncorrelated among themselves and are only (inter) corre-
lated at .r r= l

The 3D multimode energy operator is

	 ,H n 2
1

k
k k'~= +t t` j/ � (39)

where the number operator for each mode is .n a ak k k= @t t t  The 
multimode number states are
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1 2 1 2 3
1

1
i1

f f f f; ; ; / ; ;=
@ @t t^ ^h h

� (40)
such that

	 , , , | , , ,  .n n n n n n , , ,n n nn n n1 2 3 1 2 3 1 1 2 2 3 3f f fd d d=l l l l l l � (41)

The state | , , ,n n n1 2 3 f  contains n1  photons of energy ,1'~  
n2  photons of energy ,2'~  and so on. The action of the annihi-
lation and creation operators is

, , , , , , , , , , ,a n n n n n n n n n 1j j j j1 2 3 1 2 3f f f f; ;= -t � (42)

, , , , , , , , , , .a n n n n n n n n n1 1j j j j1 2 3 1 2 3f f f f; ;= + +@t

� (43)

3D VACUUM FIELD
If we consider free space, rather than a cavity, it is con-
ventional to discretize space as a cubic cavity of side L and 
assume that L is much larger than anything in the cube 
(atoms and so forth), and that L is also much larger than 
the longest wavelength. We then solve the usual Helm-
holtz equation, applying periodic BCs in each direction, 

,e eik ik L=a a+a a^ h  , , ,x y za =  such that

	 , , , , , , .L m m m m2 0 1 2k x y z ! ! fr= =a^ h � (44)

The resulting (self-adjoint) field operators are

	 , ,t i V a t e a t e2E r e
,s

s s
i

s
i

0

k

k
k k

k r
k

k r'
f
~= -$ $@ -t t t^ ^ ^h h h6 @/ � (45)

	 , ,t c
i

V a t e a t e2B r e
,

i i

0s
s s s

k
k

k
k

k r
k

k r# '
l

f
~= -$ $@ -t t t^ ^ ^h h h6 @/ �(46)

where e sk  indicates the polarization, with ,e e sss sk k$ d=l l  with 
the transversality condition .0k e sk$ =  Spin is indicated by s (a 
summation over the photon spin index ,s 1 2=  merely indicates 
a summation over the two orthogonal vector polarizations; in 
the cavity case in the previous section, spin is inherent in the 
cavity polarization). The polarization vectors form a right-hand-
ed coordinate system, / .e e k k1 2k k# ; ; l= =  The equal-time 
commutators are

	 , , ,a t a t a t a t 0s s s sk k k k= =@ @
l ll lt t t t^ ^ ^ ^h h h h6 6@ @ � (47)

	 , .a t a ts s ssk k kkd d=@
l ll lt t^ ^h h6 @ � (48)

DIELECTRIC MEDIA
Thus far, we have considered empty cavities. Unlike in classi-
cal EM, it can be quite complicated to include the effects of 
dielectric media in quantum calculations, particularly in the 
lossy case. Space limitations preclude such a discussion here, 
although the topic is treated in many QO textbooks as well as, 
e.g., in [12]–[16].

QUANTUM FLUCTUATIONS OF THE FIELD: 
EXPECTATION VALUE AND VARIANCE
Now that we have the quantized field, what can we do with 
it? We cannot, e.g., plug in coordinates , tr^ h into , tE rt ^ h and 
make a plot of electric field, as in the classical case.

Broadly speaking, in QO there are several classes of 
problems that are often investigated. One class of problem 
is to determine the statistics of the field, such as the mean, 
root-mean-square (rms) deviation, and various first- and 
higher-order correlation functions. This may be done for 
the vacuum field, the field in an inhomogeneous material 
environment, or the field interacting with, say, an atom. The 
examined quantities are similar to those studied in classi-
cal statistical EM (e.g., the study of noise, or propagation in 
random media, urban environments, and so on), although 
in those cases the fields are not operators, nor are there 
vacuum fluctuations.

Another class of problem is determining how a quantum 
state evolves in time or space (e.g., how a quantum bit in a 
quantum computer evolves and decoheres). In the classi-
cal case, we consider how a mode or excited field evolves in 
time or space, but there is no concept of energy eigenstates 
evolving (although one could consider how the nonquantized 
energy or power evolves). The evolution of quantized energy 
eigenstates involves but is separate from merely the evolution 
of EM modes.

Furthermore, one could study the interaction of atomic 
systems and the quantized field, and the effect that the atom’s 
environment has on, e.g., spontaneous emission rates, atomic 
population inversion, resonance fluorescence, and so forth. 
In this section, we consider some statistics of the field, and an 
example of the evolution of quantized energy eigenstates is dis-
cussed in the next section.

The mean value of an observable is the expectation value 
of the corresponding operator. That is, for an operator ot  and a 
state ,;}  the mean value is

	 | | .o o} }=t t � (49)

Furthermore, the standard deviation, i.e., the rms deviation 
about the mean, is

	 .o o o o o
/2 1 2 2 2

T = - = -t t t t^ h � (50)

If the mean is zero, which, as shown here, occurs for the oper-
ators introduced thus far, then the rms deviation is simply 

.o o2T = t

As an example, for the HO, we find that

	 | | | | ,q n q n p n p n 0= = = =t t t t � (51)

which holds in any dimension and which is also the case for at  
and a@t  and the operators that are linear combinations of those 
operators, such as Et  and .Bt  However, the rms deviations are 
nonzero, and these are, in fact, the vacuum fluctuations. For 
example, for the vacuum state,
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, ,q p2 20 0

' 'T
~

~D = = � (52)

and so, these deviations satu-
rate the Heisenberg inequal-
ity /q p 20 0 'T T =  (for nonvacuum 
states /q p n 1 2n n 'T T $= +^ h  / ).2'

The number state n;  is an 
energy eigenstate, so it has de
finite, nonf luctuat ing energ y 

( / ) ;E n 1 2n '~= +^ h  however, it  
is not an eigenstate of the field 
operators ,Et  .Bt  Therefore, it is 
not a state of well-defined (fixed, 
nonfluctuating) electric or mag-
netic field and, conversely, the 
electric and magnetic fields do not have fixed (nonfluctuat-
ing) energy. So, if the field is accurately known, the number 
of photons is not, and vice versa. However, the mean of the 
square of the field (the mean of intensity) is related to energy 
(the energy density operator is proportional to )E2t  and is not 
zero. In 1D,

	 , | | ,sinE z t n E n V n kz2 2
1k2 2

0

2'
f
~= = +t t^ c ` ^h m j h � (53)

and, more generally, for a single-mode field,

	 , .t n 2
1r E rE0

2 2
k' ; ;f ~= +t ^ ^ `h h j � (54)

Thus, in a cavity there will be positions where the rms devia-
tion vanishes and other points where it is maximized; the field is 
spread out over the volume, so photons are not generally local-
ized. The larger n is, the bigger the fluctuations will be about 
the zero mean. The expectation value of intensity for n 0=  
is / ,E V0

2
0'~ f=  so again we find that the amplitude of the 

vacuum field is ./ V0'~ f

Another quantity of interest is the vacuum-state correlation 
function [17]:

| , , | ( , , ) ,Im0 0E r E r G r r0
2'

~ ~
r
n ~

~ d ~ ~= -@ l l l lt t^ ^ ^h h h �(55)

where the dyadic Green function is defined as

, , , , , ,
c

G r r r G r r I r r2

2
# #d d ~ ~ f ~ ~ d- = -l l l^ ^ ^ ^h h h h � (56)

where I  is the unit dyadic. Equation (55) is essentially the 
fluctuation–dissipation (FD) theorem for T 0=  (otherwise, a 
factor e1 / k T 1B- '~- -^ ^ hh  is needed on the right side). The value 
of the correlation function at a common spatial position r r= l 
determines the power spectrum (via the Wiener–Khinchin 
theorem) of the vacuum field fluctuations. It is interesting, 
especially coming from a classical EM perspective, to see that 
vacuum fluctuations, an inherently quantum and seemingly 

ephemeral effect, involves the clas-
sical Green function. This is not 
some kind of semiclassical approxi-
mation, but a rigorous QED 
result. It can be mentioned that, 
in a vacuum, ( , ) ,Re G r r "3^ h  

/( , ) .Im k 6G r r I 0 r=^ h

ACCOUNTING FOR MATERIAL 
DISPERSION AND ABSORPTION
The Kramers–Kronig relations [18] 
require that absorption be accom-
panied by dispersion and vice versa. 
In classical EM, dispersion and 
absorption are easily accounted 
for, especially in frequency-domain 

quantities. For QEM, this is not the case, because a naive imple-
mentation of loss causes the commutators to vanish, violating 
the Heisenberg uncertainty principle.

For example, in the classical 1D infinite-space case, 
field dependence is ,ei kz tk~-^ h  ,ckk~ =  with c being the 
speed of light in the medium, / ,c c r r0 n f=  where c0  is 
the vacuum speed of light, and ,rn  rf  are the relative mate-
rial values, resulting in the space-time dependence eik z ct-^ h  
(assuming, of course, that the complex-conjugate term is 
added to render the expression real-valued). Adding material 
absorption/loss, ,k k ik= +l m  so that the propagation factor is 

.e eik z ct k z ct- - -l m^ ^h h

However, in the quantum case, a problem arises. Because 
k k ik= +l m is equivalent to a complex frequency ,i"~ ~ c-  
the commutator evolution equation becomes

	 ,dt
d a t i i a t~ c=- -t t^ ^ ^h h h � (57)

such that

	 , .a t a e e a t a e e0 0i t t i t t= =@ @~ c ~ c- - -t t t t^ ^ ^ ^h h h h � (58)

In this case, ,a t a t e 0t2 "=@ c-t t^ ^h h6 @  as .t "3  Given that 
,o p c=t t t6 @  implies uu ,( / )o p c1 2T T $ t  the required commutator 
,a a 1=@t t6 @  is actually a Heisenberg uncertainty relation (nor-

malized to remove the ).'  So, we cannot have , .a t a t 0=@t t^ ^h h6 @  
There are a variety of methods that have been devised to deal 
with dispersion and absorption at the quantum level, although 
none are simple or straightforward. A thorough review is beyond 
the scope of this article, and in the following section, we merely 
mention two widely used models.

METHOD 1: LANGEVIN NOISE SOURCE MODEL
One method for solving the problem of absorption is to use 
a model containing a noise source that has sufficient output 
even at zero temperature to preserve the commutation relation 

, .a a 1=@t t6 @  The concept behind this idea is the FD theorem, 
which says that when energy is dissipated (turning it into heat), 
there will be thermal fluctuations about the mean value. This is 

There are a variety 
of methods that have 
been devised to deal 
with dispersion and 
absorption at the 
quantum level, although 
none are simple or 
straightforward.
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related to Browian motion and Johnson noise. So, because we 
want to allow dissipation, we need to have a noise source that will 
supply energy, which will maintain the commutator. Therefore,

	 ,t
a t

i a t f t
2
2

~ c=- + +
t

t t^ ^ ^ ^h h h h � (59)

where f tt^ h is an operator-valued Langevin noise source 
that essentially pumps energy into the system to prop up 
the operators. With the addition of the Langevin noise 
source ,f tt ^ h  it can be shown that ,a t a t 1=@t t^ ^h h6 @  [2]. The 
operator f tt ^ h can be interpreted as noise when its expec-
tation value vanishes, .f t 0=t ^ h  This is a form of Markov-
ian damping theory.

An important series of papers [19]–[22] implemented this 
idea in the following manner. Working in the frequency domain, 
the natural mode wave equation is

	 , , , ,
c

0E r r E r2

2
# #d d ~ ~ f ~ ~- =^ ^ ^h h h � (60)

where ,rf ~^ h is the dispersive, complex-valued permittivity. 
With the advent of absorption, we cannot simply raise the fields 
in (60) to operator level because the resulting operator ,E r ~t ^ h 
would be damped and would not preserve the correct commuta-
tor relations. Thus, a fluctuating current ,J rnoise ~^ h is added to 
Ampere’s law:

	 , , , ,Imr r rJ f0
noise

'
~ ~

r
f

f ~ ~= lt t^ ^ ^ ^h hh h � (61)

such that

, , , , .
c

iE r r r rE J2

2
0 noise# #d d ~ ~ f ~ ~ ~n ~- =t t t^ ^ ^ ^h h h h �(62)

The canonically conjugate dynamical variables of the field-mat-
ter system are , ,f r ~t ^ h  , ,f r ~@t ^ h  with postulated commutator 
relations

	 , , , ,f fr r r rk k kk~ ~ d d ~ ~ d= - -@ l l l ll l
t t^ ^ ^ ^h h h h8 B � (63)

	 , , , .f f 0r rk k~ ~ =l ll
t t^ ^h h8 B � (64)

The result is a field operator:

	
,

, , , , ,Im

i
c

d

E r

G r r r f r r

0 2

2

3# $

'~
rf

~

~ f ~ ~

=

l l l l

t

t

^

^ ^ ^ ^

h

h hh h#
�

(65)

with the field-matter Hamiltonian

	 , , ,H d dr r f rf
0

$'~ ~ ~ ~=
3 @t t t^ ^h h# # � (66)

which is analogous to the simple HO result (23). The 
ground-energy eigenstate (Fock state) of the free Hamil-
tonian satisfies u ,H 0 0=t " ,  where u u , , ,0 0 0 0 f=" ,  and, 
more generally,

	 uu , ,H 1 1r ri i'~ ~ ~=m m
t ^ ^h h ,� (67)

where the state u ,1 ri ~m^ h  indicates that the thm  field mode 
of the nonuniform continuum is populated with a single quanta 
and that it is vector valued with field component in the ith direc-
tion, obtained from the ground state as

	 u u, ( , ) .{ }f1 0r ri i~ ~= @
m m

t^ h � (68)

A two-quanta Fock state is obtained as

	 u , , ( , ) , ,f f1 1 0r r r ri j i j~ ~ ~ ~= @ @
m m m ml ll l

t t^ ^ ^h h h " , � (69)

and so on.
It should be noted that the ~ in (69) is really a continuum 

modal frequency, not the Fourier transform frequency. Then, 
summing over all modes,

	
, ,

· , ,fIm

d i
c

d

H.c.,

E r r G r r

r r

0 0 2

2
3'~

rf
~

~

f ~ ~

=

+

3
m

m
m

m m

l l

l l

t

t

^

^ ^ ^

^h

hh h

h# #
�

(70)

which can be thought of as the Schrödinger-picture field 
operator ,E rt ^ h

	 ,d H.c.E r E r
0
~ ~= +

3
m m

t t^ ^h h# � (71)

Therefore, the integral y d~3
m0  is not an inverse Fourier trans-

form integral, it is a mode summation, like ,,sk/  but over con-
tinuum modes. Conversion to the time domain is achieved by 
changing to the Heisenberg picture, where operators At  trans-
form as

	 ,A t e A e/ /
H

iH t iH t
Sch

Sch Sch= ' '-t tt t^ h � (72)

leading to

,

, , , , ,Im

t d i
c

t d

H.c.

E r

G r r r f r r

0 0 2

2

3# $

'~
rf

~

~ f ~ ~

=

+

3
m

m

m m ml l l l

t

t

^

^ ^ ^ ^

h

h hh h

#

#
� (73)

This method is a fully quantum theory, although at a mac-
roscopic, phenomenological level. One must assume some 
(perhaps vanishingly small) loss in the system, at least until 
the end calculation, at which point ( )Im f  disappears explic-
itly from the result. It has been widely applied to a variety 
of problems because it is, in many cases, simpler than micro-
scopic theories. A critical assessment is provided in [23], 
where a comparison with a generalized Huttner–Barnett 
approach is discussed, and also in [24], where the phenom-
enological assumptions are derived from a canonical formula-
tion. Dissipation and a Langevin noise source model are also 
discussed in [25].
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METHOD 2: BEAMSPLITTER MODEL
In method 1, a fluctuating noise source is added to the field to 
maintain the correct commutator relation. Because it involves 
the Green function, very complicated geometries can be con-
sidered (at least when using a numerically generated Green 
function). It is particularly well suited for the study of the inter-
action of atoms and quantized fields [22], [26]–[31], although 
it can also be applied to propagation problems as input–out-
put relations and to quantum state evolution. However, a 
somewhat simpler, albeit approximate, method is particularly 
useful for propagation problems. This involves modeling a 
dispersive, lossy region of space as consisting of N quantum 
beamsplitters [12], [32]–[34] (a continuum is then formed, 
taking ).N "3  Each beamsplitter includes as inputs the 
propagating field mode, ,b ~t^ h  as well as quantized fluctuating 
noise modes ,ci ~t ^ h  , ,Ni 1 f=  as depicted in Figure 2. The 
field bath operators satisfy the bosonic commutation relations 

, .c ci j ij~ ~ d d ~ ~= -@ l lt t^ ^ ^h h h6 @
The beamsplitter method used to account for attenuation is 

equivalent to solving the (interaction picture) master equation

	 ,dt
d t a a a a a a2 2t

c
t t t= - -@ @ @t t t t t t t t t t^ ^h h � (74)

describing the time evolution of the density operator for a 
damped HO at zero temperature under the Born–Markov 
approximations [34], [35]. In (74), c  is the damping rate, and a@t  
and at  are the creation and annihilation operators of the oscilla-
tor, respectively. This method will be applied in the next section 
to consider the decoherence of a quantum state as it propagates 
in the presence of absorption.

QUANTUM STATE TRANSFER, PROPAGATION, 
AND DECOHERENCE
The following example is taken from [36], although the results 
presented did not appear in that article.

Consider an EM energy incident on a graphene surface. A 
prism is used to couple free-space energy to surface plasmon 
polaritons (SPPs) supported by the graphene, and the SPPs 
then propagate away from the prism region, attenuating as they 
travel along the surface, as shown in Figure 3. In the quantum 
case, we must consider a joint photon-SPP state, and as the state 
propagates, its nature changes from a pure state to a mixed state 
due to absorption. The following method is approximate, as 
the graphene quantization assumed lossless graphene, but the 
realistic loss is incorporated during propagation using the con-
tinuum of beamsplitters.

The coupling of the photon and quantized plasmon fields 
(the SPP quantization is provided in [36]) can be described in 
the Heisenberg picture by a unitary transformation matrix [37], 
[38], assuming linear response

	 ,
a
b

a
b

out

out

in

in

~

~

c ~

b ~

b ~

c ~

~

~
=
- ) )

t
t

t
t

^
^

^
^

^
^

^
^

h
h

h
h

h
h

h
h= = =G G G � (75)

where 12 2; ; ; ;c ~ b ~+ =^ ^h h  and a ~t ^ h  is an annihilat ion 
operator  for the photon f ield which, toget her w it h 

,a ~@t ^ h  sat i sf ies  t he boson ic  commutat ion r e l a t i o n 
, .a a~ ~ d ~ ~= -@ l lt t^ ^ ^h h h6 @  Similarly, b ~t ^ h and b ~@t ^ h are 

annihilation and creation operators for the SPP field, which 
also satisfy bosonic commutation relations. It is shown in 
[36], [39], and [40] that efficient coupling of incident photons 
and graphene SPPs is possible.

z

Graphene

E (1)

E (2)

E t

E i

E r
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ε0
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ε1 > ε0 Prism

ε0

ε0

FIGURE 3. An incident field inside a prism coupling to 
quantized SPPs supported by graphene.
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x

FIGURE 2. A multiple quantum beamsplitter model of a lossy, dispersive medium.
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The input state | | |0 ba
0

in }W =  interacts with the gra
phene region via the prism, producing the output state 
| | | ,baout } pW =  where | bp  is the graphene SPP and 
| a}  is the part of the joint photon-SPP field associated 
with radiation.

The incoming photon field is assumed to be a superposition 
of coherent states [37]

	 | | | | ,N e 0a a
i

bin in inina aW = + -z^ h � (76)

where // /| | | ! | ,exp nn2a n
n2

0! !a a a= - 3
=^ ^h h  where N =  

cose2 2 /| |2 1 2
z+ a- -^ h  is a normalization factor. Note that 

| |D 0a a! !a a= ^ h  where expD a aa a a= - )@^ ^h h  is the 
displacement operator. Given that ,a a bin out outc b= -)  
b b ain out outc b= + )  from (75), we have

	
| | |

| | ,

cos sin

cos sin

N g g

e g g
a b

i
a b

out out out

out out

a a

a a

W = -

+ -z
^

h �
(77)

where ,sin gb =  ,cos gc =  setting .0z=

For perfect coupling / ,g 2r=^ h

	 | | | | | ,N e 00 a b
i

baout out out out out
a aW = - + z^ h � (78)

and the coherent-state superposition is identically transferred 
to an SPP superposition. Furthermore, if the input is a sim-
ple coherent state | | | ,0a bin in in

aW =  the output under per-
fect coupling is | | |0 a bout out out

aW = -^ h so that the average 
number of generated SPPs is the same as the average number 
of input photons, .| |2a  For a given input coherent state, the 
probability of simultaneously exciting n SPPs is given by the 
Poissonian distribution / !.| |P e n| |

n
n2 2

a= a-  In the same man-
ner, if the input is a number state | | |n 0a binW =  then for 
perfect coupling, | | |n0– , ,a bout out outW =  and exactly n SPPs 
will be excited.

The density operator for the system is | |.out outt W W=t  
Because we are interested in the SPP itself, we trace-out the 
unobserved photon mode Trb a

0
out outt t=t t  to obtain

	
| | | |
| | | |

sin sin sin sin
sin sin sin sinc

NN g g g g

g g g g
b
0

0

outt a a a a

a a a a

= + - -

+ - + -

)t

^
^

hh,� (79)

where .| |exp cosc g20
2a= -^ h

Equation (79) describes the SPP excited by the photon-
coherent superposition. We take this as the initial mixture (at 

)x 0=  that we want to propagate a distance x along the gra-
phene in the presence of material loss and characterize decoher-
ence of the state. We obtain [36]

	

| |
| |

( ) | |
| | ,

sin sin
sin sin

sin sin
sin sin

c c x

x NN ge ge

ge ge

ge ge

ge ge

b
x x

x x

x x

x x

0

out G
G

G
G

t a a

a a

a a

a a

= - -

+

+ -

+ -

) l l

l l

l l

l l

- -

- -

- -

- -

m m

m m

m m

m m

t ^ ^

^
hh

h

�

(80)

where /| |k kl =m m  and .| |exp sinc x g e2 1 x2 2a= - - l- m^ ^ ^h hh  
Note that at long times (large x), the SPP moves toward the 
vacuum state as expected, and at early times (small x), c x 1-^ h  
and .xb b

0
out out-t tt t^ h

The von Neumann entropy lnS TrV t t=- t t^ h provides a 
characterization of the loss of coherence of a quantum state 
[37] (many other quantities can also be used). Although 
determining lntt  is, in general, very difficult, in a diagonal 
basis we have

	 ,ln lnS xV m m m m=- -+ + - -^ ^ ^h h h � (81)

where m!  are eigenvalues of the diagonalized density opera-
tor. For ,R!a  the coherent superposition can be diagonal-
ized, leading to [37] / ,NN N c c x2 12

0!m =! )
!^ ^ ^h hh  where 
.exp sinN g e2 2 2 /x2 2 2 1 2

! a= -!
l- -m^ ^ h h  The resulting entropy 

depends only on the input photon-coherent-state value ,a  the 
photon-graphene coupling parameter g, and the graphene 
damping factor .lm

Figure 4 shows entropy as the SPP propagates for the 
transverse magnetic (TM) quantized SPP at T 300 K=  (the 
graphene material model is described in [36]). For perfect 
coupling / ,g 2r=  the entropy is zero at x 0=  (the known 
input state is perfectly transferred to the SPP), it rapidly 
increases as the SPP propagates and the state becomes mixed 
and then eventually decreases to zero as the state decays 
toward the vacuum state. For nonperfect coupling and suf-
ficiently large a  (Schrödinger cat state), the entropy first 
increases as correlations are established, becomes maximum 
( .max lnS 2 0 693V = = ), and decreases as the SPP propa-
gates, tending toward the vacuum state. For very small a  
(e.g., . ),0 1a =  the entropy varies with propagation distance 
in a similar manner but remains very small and appears to be 
S 0v +  on the scale of the plots.
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FIGURE 4. Entropy evolution as the transverse magnetic-
quantized SPP propagates for  .T 300 K=  The scaling of the 
horizontal axis for  T 0 K=  is indicated. (Source: S. Ali Hassani 
Gangaraj; used with permission.)
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At ,T 0 K=  lower electron scattering decreases lm for the 
TM mode . ,0 014l =m^ h  resulting in longer SPP propagation 
and a rescaling of the horizontal axis; the horizontal axis limit for 
T 0 K=  is indicated in the figure. In general, as lm increases, 
the entropy tends toward the vacuum value more rapidly with 
increasing distance.

CONCLUSIONS
The basic aspects of QEM were presented in this article, with 
an emphasis on the similarities and differences between quan-
tum and classical EM. The different objectives and quantities 
to be measured or computed in quantum and classical regimes 
were discussed, and the role of the classical Green function in 
rigorous, fully QED was highlighted. An example of the quan-
tum state evolution of a coherent-state superposition in a gra-
phene environment was presented.
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