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Abstract— We study the electromagnetic response of two- and
quasi-two-dimensional (2-D) hyperbolic materials, on which a
simple dipole source can excite a well-confined and tunable
surface plasmon polariton (SPP). The analysis is based on the
Green’s function for an anisotropic 2-D surface, which nominally
requires the evaluation of a 2-D Sommerfeld integral. We show
that for the SPP contribution, this integral can be evaluated
efficiently in a mixed continuous-discrete form as a continuous
spectrum contribution (branch cut integral) of a residue term,
in distinction to the isotropic case, where the SPP is simply
given as a discrete residue term. The regime of strong SPP
excitation is discussed, and the complex-plane singularities are
identified, leading to physical insight into the excited SPP. We
also present a stationary phase solution valid for large radial
distances. Examples are presented using graphene strips to form a
hyperbolic metasurface and thin-film black phosphorus. Green’s
function and complex-plane analysis developed allows for the
exploration of hyperbolic plasmons in general 2-D materials.

Index Terms— Anisotropy, complex plane analysis, directed
surface plasmon, Green’s function, hyperbolic surface.

I. INTRODUCTION

RECENTLY, the development of nanofabrication tech-
nologies has made it possible to fabricate artificial

materials exhibiting a hyperbolic regime—hyperbolic meta-
materials (HMTMs) [1], [2]. HMTMs are uniaxial structures
with extreme anisotropy, whose reactive effective material
tensor components have the opposite signs for orthogonal
electric field polarizations [3]. Hyperbolic materials exhibit
hyperbolic, as opposed to the usual elliptic, dispersion, and
combine the properties of transparent dielectrics and reflective
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metals [1]. These exotic properties have led to new physical
phenomena and to the proposal for optical devices for a
wide range of applications, such as far-field subwavelength
imaging, nanolithography, emission engineering [1], negative
index waveguides [4], subdiffraction photonic funnels [5], and
nanoscale resonators [6].

The complexity of bulk fabrication of metamaterials has
hindered the impact of this technology, especially in the optical
regime, and volumetric effects may be detrimental to the asso-
ciated losses [3]. Metasurfaces [7], [8], sheets of material with
extreme subwavelength thickness, might address many of the
present challenges and allow integration with planarized sys-
tems compatible with integrated circuits. Many high frequency
electronics applications are envisioned for metasurfaces due
to their ability to support and guide highly confined surface
plasmons. The class of 2-D atomic crystals [9] represents the
ultimate embodiment of a metasurface in terms of thinness,
and often performance (e.g., tunability, flexibility, and quality
factor). Some notable examples of 2-D layered crystals include
graphene, transition metal dichalcogenides, trichalcogenides,
black phosphorus (BP), boron nitride, and many more.

Graphene in particular has received considerable attention
as a promising 2-D surface for many applications relating to
large enhancement in Purcell emission, integrability, electronic
tenability, and tranformation optics [10]–[17]. In addition to
graphene, BP is also a layered material, with each layer
forming a puckered surface due to sp3 hybridization. It is one
of the thermodynamically more stable phases of phosphorus, at
ambient temperature and pressure [18]. BP has recently been
exfoliated into its multilayers [19]–[22], showing good elec-
trical transport properties. In particular, the optical absorption
spectra of BP vary sensitively with thickness, doping, and light
polarization, especially across the technologically relevant
midinfrared to near-infrared spectrum [23]–[25]. Hence, it has
also received considerable attention for optoelectronics, such
as hyperspectral imaging and detection [26]–[29], photode-
tectors in silicon photonics [30], photoluminescence due to
excitonic effects [31], and among many others.

Both natural materials and metasurfaces can be isotropic
or anisotropic, and, e.g., isotropic graphene can be employed
to form an effective anisotropic metasurface by modulating
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Fig. 1. Anisotropic surface with conductivity tensor σ at the interface of
two isotropic materials.

its conductivity [3], [14]. In addition, both natural materials
and metasurfaces may exhibit a hyperbolic regime. The basic
properties of plasmons on 2-D hyperbolic surfaces have been
recently studied: for metasurfaces comprised of anisotropic
plasmonic particles in [32], for graphene strips in [3], and for
general continuum 2-D materials including BP in [33].

In this paper, we provide Green’s function for an anisotropic
2-D surface in the Sommerfeld integral form. We focus on
complex-plane analysis of Green’s function for the surface
plasmon polariton (SPP) contribution in the hyperbolic case.
The nominally 2-D Sommerfeld integral form of Green’s
function is very time-consuming to evaluate, and provides
no physical insight into the resulting field. Here, we show
that for the SPP field, this integral can be evaluated effi-
ciently in a mixed continuous-discrete form as a continuous
spectrum contribution (branch-cut integral) of a residue term.
Complex-plane singularities are identified with various branch-
cut integrals, leading to physical insight into the excited SPP.
For some 2-D materials, the surface conductivity is rather
weak, and a discussion is provided concerning the strength
of the reactive conductivity response to maintain an SPP.

This paper is organized as follows. We discuss Green’s func-
tion calculation for an anisotropic 2-D sheet with conductivity
tensor σ . A Hertzian dipole vertical current source serves as
the excitation. Rigorous complex plane analysis is shown to
reduce the 2-D iterated Sommerfeld integral to a residue for
the inner integral (for the SPP contribution), and a branch cut
for the outer integral [35]–[38]. The relevant singularities are
detailed. We also provide a stationary phase (SP) evaluation
leading to a closed-form solution for large radial distances.
We show that graphene strips support propagation of directed
surface waves and that the direction of propagation can be
controlled by changing the frequency or doping. We also
consider BP, which is dynamically tunable and anisotropic,
and can be hyperbolic.

II. FUNDAMENTAL EQUATIONS

The geometry under consideration is shown in Fig. 1.
We consider an anisotropic layer with conductivity tensor

σ =
(

σx x 0
0 σzz

)
(1)

embedded at the interface of two isotropic different materials
with electrical properties ε1 and μ1 and ε2 and μ2.

For any planarly layered, piecewise-constant medium, the
electric and magnetic fields in region n due to an electric
current in any region are

E(n)(r) = (k2
n + ∇∇·)π (n)(r) (2)

H(n)(r) = iωεn∇ × π (n)(r) (3)

where kn = ω(μnεn) and π(n)(r) are the wavenumber and
electric Hertzian potential in region n, respectively. The sup-
pressed time convention is eiωt . Assuming that the current
source is in region 1, J(1), then

π (1)(r) = π
p
1 (r) + π s

1(r)

=
∫

�
{gp(r, r′) + gr (r, r′)} · J(1)(r′)

iωε1
d�′

π (2)(r) = π s
2(r) =

∫
�

gt (r, r′) · J(1)(r′)
iωε1

d�′ (4)

where the underscore indicates a dyadic quantities, gp is
the principal (free space) dyadic Green’s function, gr is the
reflected dyadic Green’s function responsible for the fields
in the region containing the source, gt is the transmitted
dyadic Green’s function responsible for the fields in the
nonsource region (here, we assume a source in one region or
the other, but not in both regions), and � is the support of the
current. With y parallel to the interface normal, the principle
Green’s dyadic can be written as

gp(r, r′) = I
e−ik1 R

4π R

= I
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−p1|y−y′|

2 p1
e−iq·(r−r′) dqxdqy

(5)

where q = x̂qx + ẑqz , |q| = q = (q2
x + q2

z )1/2, p2
n =

|q|2 − k2
n , ρ = ((x − x ′)2 + (z − z′)2)1/2, R = |r − r′| =

(ρ2 + (y − y ′)2)1/2, and I is the unit dyadic.
The scattered (reflected or transmitted) Green’s dyadics can

be obtained by enforcing the boundary conditions

ẑ × (H1 − H2) = Js
e

ẑ × (E1 − E2) = −Js
m (6)

where Js
e (A/m) and Js

m (V/m) are electric and magnetic
surface currents on the boundary. In our case, Js

m = 0, and
Js

e = σ · E. Using only an electric Hertzian potential, we
can satisfy Maxwell’s equations and the relevant boundary
conditions. Introducing the 2-D Fourier transform

a(q, y) =
∫ ∞

−∞

∫ ∞

−∞
a(r)eiq·r dxdz (7)

a(r) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
a(q, y)e−iq·r dqxdqz (8)

and enforcing the boundary conditions, the scattered Green’s
dyadic is found to have the form

gr,t =
⎛
⎝ gr,t

x x gr,t
xy 0

gr,t
yx gr,t

yy gr,t
yz

0 gr,t
zy gr,t

zz

⎞
⎠ (9)

where the Sommerfeld integrals are

gr
αβ(r, r′)

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
wr

αβ(qx , qz)
e−p1(y+y′)

2 p1
e−iq·(r−r′) dqxdqz .

(10)
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Green’s dyadic for region 2, gt (r, r′), has the same form as for

region 1, although in (10), the replacement wr
αβe−p1(y+y′) →

wt
αβe p2 ye−p1 y′

must be made.
The coefficients wr,t

αβ are complicated for the inhomoge-
neous case, and so for simplicity in the following, we assume
that the sheet is in a homogeneous space ε2 = ε1 = ε,
μ2 = μ1 = μ. When region 2 differs from region 1, the
only change is in the functions (11) and (12) provided in the
following. Concentrating on the field in the upper half-space,
wr

αβ = Nαβ (qx , qz)/D(qx , qz), where

D(qx , qz) = 2σx x(k
2 − q2

x ) + 2σzz(k
2 − q2

z )

− i4
k

η
p

(
1 + 1

4
η2σx xσzz

)
(11)

and

Nyy(qx , qz) = −p2(σx x + σzz) − i pkησx xσzz

Nxy(qx , qz) = iqx p(σx x − σzz)

Nzy(qx , qz) = −iqz p(σx x − σzz) (12)

where p = (q2
x + q2

z − k2)1/2, and η = (μ/ε)1/2. Then, e.g.,
for the vertical field in the upper half-space

Ey = 1

iωε

(
k2 + ∂2

∂y2

)
(g p

yy(r, r′) + gr
yy(r, r′))

+ 1

iωε

(
∂2

∂x∂y
gr

xy(r, r′) + ∂2

∂z∂y
gr

zy(r, r′)
)

(13)

and other field components are obtained from (2).

III. DIRECTIONAL PROPERTIES

OF SPPs ON 2-D SURFACES

Before considering complex-plane evaluation of Green’s
functions, we describe some basic properties of SPPs on
hyperbolic 2-D surfaces [3], [32], [33]. In order to under-
stand the behavior of surface waves, it is instructive to
inspect the plasmon dispersion relation D(qx , qz) = 0 arising
from (11), the denominator of Green’s function. As we show
later, in the general case, SPPs are obtained as a mixture
of TE and TM modes, and moreover, it is not possible
to solve for the wave vector eigenmodes qx and qz from
the single complex-valued equation (11). Furthermore, unlike
for isotropic surfaces, for an anisotropic medium, the direc-
tion of energy transfer is defined by the group velocity in
the medium [34] ∇qω(q), and does not coincide with the
direction of the plasmon wave vector q. In our case, the
dispersion relation for surface plasmons is complicated and
the group velocity cannot be calculated analytically. However,
we can estimate the direction of plasmon propagation geomet-
rically by examining the plasmon’s equifrequency contours,
ω(q) = const. As the group velocity is a gradient of frequency
with respect to wave vector, the direction of plasmon energy
flow is necessary orthogonal to the equifrequency contours.

Assuming that the conductivity is purely imaginary and
lossless, σ j j = iσ ′′

j j , j = x, z, and that qx , qz � k, the zeros
of (11) can be approximated as the solution of

q2
x

σ ′′
zz

+ q2
z

σ ′′
x x

= 2 pω

(
ε0

σ ′′
x xσ

′′
zz

− μ0

4

)
. (14)

Fig. 2. Equifrequency surfaces for metasurface having σxx = 0.003 +
0.25i mS and σzz = 0.03 − 0.76i mS [blue hyperbola, see also Fig. 10(b)],
and σxx = 1.3 + 16.9i mS and σzz = 0.4 − 9.2i mS [green hyperbola,
see also Fig. 10(c)]. For comparison, the isotropic case for σxx = σzz =
0.03 − 0.76i mS (black circle) is also shown. Red dashed line: 45° with
respect to the x-axis for guidance.

Although the right side varies with q because of the
square root p, the variation is less than the left side,
and we can approximate the right side as being con-
stant in wavenumber. Then, in the hyperbolic case (σ ′′

x x ·
σ ′′

zz < 0), the equifrequency surface (EFS) is a hyper-
bola, as shown in Fig. 2 for two values of surface con-
ductivity [blue lines: σx x = 0.003 + 0.25i mS and
σzz = 0.03 − 0.76i mS, see also Fig. 10(b), and green lines:
σx x = 1.3 + 16.9i mS and σzz = 0.4 − 9.2i mS, see also
Fig. 10(c)]; the results in Fig. 2 were obtained by the solution
of the full dispersion relation (11). The hyperbola asymptotes
are defined by qz = ±qx(|σ ′′

x x/σ
′′
zz|)1/2. Taking into account

that a dipole excites many plasmons with different values of q,
and that the normal to all the points on the hyperbola point
in the same direction for a given sign of qx , we expect a
narrow plasmon beam in the direction of energy flow on a
hyperbolic metasurface. For example, the asymptotes of the
blue hyperbola in Fig. 2 have an angle 30° with respect to the
x-axis, and thus, the normal to the hyperbola, i.e., the group
velocity, is 60° with respect to the x-axis, as indicated in the
figure, which is in a very good agreement with the numerical
results shown in Fig. 10(b). Similar comments apply to the
green hyperbola and Fig. 10(c). For comparison, in Fig. 2, we
also presented the hypothetical isotropic case for which the
equifrequency contour is a circle, and thus, energy does not
have a preferential direction.

In the nonhyperbolic (purely anisotropic) case
(σ ′′

x x , σ
′′
zz > 0), (14) is the equation for an ellipse in

q-space with the axis oriented along the qx -axis and the
qz-axis. The length of the ellipse’s principal axes along
the qx -axis and the qz-axis is proportional to σ ′′

zz and σ ′′
x x ,

respectively. Thus, the EFS has a quasi-eliptic form elongated
along the direction of the smallest component of the
conductivity tensor, the degree of elongation being set by the
ratio of σ ′′

x x and σ ′′
zz . Later, in Fig. 11, we consider BP having

σx x = 0.0008 − 0.2923i mS and σzz = 0.0002 − 0.0658i mS.
Due to the strong elongation of the EFS along the qz-axis,
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the group velocity points approximately along the qx -axis,
such that the SPP carries energy along the x crystallographic
axis (see Fig. 11).

IV. COMPLEX-PLANE ANALYSIS IN THE qx PLANE

In the case of an isotropic material, the coefficients wαβ

only depend on q2 = q2
x + q2

z , leading to

gr
αβ(r, r′) = 1

2π

∫ ∞

0
wαβ(q)

e−p(y+y′)

2 p
J0(qρ)qdq

= 1

2π

∫ ∞

−∞
wαβ(q)

e−p(y+y′)

4 p
H (2)

0 (qρ)qdq (15)

where J0 and H (2)
0 are the usual zeroth-order

Bessel and Hankel functions, respectively. These two forms
can be converted one into another using the relation
J0(α) = (1/2)[H (1)

0 (α) + H (2)
0 (α)], H (2)

0 (−α) = −H (1)
0 (α).

In this case, such as occurs for graphene without a magnetic
bias, the pole of wαβ leads to a simple analytical form for
the SPP field [12]. However, this is not the case for an
anisotropic surface. Since the 2-D Sommerfeld integral can
be time-consuming to evaluate, writing

gr
αβ(r, r′) = 1

(2π)

∫ ∞

−∞
dqze−iqz (z−z′) fαβ(qz) (16)

where

fαβ(qz) = 1

(2π)

∫ ∞

−∞
wαβ(qx , qz)

e−p(y+y′)

2 p
e−iqx (x−x ′)dqx

(17)

the “inner” integral fαβ(qz) can be evaluated as an SPP
residue term (discrete spectral component) and branch-cut
integral representing the radiation continuum into space
(note that the choice of “inner” and “outer” integrals is
arbitrary). The branch cut in the qx plane is the usual
hyperbolic branch cut associated with the branch point due to
p = (q2

x + q2
z − k2)1/2, occurring at qx = ±(k2 − q2

z )1/2 [39].
Then

fαβ(qz) = −iwspp
αβ (qxp, qz)

e−p(qx p)(y+y′)

2 p(qxp)
e−iqx p(x−x ′)

+ 1

2π

∫
bc

wαβ(qx , qz)
e−p(y+y′)

2 p
e−iqx (x−x ′)dqx

(18)

where the first term is the residue contribution and bc indicates
the hyperbolic branch-cut contour. In (18), wspp(qxp, qz) =
N(qxp, qz)/D′(qxp, qz), D′(qx , qz) = (∂/∂qx)D(qx , qz), and
where qxp is the root of D(qx , qz) = 0 for a given qz

qxp(qz) = ±
√

−B ± √
B2 − 4AC

2A
(19)

where A = σ 2
x x , B = (1/4)α2 − 2k2σ 2

x x + 2(q2
z − k2)σx xσzz ,

C = k4(σx x + σzz)
2 + q2

z (q2
z − 2k2)σ 2

zz − 2k2q2
z σx xσzz +

(1/4)α2(q2
z − k2), and α = (4k/η)(1 + (1/4)η2σx xσzz).

When the SPP field is the dominant contribution to the
response, which is the usual regime for plasmonics where

Fig. 3. Real and imaginary parts of f yy(qz) obtained numerically, (17), and
using the residue term (20) for an array of graphene strips at f = 10 THz.
The source is λ/50 above the surface, and x = 0.2λ.

the field close to the interface, (y, y ′ � λ)) is of interest,
the branch-cut term can be ignored, and the residue term
suffices for the calculation of f (qz)

f SPP
αβ (qz) ≈ −iwspp

αβ (qxp, qz)
e−p(qx p)(y+y′)

2 p(qxp)
e−iqx p(x−x ′) (20)

which considerably speeds up evaluation of Green’s function
(rendering it 1-D). Since qxp is the propagation constant
along the x-axis, the ∓ outside the square root in (19)
indicates forward/backward propagation, whereas the inner
± sign choice governs propagation of different modes (only
one of which will propagate). Assuming (x −x ′) > 0, the term
e−iqx p(x−x ′) necessitates that Im(qxp) < 0 to have a decaying
wave traveling away from the source along the x-axis.

As an example, we consider an anisotropic surface with
σx x = 0.02 + 0.57i mS and σzz = 0.02 − 0.57i mS.
As discussed in Appendix A, such a conductivity tensor
can be physically realized by an array of densely packed
graphene strips at terahertz and near-infrared frequencies.
Fig. 3 compares fyy(qz) obtained numerically by performing
the integral (16) and obtained by using the residue term only
[see (20)]. The source is located at y ′ = λ/50, very near the
surface, and radiating at frequency 10 THz. Clearly, in the SPP
regime, the residue provides the dominant component of the
response, and the branch-cut integral can be ignored. Although
not shown, for source or observation points relatively far from
the surface, the branch-cut integral is important, and can be
the dominant contribution to the scattered field.

In the following, we are interested in surfaces that provide
a strong reactive and low-loss response, Im(σαα) � Re(σαα).
In addition to this inequality, Im(σαα) must not be too
small [40]. The ability of a surface to support a strong
SPP depends on the ratio of the branch cut term (space
radiation spectra) to the residue (SPP) term in the inner
integral (18). In Fig. 4, we assume a general hyperbolic form
σx x = ασ0(0.01 + i) and σzz = 0.1σ ∗

x x , where σ0 = e2/4h̄
is the conductance quantum, e is the electron charge,
and ∗ indicates complex conjugation. We assume that losses
are relatively small, and use α in order to vary the magnitude
of the conductivity.

It is clearly shown in Fig. 4 that for conductivity values
smaller than the conductance quantum, the radiation spectra
is dominant (in the limit that |σ | → 0, the surface vanishes
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Fig. 4. Ratio of the branch cut and residue terms in (18), σxx = ασ0(0.01+i),
σzz = 0.1σ∗

xx , and σ0 = e2/4h̄. Source is positioned λ/50 above the surface,
f = 10 THz, and x = 0.2λ.

and the entire response is the radiation continuum produced
by a source in free space). We have found that conductivity
values on the order of the conductance quantum are some-
what borderline; an SPP can exist, although it may not be
strongly dominant over the branch-cut continuum for small qz .
Conductivities an order of magnitude or more above the
conductance quantum provide a very strong SPP response
in which the branch-cut contribution is negligible except
exceedingly close to the source.

For large qz compared with k, (19) becomes

qxp(qz) = qz

√
− σzz

σx x
. (21)

The SPP direction of propagation on the 2-D anisotropic
surface is easily determined as tan−1(qxp/qz), and using (21),
the angle of propagation with respect to the z-axis is simply

φ = tan−1

√
− σ ′′

zz

σ ′′
x x

(22)

where σ ′′ = Im(σ ). Although the conductivities are complex-
valued, for the low-loss cases of interest, we can estimate
the real angle φ by only considering their imaginary parts.
Therefore, in the anisotropic hyperbolic case, the SPP
is directed along a specific angle. For the isotropic case
(σx x = σzz), this does not occur [and (22) does not apply],
since in this case, q2

xp + q2
z = q2

p, where qp is the radial
in-plane wavenumber. If we measure the angle φ relative
to the positive z-axis, then at each point in the plane of the
surface, we have x = ρ sin φ, z = ρ cos φ, qxp = qp sin φ,
and qz = qp cos φ. For a source at the origin

e−iq·(r−r′) = e−i(qx p x+qzz) = e−iqpρ(cos2 φ+sin2 φ) = e−iqpρ

(23)

which e−iqpρ describes an SPP wave that is radially
propagating along all directions in the plane of the surface.

However, in the anisotropic case for large qz

e−iq·(r−r′) = e−i(qx p x+qzz) = e
−i

(
qz

√
− σzz

σxx
x+qzz

)

= e
−iqzρ

(√
− σzz

σxx
sin φ+cos φ

)
(24)

and the maximum of ((−(σzz/σx x))
1/2 sin φ + cos φ)

determines the angle at which the SPP is directed. It can
be simply shown that this angle is (22). This leads to the
conclusion that hyperbolic anisotropy, in contrast to the
isotropic case, results in a directed SPP, as expected.

As a function of σ , there are different dispersion scenarios
for SPP propagation. The usual elliptic case is obtained
when both imaginary parts of the conductivity have the same
sign (inductive when Im(σx x,zz) < 0, capacitive otherwise).
A graphene sheet with dominant intraband conductivity term
with Im(σx x) = Im(σzz) < 0 is a natural example of an elliptic
isotropic sheet that can support a TM omnidirectional SPP.
The hyperbolic case occurs when the sign of the imaginary
parts of the conductivity components is different. As discussed
in Appendixes A and B, both a graphene strip metasurface
(potentially, metal strips as well) and natural BP can provide a
hyperbolic 2-D surface. In this case, as shown in (22) and (24),
energy propagation is focused along the specific directions
governed by the conductivity components [3].

V. APPROXIMATION OF THE OUTER INTEGRAL USING

STATIONARY PHASE AND EXACT EVALUATION

USING THE CONTINUOUS SPECTRUM

Although the SPP field can be evaluated from a numerical
1-D integral, (16) with (20), it is useful to consider other
methods of evaluation that are more computationally rapid,
and which lead to physical insight into the problem.

A. Stationary Phase Evaluation of the Outer Integral

The “outer” integral (16) using (20) can be approximated by
the well-known method of SP [41]. In particular, an analysis
similar to that needed here was performed in [42], where
the inner integral is approximated as a residue (ignoring the
branch-cut contribution, as we do here), and the outer integral
is evaluated using SP. Regarding computation of the outer inte-
gral, although it seems difficult to show analytically because
of the complicated expression (19) for the pole qxp(qz), the
numerical tests show that Re(q2

xp + q2
z − k2) > 0 for small

values of qz . Therefore, no leaky waves are encountered for
typical parameter values.

SP evaluation of (16) with (20), assuming ρ � (y + y ′),
results in, to the first order

gr
αβ(r, r′) �

√
e−i π

2

2πγ ′′(qs)
w

spp
αβ (qs)

e−p(qs)(y+y′)

2 p(qs)
e−iγ (qs ) (25)

where w
spp
αβ (qs) = w

spp
αβ (qxp(qs), qs), p(qs) = p(qxp(qs), qs),

and γ (qz) = −(qxp(qz)(x − x ′) + qz(z − z′)), where qs is the
root of dγ /dqz = 0, which can be obtained as the root of a
fourth-order polynomial, or via numerical root search. See [42]
for a ray-optical interpretation of the SP result in anisotropic
media.
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Fig. 5. Electric field Ey obtained by SP result (25) (red) and numerical
integration (16) (blue) for (a) σxx = 0.02 + 0.57i mS and σzz = 0.02 −
0.57i mS and (b) σxx = 0.003 + 0.25i mS, σzz = 0.03 − 0.76i mS, ρ = 0.4λ,
ρ/(y + y′) = 80, and f = 10 THz.

Although the main numerical results will be presented
in Section VI, here we provide a comparison between the
SP result (25) and numerical (real-line) computation of the
outer integral (16). Fig. 5 shows the SP result (red) and
numerical integration result (blue) for σx x = 0.02 + 0.57i mS
and σzz = 0.02 − 0.57i mS and σx x = 0.003 + 0.25i mS and
σzz = 0.03−0.76i mS, both using ρ = 0.4λ, ρ/(y + y ′) = 80.
It can be seen that excellent agreement is found for the location
of the beam angle, although away from the beam maximum,
there is some disagreement.

B. Complex-Plane Analysis in the qz Plane

Although the SPP field can be evaluated to first-order using
the SP approximation for ρ/(y + y ′) � 1, it is useful
to consider complex-plane analysis of the “outer” integral
over qz , which turns out to involve only continuous spectrum.
This method is theoretically exact, and is valid for all field
and source points. Furthermore, it does not require finding the
qz root, but does require knowing the qz plane branch points
and cuts, which, themselves, lead to considerable physical
insight.

The Weierstrass preparation theorem shows that the
complex function f SPP

αβ (qz), (20), has no poles, only branch
points. Regarding the two complex planes qx −qz , a sufficient
condition in order to have a branch point in the qz is
that [43], [44]

D(qx , qz) = ∂

∂qx
D(qx , qz) = 0 (26)

with δ = (∂/∂qz)D(qx , qz)(∂
2/∂q2

x )D(qx , qz) 
= 0.
Although (26) represents a second-order zero of D, in
the qz-plane, these points are not poles, and are also not
necessarily qz plane branch points without the condition
δ 
= 0. These branch points are associated with modes in
the qx plane merging at a certain value of qz , forming a
second-order zero of D. Thus, the pair (qx , qz) satisfying (26)
and δ 
= 0 represent poles in the qx plane and branch points in
the qz plane (the branch in the qz plane controls the merging
of poles in the qx plane). Another possible branch point in the
qz plane is associated with the square root in p. The fact that a
pole in one spectral plane results in a branch point in another

spectral plane was recognized in studies of microstrip and
other integrated waveguides [35]–[38]. It is also worthwhile
to note that the asymptotic methods for branch-cut evaluation
described in [41] do not work here. To use those formulas, the
branch-cut integral must be dominated by the branch point,
that is, by the section of the integral in the vicinity of the
branch point. This is not the case for the anisotropic problem,
where we have found that the sections of the branch-cut
integral far from the branch point can contribute substantially.

C. p-Type Branch Point in the qz plane

For the isotropic case, p = (q2 − k2)1/2 and the p-type
branch point occurs at q = ±k, resulting in the usual hyper-
bolic branch cuts in the q plane [39]. In this case, q2

x +q2
z = q2

p
is a constant and qz = (k2 − q2

x )1/2 leads to branch points at
qx = ±k. However, for the residue, q2

p = q2
xp(qz) + q2

z is a
constant in qz and so we never have qp = k for any qz , and
so there is no p-type BP in the qz plane for the SPP for the
isotropic case. However, for anisotropic media, q2

xp(qz) + q2
z

is not generally a constant, and so there can be a “p-type”
BP in the qz-plane, where p = (q2

xp(qz) + q2
z − k2)1/2 = 0,

although this will not occur at qz = k unless qxp(k) = 0.
In any event, since this branch cut relates to radiation into
space, for the SPP, we can ignore this contribution to the
SPP field.

Introducing the notation that (q(n)
x , q(n)

z ) represents the pair
of spectral values that satisfy the conditions for a branch
point/pole pair, (26) and δ 
= 0, since the residue term already
satisfies D(qxp, qz) = 0, and we can find branch points in the
qz plane from ∂

∂qx
D(qxp(qz), qz) = 0

⎛
⎝σx x + ik/η√

q2
xp + q2

z − k2

(
1 + 1

4
η2σx xσzz

)⎞
⎠ qxp(qz) = 0.

(27)

As we will show later, these branch points have a significant
role in the analysis of the SPP. Because of their importance,
we categorize them into two groups, type-0 and type-1 branch
points.

D. Type-0 Branch Point in the qz Plane

First, we define type-0 branch points as those values of qz

for which qxp(qz) = 0 in (27), i.e., the merging of the forward
and backward modes [associated with different signs in the
outer square root in (19)] in the qx plane at a certain value
of qz [44], given by

q(+0) = qTM
z = k

√
1 −

(
2

ησzz

)2

(28)

q(−0) = qTE
z = k

√
1 −

(ησx x

2

)2
(29)

such that the pair (qx , qz) = (0, qTM/TE) form a pole-
branch-point pair. For σx x = σzz , these are well-known
TM and TE SPP wavenumbers, respectively (graphene is an
example of such a 2-D isotropic layer, which can support
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these modes [12]). Note that for isotropic media, a vertically
polarized current source will produce only TM fields (although
a horizontally polarized source will produce both TE and TM
fields even when the sheet is isotropic [39]). For an anisotropic
sheet, the boundary conditions cannot be satisfied assuming
only one type of field.

E. Type-1 Branch Point in the qz Plane

Another set of singularities in the qx–qz plane is related to
the point in the qz plane where modes qxp associated with
different signs in the inner square root in (19) merge for
qxp 
= 0. These can be obtained by simultaneously solving the
equations D(qx , qz) = 0 and (d D(qx , qz)/dqx) = 0, leading
to

q(±1)
x =

√√√√−k2

δσ

(
σx x + (σzz ∓ 2σx x)

(1 + 1
4η2σx xσzz)2

η2σ 2
x x

)

(30)

q(±1)
z =

√√√√−(q(±1)
x )2 + k2

(
1 −

(
1 + 1

4η2σx xσzz
)2

η2σ 2
x x

)
(31)

where δσ = σzz − σx x , such that (qx , qz) = (q(±1)
x , q(±1)

z )
forms a pole-branch-point pair.

F. Branch-Cut Analysis in the qz Plane

Using the SPP field (20) and performing the outer
integration, Green’s function is

gr
αβ = −i

2π

∫ +∞

−∞
w′

αβ(qxp, qz)
e−p(y+y′)

2 p
e−iqx p(x−x ′)

× e−iqz (z−z′)dqz. (32)

Assuming (z−z′) > 0, due to the term e−iqz (z−z′), the contour
can be closed in the lower half-plane of the qz plane, leading to

gr
αβ ≈ −i

2π

∫
bc

w′
αβ(qxp, qz)

e−p(y+y′)

2 p
e−iqx p(x−x ′)

× e−iqz (z−z′)dqz (33)

where the branch-cut integral is over all branch cuts. Also,
from the term e−iqx p(x−x ′), it is clear that for x − x ′ ≷ 0 then
only when Im(qxp) ≶ 0 do we obtain an SPP that decays
away from the source. Therefore, we have in the qz plane
two Riemann sheets (as mentioned previously, neglecting
the p-type branch point, which would introduce another two
sheets; here, we simply enforce Re(p) > 0), the top (proper)
sheet where Im(qxp) ≶ 0 and the bottom sheet where
Im(qxp) ≷ 0, for x − x ′ ≷ 0. Those values of qz that lead
to Im(qxp) = 0 determine the branch-cut trajectory, which
separates the proper from improper Riemann sheets.

Typically, branch-cut trajectories to separate certain
Riemann sheets can be analytically determined from the
functional dependence of the multivalued function that defines
the branch point. However, for anisotropic surfaces, the form
of qxp is too complicated to determine a simple equation
for the branch cut for Im(qxp) = 0. As an example,

Fig. 6. (a) and (b) Branch-cut contours Im(qxp ) = 0 determined from a
plot of the absolute value of Im(qxp ) for a lossless model of a graphene strip
array at 10 THz (σ ′

xx = σ ′
zz = 0, σ ′′

xx = 0.57i mS, and σ ′′
zz = −0.57i mS).

The branch point locations are qTE
z /k = 1.005, qTM

z /k = 9.3, and

q(−1)
z /k = −3.22i . (c) Integration contour in the qz plane showing branch

points (dots) and branch cuts (thick lines).

Fig. 6(a) shows the branch cuts for Im(qxp) = 0 obtained
by plotting Im(qxp) for an array of graphene strips (see
Appendix A) in the hypothetical lossless case (i.e., ignoring
the real parts of the conductivities) at 10 THz. Fig. 6(b) shows
a close-up near the Im-axis, and Fig. 6(c) shows the properly
cut qz plane for the lossless case. It can be seen that for the
considered frequency, the TM branch point leads to a branch
cut starting at qTM

z and going horizontally to infinity, and the
TE branch point qTE

z and the branch point q(−1)
z are connected

by a branch cut. The branch point q(+1)
z is on the improper

Riemann sheet (not shown).
Insight into the correct branch cut can be obtained from a

large qz approximation. From (21), for a lossy 2-D surface,
σx x = σ ′

x x + iσ ′′
x x and σzz = σ ′

zz + iσ ′′
zz , and then, the branch

cut trajectory is along the qz values such that

Im
(
iqz

√
σ ′

zzσ
′
x x + iσ ′′

zzσ
′
x x − iσ ′′

x xσ
′
zz + σ ′′

x xσ
′′
zz

) = 0. (34)

For a lossless surface, σ ′
x x = σ ′

zz = 0, leading to

Im(iqz

√
σ ′′

x xσ
′′
zz) = 0 (35)

such that if σ ′′
x xσ

′′
zz > 0, the BC is along Im(qz), and if

σ ′′
x xσ

′′
zz < 0, the BC is along Re(qz), in agreement with the

numerically determined contours.
The branch-cut integrals can be viewed as a continuous

superposition of modes. The BP qTM
z is associated with the

pair (qx , qz) = (0, qTM
z ) = (0, 9.3)k for the numerical

example considered), and along the branch cut, as Re(qz)
increases, Re(qx) = Re(qxp) also increases from zero, and
the resulting continuum summation of pair values synthesis
the beam. Similar comments apply to the branch cut between
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Fig. 7. Branch-cut contours Im(qxp ) = 0 determined from a plot of the
absolute value of Im(qxp ) for a lossy model of a graphene strip array at
10 THz with σxx = 0.02 + 0.57i mS and σzz = 0.02 − 0.57i mS.

Fig. 8. Branch-cut contour Im(qxp ) = 0 determined from a plot of the
absolute value of Im(qxp ) for graphene with μc = 0.5 eV at T = 0 K and
f = 20 THz.

qTE
z and q−1

z (between qz = 1.005k and −3.22ik in the
numerical example considered).

The lossy case is shown in Fig. 7; the branch cut trajectory
deflects a bit from the lossless case, but for low-loss surface,
the lossless BC contour is sufficient.

As a common special case, for an inductive isotropic surface
such as graphene in the far-infrared

σx x = σzz = −ie2kB T

π h̄2(ω − i2�)

×
(

μc

kB T
+ 2 ln

(
1 + e

− μc
kB T

))
. (36)

Here, we consider graphene at T = 300 K, μc = 0.5 eV,
and f = 20 THz. In this case, the TE related branch point
is at qTE

z = k(1.0039 + 0.0001i), and so is not implicated
in the lower half-plane closure, consistent with the surface
being inductive (no TE mode is supported). Since only
TM branch points occur, only a TM mode exists, and the
TM-related BP occurs at qTM

z /k = (11.3706 − 0.2088i). The
two other type-1 branch points move to infinity as the surface
becomes isotropic, and therefore, the branch cut extends
down the entire imaginary axis (therefore, for both the
isotropic and anisotropic cases, there is a branch cut between
qTM

z and q−1
z ). Fig. 8 shows a surface plot of Im(qxp) in the

qz − plane.

For isotropic and inductive graphene, only a TM mode can
propagate, and so the contribution is from the TM-related
branch point and associated cut, as expected. For the graphene
strip array anisotropic case, the hybrid nature of the modes
supported by such a surface involve both TE and TM-related
branch points, and in contrast to the isotropic case, three
branch points contribute to the field.

G. Conductivity and Its Effect on Branch
Points and SPP Confinement

Analytically, it can be shown that both type-1 branch
points q(±1)

z can be connected to a TE or TM branch point,
depending on the conductivity value. Two cases are of partic-
ular interest, small conductivity values, (Im(σx x/zz)η)2 � 1,
and large conductivity values, (Im(σx x/zz)η)2 � 1. For small
conductivity values, from (28) and (29), we have

qT M
z = k

√
1 −

(
2

ησzz

)2

−→ (ησzz)
2 = 4

1 −
(

qTM
z
k

)2

(37)

qT E
z = k

√
1 −

(ησx x

2

)2 −→ 1

(ησx x)2 = 1

4

1

1 −
(

qTE
z
k

)2 .

(38)

Making these replacements in (30) and (31) and using the
fact that for small conductivity like in our previous numeric
example (σx x = 0.02+0.57i mS and σzz = 0.02−0.57i mS),
we have (Im(σx x/zz)η)2 � 1, and then, |qTM

z | � k and
|qTE

z | ≈ k, and so |qTE
z |2 � |qTM

z |2, such that

q(±1)
z = k

2

√√√√ 1

1 −
(

qTE
z
k

)2

σx x ∓ 2σx x

σzz − σx x
. (39)

Therefore, for small values of σx x and σzz , the type-1 branch
points are governed by (and associated with) the TE branch
point qTE

z .
For larger values of σx x and σzz , the situation is different.

In this case, for (Im(σx x/zz)η)2 � 1, we have
|qTM

z |2 � |qTE
z |2 and it can be shown that an approximate

expression for the type-1 branch point is (39) with qTM
z

replacing qTE
z ; the type-1 branch points are associated with

the TM-related branch point. As the conductivity changes
from a small to a large value, qT E

z and qT M
z move toward

each other and then cross, and eventually interchange roles.
Setting (28) and (29) equal to each other, it can be shown
that these type-0 branch points meet at a frequency, such that
σx xσzz = 4/η2.

As an example of a large conductivity situation, con-
ductivity tensor components σx x = 1.3 + 16.9i mS and
σzz = 0.4 − 9.2i mS are attainable using multilayer graphene
to form the strip array. For this set of conductivities, the branch
points and the branch cuts are shown in Fig. 9. As can be seen,
qT E

z exceeds qT M
z , there is a branch cut from qT E

z to infinity,
a branch cut between qT M

z and q−1
z , and q−1

z is connected
to qT M

z .
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Fig. 9. Branch-cut contours Im(qxp ) = 0 determined from a plot of the
absolute value of Im(qxp ) for a lossy model of multilayer graphene strip at
10 THz, σxx = 1.3 + 16.9i mS, and σzz = 0.4 − 9.2i mS.

VI. DIRECTIVE SPPS ON HYPERBOLIC

AND ANISOTROPIC SURFACES

A. Anisotropic Hyperbolic Layer (Graphene Strip Array)

As shown in Appendix A, conductivity components
σx x = 0.02 + 0.57i mS and σzz = 0.02 − 0.57i mS can be
realized using an array of graphene strips with μc = 0.33 eV,
strip width W = 59 nm, and period L = 64 nm. For this
anisotropic hyperbolic surface, Fig. 10(a) shows the electric
field Ey , the dominant field component, computed as a real-
line integral (32), and as a sum of branch cut integrals (33);
excellent agreement is found between the two methods (the
branch-cut integrals are faster to compute than the brute-force
numerical integrals, but no attempt was made to optimize
either integration). The branch cuts for this case are shown
in Fig. 7. Fig. 10(b) and (c) shows similar agreement for
different strip configurations as discussed in the following.

Although the direction of the beam is electronically con-
trollable via the chemical potential, different combinations of
physical parameters of the graphene strip array (width W and
periodicity L) can also be used to produce a desired beam. An
optimum geometry to produce a beam in a certain direction
can be found by tuning all of these parameters simultaneously.

From (22), in the hyperbolic regime, propagation along a
desired direction can be obtained if the tensor conductivity
components have the proper ratio. Designing a hyperbolic
metasurface to produce a beam in a desired direction (e.g.,
choosing the strip width and period) can be done by trial-and-
error tuning of all geometrical and electrical parameters of
the system, but a multivariable optimization, such as a genetic
algorithm (GA) is a good choice for this task [48], [49].
Ideally, the physical layout of the metasurface (graphene
strips in the case) should be designed so that the effective
(homogenized) conductivity tensor elements are hyperbolic,
and have large imaginary part and small real part, since such
a surface can support a well-confined, long-range SPP. Here,
we used the cost function to be minimized as

�(L, W, μc, φ)

= α(Re(σx x) + Re(σzz))

+ β

|Im(σx x)| + |Im(σzz)| + γ

(
tan2(φ) + σzz

σx x

)
(40)

Fig. 10. Electric field Ey excited by a y-directed dipole current above
a graphene strip array. (a) Graphene with μc = 0.45 eV, μc = 0.33 eV,
W = 59 nm, L = 64 nm, σxx = 0.02+0.57i mS, and σzz = 0.02−0.57i mS.
(b) μc = 0.45 eV, W = 56.1 nm, L = 62.4 nm, σxx = 0.003+0.25i mS, and
σzz = 0.03−0.76i mS. (c) Strip array with a five-layer graphene, μc = 1 eV,
W = 196 nm, L = 200 nm, σxx = 1.3+16.9i mS, and σzz = 0.4−9.2i mS.
Blue line: integration along the real axis (32). Dashed red line: integration
along the branch cuts (33). f = 10 THz, ρ = 0.2λ, and y = 0.005λ.

where σx x and σzz are defined in (41) in Appendix A. The
cost function in (40) is a multiobjective cost function and the
coefficients α, β, and γ assign a weight (0 to 1) to each
objective regarding to its importance. The first term in (40)
assures a small real part of conductivity, the second term
assures a large imaginary part, and the last term assures the
correct ratio for σzz and σx x to obtain the SPP beam in desired
direction specified by φ. It was found that α = 0.2 and
β = γ = 0.4 lead to good results.

The physical strip geometry leading to the beam
in Fig. 10(a) was found in this manner, for a specified beam
angle of 45°. Note the excellent agreement between desired
and obtained beam angle. The chemical potential was then
changed to produce the beam at 52°, for a fixed geometry.
Thus, a significant aspect of using a graphene strip array is its
electronic tunability by, e.g., varying the bias to control the
chemical potential.

In Fig. 10(b), a desired beam angle of 60° was sought,
and the GA was used to determine the optimized parameters;
μc = 0.45 eV, W = 56.1 nm, and L = 62.4 nm, such that
σx x = 0.003+0.25i mS and σzz = 0.03−0.76i mS, leading to
the desired beam. Again, excellent agreement is found between
the desired and final beam angles.

As a final example for the graphene strip array,
Fig. 10(c) shows Ey for the case of multilayer
graphene strips (to increase the conductivity). By
using five layers of graphene with μc = 1 eV,
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Fig. 11. (a) Branch-cut contours for Im(qxp ) = 0 determined from the
absolute value of Im(qxp ) in the qz plane. (b) Absolute value of Ey excited by
a y-directed dipole current source above BP with doping level 10×1013/cm2

at f = 92.6 THz. Blue line: integration along the real axis (32). Dashed
red line: integration along the branch cuts (33). ρ = 0.2λ and y = 0.005λ.
(c) SPP field in-plane distribution in the logarithmic scale calculated by FDTD.
(d) SPP field vertical variation in the logarithmic scale calculated by FDTD.

W = 196 nm, and L = 200 nm, the conductivities are
σx x = 1.3 + 16.9i mS and σzz = 0.4 − 9.2i mS. The branch
cuts are shown in Fig. 9. For this case, (22) indicates that
the beam should be directed along φ = 36°. Again, excellent
agreement is found between the two methods and the position
of the beam is along the desired angle.

B. Anisotropic Nonhyperbolic Layer (Black Phosphorus)

As discussed in Appendix B, BP is a natural material that
can be used as a platform to realize an anisotropic surface.
Although BP exhibits a hyperbolic regime, the resulting values
of conductivity are rather small (to produce a hyperbolic
response the interband conductivity must dominate one of the
conductivity values (σx x or σzz), and the intraband conduc-
tivity must dominate the other component, resulting in the
required sign difference). Although a hyperbolic SPP can be
excited, the residue is not generally the dominant response.
Therefore, in order to consider larger values of BP con-
ductivity, we consider the nonhyperbolic (Drude) regime.
A 10-nm-thick BP film with doping level 10 × 1013/cm2 has
conductivity tensor components σx x = 0.0008 − 0.2923i mS
and σzz = 0.0002 − 0.0658i mS at f = 92.6 THz.
Using (28), (29), and (31), a surface with these conductivity
components has qTM

z = k(80.6804 − 0.2114i), qTE
z ≈ k, and

q(−1)
z = k(−0.0300 − 10.3165i).
The imaginary components of the conductivities are nega-

tive, so that the surface is not able to support TE modes (the
TE branch point is located at the upper half of the qz plane,
and so not captured for z − z′ > 0). The only active branch
points are the TM-related branch point and q(−1)

z . Fig. 11(a)
shows the branch points and associated branch cuts in the

qz plane. One important difference between branch cuts in
this case and in the previous hyperbolic cases is the branch
cut trajectory. From (35) for the hyperbolic case, because of
the condition Im(σx x)Im(σzz) < 0, the branch cut trajectory
was along the real axis, but for the anisotropic nonhyperbolic
case, we have Im(σx x)Im(σzz) > 0 and so the trajectory for
large qz is parallel to the imaginary axis.

As shown in Fig. 11(b), this anisotropic nonhyperbolic
surface can support a directed SPP, although the beam is
directed primarily along one of the coordinate axes. The
electric field computed as a real-line integral (32) is in good
agreement with the electric field obtained as a sum of branch
cut integrals (33). Fig. 11(c) shows the SPP field in the
logarithmic scale calculated by numerically solving Maxwell’s
equations using a commercial finite-difference time-domain
method (FDTD) from Lumerical solutions [45]. Good agree-
ment with the results obtained by complex plane analysis is
observed. Fig. 11(d) shows the vertical variation of the beam in
the logarithmic scale calculated by Lumerical, showing strong
SPP confinement to the surface. Using Green’s function the
attenuation length was found to be p = λ/12π .

VII. CONCLUSION

We have studied the electromagnetic response of
2-D anisotropic and hyperbolic surfaces and developed
a method (based on complex plane analysis) for the efficient
computation of electric field excited on such surfaces.
A solution in term of electric field Sommerfeld integrals
has been obtained for the electromagnetic field due to a
vertical dipole current source located in close proximity
to the surface. Poles, branch points, and related branch
cuts and their relative importance and physical meaning for
surface wave propagation have been emphasized. A first-order
approximation has also been obtained using the SP method.
Examples have been shown for a graphene strip array and BP.

APPENDIX A
GRAPHENE STRIP HYPERBOLIC METASURFACE

A schematic of an array of graphene strips is shown
in Fig. 12(a). This densely packed strip surface can act as
a physical implementation of a metasurface at terahertz and
near-infrared frequencies [3], [46]. The dispersion topology of
the proposed structure may range from elliptical to hyperbolic
as a function of its geometrical and electrical parameters.
The in-plane effective conductivity tensor of the proposed
structure can be analytically obtained using an effective
medium theory as [3]

σ eff
zz = σ

W

L
and σ eff

x x = Lσσc

Wσc + Gσ
(41)

where L and W are the periodicity and width of the strips,
respectively, G = L − W is the separation distance between
two consecutive strips, σ is graphene conductivity (36),
and σc = j (ωε0 L/π)ln(csc(πG/2L)) is an equivalent
conductivity associated with the near-field coupling between
adjacent strips obtained using an electrostatic approach [47].
These effective parameters are valid only when the
homogeneity condition L � λSPP is satisfied, where λSPP is
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Fig. 12. (a) Array of graphene strips. (b) Imaginary parts of σxx and σzz
and (c) real parts of σxx and σzz normalized to σ0 = e2/4h̄ for a graphene
strip array with τ = 0.35 ps, μc = 0.33 eV, W = 59 nm, and L = 64 nm.
Region 1 is hyperbolic and region 2 is simply anisotropic.

Fig. 13. Real and imaginary parts of σxx and σzz (x and z are
in-plane crystal axes of BP, with x along the small effective mass direction,
or commonly called the armchair direction) obtained at doping level
(a) and (b) 10 × 1013/cm2 and (c) and (d) 5 × 1012/cm2 normalized to
σ0 = e2/4h̄ with a 10 nm thickness. Regions 1 and 3 show anisotropic
inductive and capacitive responses, respectively, and region 2 shows the
hyperbolic regime. T = 300 K and damping is 2 meV.

the plasmon wavelength in the in-plane direction perpendicular
to the strips (x in this case), thus leading to a homogeneous
2-D metasurface. Fig. 12(b) and (c) shows σx x and σzz

in a wide range of frequency for a graphene strip array
with graphene parameters τ = 0.35 ps, μc = 0.33 eV, and
geometrical parameters W = 59 nm and L = 64 nm. As can
be seen in Fig. 12(b), this structure can exhibit a hyperbolic
response, as well as implement a nonhyperbolic although
anisotropic surface.

APPENDIX B
BLACK PHOSPHORUS

BP is an anisotropic monolayer or thin-film material
that can support surface plasmons [50]. Fig. 13 shows the
in-plane conductivity tensor components at two doping levels,
10 × 1013/cm2 and 5 × 1012/cm2, obtained from a Kubo
formula as described in [23]. For a 10-nm BP film, the
electronic bandgap is approximately 0.5 eV. This accounts for
the observed interband absorption along the x polarization,
and also characterized by weak interband absorption along z.

It can be seen that by increasing the doping level,
larger conductivity components are attainable but the
hyperbolic region is also pushed toward higher frequencies.
In Fig. 13(a) and (b), BP is an inductive anisotropic
(nonhyperbolic) surface, while in Fig. 13(c) and (d),
regions 1 and 3 show anisotropic inductive and capacitive
responses, respectively, and region 2 shows the anisotropic
hyperbolic region.
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