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Abstract— Dynamic manipulation of the surface plasmon
polariton (SPP) and wave steering is important in plasmonic
applications. In this work, we excite a curved SPP in topological
continua by applying a radial magnetic bias. We believe that it
is a new technique to create a unidirectional SPP traveling along
a curved trajectory. We also derive a Green’s function (GF)
model for radially biased plasma, applicable to curved SPPs.
We compare the properties of unidirectional curved SPPs with
the usual case when an axial bias is applied.

Index Terms— Curved surface plasmon polariton (SPP),
plasmonics, radial bias, topological continua.

I. INTRODUCTION

D IFFERENT techniques can be applied to dynamically
manipulate the propagation direction of the surface

plasmon polariton (SPP). Directional SPPs can be excited
by engineering the design of SPP launchers, for example,
designing metasurfaces [1], simple metallic gratings coated by
nonlinear optical materials [2], asymmetric gratings, slits and
resonators [3], [4], grooves with different depth and width [5],
and changing the incident wave polarization [6]; see [7] and
[8] for comprehensive reviews. In these cases, even though
the directionality is tunable, the excited SPPs still have a
linear trajectory. However, they can be effectively guided along
a curvature by applying a graded index (GRIN) photonic
crystals with a nonuniform refractive index [9] or patterned
structures (see [10]). In addition, 2-D materials such as
graphene, whose optical properties are electronically tunable,
provide a good platform for directing SPPs along even right-
angled curvatures [11]. Nonetheless, SPPs directed using these
techniques are not inherently reflection-free. In this regard,
Airy SPP beams and hook SPPs are known as self-bending
and diffraction-free surface waves. They propagate along a
parabolic trajectory. Airy beams are generated by applying a
spatial light modulator (SLM) or a composite optical element
with a cubic phase. Illuminating Airy beams into a simple
grating or applying a metasurface providing the required
cubic phase leads to excitation of Airy SPPs [12], [13].
Due to the poor operation of SLM in the terahertz frequency
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range, a more complex mechanism is required to excite THz
Airy SPPs. SPP Bessel beams are another type of diffraction-
free surface waves that are generated by a similar mechanism
as Airy SPP beams, but they have a linear trajectory [14], [15].
Plasmonic hook beams are newly discovered curved SPPs,
which are generated using a simple asymmetric prism
[16], [17]. However, their curved trajectory exists only in the
near-field. Another possibility is an SPP vortex, which is an
electromagnetic wave carrying orbital angular momentum. It is
excited using spiral slits [18] or nanoslits that provide the
required phase difference [19].

In this work, we use the concept of topological insulators
to obtain a unidirectional SPP traveling in a circular path.
We find that by applying a radial magnetic field bias, SPPs
that travel along a curved trajectory are excited at the interface
of the isotropic and radially biased plasma media. The excited
SPPs are unidirectional and reflection-free. The surface waves
are resistant to disorder because of their one-way propagation
properties, which results in longer propagation even along,
say, rough surfaces or surfaces with discontinuities. Their
properties are tunable by the magnetic field intensity as well
as frequency. The unidirectional curved SPP propagates on
the surface of a homogeneous medium, and there is no need
to apply a grating or other structural pattern with narrow
bandwidth to steer SPPs in a circular path. As a result, better
performance, higher power transmission, and wider bandwidth
are achievable.

In continuous plasmonic materials such as semiconductors,
a static magnetic field induces a gyrotropic response
and results in nonreciprocity due to broken time reversal
symmetry; the magnetized plasma is categorized as a photonic
topological insulator (PTI) subject to considering nonlocality
in the material model [20]. One of the most important aspects
of PTIs is their ability to support unidirectional SPPs which
are characterized by integer Chern invariants. In magnetized
plasma, Chern numbers are integer only if a nonlocal material
model is applied [20], [21]. This number cannot change except
when the topology of the bulk bands is changed. Therefore,
the surface impurities do not affect the propagation properties
of the unidirectional SPPs, that is, the SPPs are protected
waves from backscattering and diffraction upon encountering
a discontinuity [22]–[25]. The number of topological surface
modes in a continuous PTI is determined by the bulk-edge
correspondence principle [24], [26]. References [27]–[29]
reflected on the existence or absence of truly unidirectional
SPPs in different magnetized plasma configurations.

The properties of unidirectional SPPs have been widely
studied in systems biased by an in-plane axial bias [29]–[32].
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In the well-known Voigt configuration, the SPPs travel along
a straight line perpendicular to the in-plane axial magnetic
bias vector at frequencies in the bandgap above the plasma
frequency [33]–[36]. However, in this work, we realize that by
applying a radial magnetic field, similar propagation behavior
is observed in that frequency regime, that is, SPPs tend to
propagate perpendicular to the radial bias at the interface
between gyrotropic and isotropic media. In fact, this new
configuration suggests the excitation of SPPs with a circular
trajectory due to applying the radial bias. Hence, the SPP
direction is steerable by rotation of the magnetic bias direction.
Using this technique, SPPs can be effectively guided at right-
angled bends. To analytically investigate the properties of
the unidirectional curved SPPs, we derive a dyadic Green’s
function (GF) for a radially magnetized plasma.

Dynamic manipulation of SPPs is of great interest. Like
other types of curved SPPs, unidirectional curved SPPs can
be used in applications such as plasmonic tweezers, particle
manipulation, bio-plasmonic systems, switches and energy
routing in plasmonic circuitry. Moreover, they can be used
in the design of nonreciprocal devices, such as plasmonic
circulators or in generating hotspots [30], [37], [38].

In the following, we describe the curved topological
SPPs and the required conditions for their excitation. Then,
we explain our GF model and provide a comparison with
the numerical results based on the finite-element method
using COMSOL. We discuss the effect of different parameters
on properties of the azimuthally propagating SPPs. Finally,
we propose an application for the curved SPPs.

II. CURVED SURFACE PLASMON POLARITONS

Consider a plasma medium consisting of ne free electrons
with the effective mass of m∗ per volume, which is magnetized
by a static magnetic field bias Bc = B0b̂c, where B0 is the
magnetic field strength and b̂c is a unit vector along the
direction of the magnetic field. In general, the material is
characterized by a dielectric tensor [39]

ε̄ = εt (Ī − b̂cb̂c) + iεg(b̂c × Ī) + εab̂cb̂c (1)

where the permittivity elements are defined using a Drude
model as

εt = ε∞ − ω2
p(1 + i�/ω)

(ω + i�)2 − ω2
c

, εa = ε∞ − ω2
p

ω(ω + i�)

εg = ωcω
2
p

ω
[
ω2

c − (ω + i�)2
] (2)

assuming the time harmonic variation of e−iωt ; ωp =√
neq2

e /(m∗ε0), ωc = −qe B0/m∗ and � = −qe/μm∗ are
plasma, cyclotron, and collision frequencies, respectively, qe is
the electron charge, ε∞ is high-frequency dielectric constant,
and μ is the carrier mobility. In this work, we apply a uniform
radial bias, Bc = B0ρ̂ to magnetize the plasma region.

Fig. 1(a) illustrates the geometry scheme of the system
under study. It includes a plasma slab surrounded by perma-
nent concave magnets, with a magnetic metallic cylinder in
the middle with a radius rm . The interaction of the central
metal and the surrounding magnets provides a uniform radial

magnetic bias in the plasma region. The plasma region is
covered by an isotropic material. We assume that the plasma
thickness is large, then the system is composed of two half-
space gyrotropic/isotropic media. A vertical dipole source is
used to excite SPPs at the interface. The plasma region is
modeled by (1), where b̂c = ρ̂ and Ī is a dyadic tensor in
polar coordinates with (ρ̂, φ̂, ẑ) unit basis. Next, we study the
properties of the bulk modes propagating inside the radially
magnetized plasma region. Then, we look for the SPPs excited
at the interface of the isotropic/radially magnetized plasma
media.

A plane wave propagating in the gyrotropic medium with
the wave vector k = kρρ̂

′ + kzẑ satisfies the wave equation
k × (k × E) + k2

0 ε̄r · E = 0. The nonzero solution of E
exists only if |k2

0 ε̄r − k2Ī + kk| = 0. This determinant is
the dispersion equation of the bulk modes propagating with
an arbitrary direction in a gyrotropic medium. Consider an
orthogonal coordinate system, having a unit vector along the
magnetic bias as {k̂t , ρ̂, k̂t × ρ̂}. The wave vector in this
coordinate is rewritten as k = kt + qρρ̂ with kt = qϕφ̂ + kzẑ,
where qρ = kρ cos(φk −φb) and qϕ = kρ sin(φk −φb); φk and
φb are the angle of the wave and bias vectors with respect to
the x-axis, respectively. By plugging ε̄ and k into the above
determinant, we derive

k2
t = 1

2εt

[
−κ ±

√
κ2 − 4εtν

]
(3)

where κ = q2
ρ(εt + εa) + k2

0(ε
2
g − εt(εt + εa)), ν = εa(q2

ρ −
k2

0εt)
2 − εaε

2
gk4

0, and k2
t = q2

ϕ + k2
z . We look for the bulk

modes propagating perpendicular to the bias. Thus, we set
qρ = 0 in (3) and determine two equations as k2

1 = εeffk2
0 and

k2
2 = εak2

0 where εeff = (ε2
t − ε2

g)/εt , k0 is the free space
wavenumber, and k2

j = q2
ϕ + k2

z j , j ∈ {1, 2}. These equations
characterize the nontrivial TMρ modes with Eϕ, Ez, Hρ (no
electric field component along the bias vector) and trivial TEρ

modes with Hϕ, Hz, Eρ (no magnetic field component along
the bias), respectively. The nontrivial modes are dependent
on the magnetic bias, unlike the trivial modes. Note that in
a cylindrical rod, pure TE and pure TM modes exist only
when the field configurations are symmetric and independent
of φ. Here, nontrivial TM and trivial TE modes have phase
variation of exp(imϕ). Therefore, they cannot be pure TE
and TM modes; they are hybrid modes. A wave with qρ =
0 is a traveling wave on a cylindrical shell, which can be
decomposed into nontrivial TM and trivial TE modes in a
radially magnetized system. It has a vortex-like behavior and
its phase varies as exp(imϕ). An electromagnetic vortex is
a differentiated plane wave which can be generated by three
homogeneous plane wave interferences [40], [41].

Next, by enforcing continuity of the tangential components
of the electric and magnetic fields of these particular bulk
modes at the interface, we derive the SPP dispersion equa-
tion as √

k2
s − k2

0εr

εr
+

√
k2

s − k2
0εeff

εeff
= εgks

εtεeff
(4)

where ks = qϕ is the propagation constant of the surface wave
and εr is the effective permittivity of the isotropic region.
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Fig. 1. Unidirectional curved SPP versus linear propagating SPP. (a) Geometry sketch (b) bulk and SPP dispersion diagrams. The gray regions denote the
bandgaps. The electric field profile (Ez) of the SPP propagating at the interface of an isotropic medium and a plasma region magnetized by (c) static radial
bias B = B0ρ̂ that is centered on the origin, (d) axial bias B = −B0x̂, and (e) axial bias B = B0ŷ. The SPPs are excited by a point source located at
(ρ0, φ0, z) = (Ra/2, π, 0), where Ra = 500 μm is the radius of the plasma region. (f)–(h) Electric field oscillation, respectively, along the circular, vertical,
and horizontal trajectories shown by white dashed lines in (c)–(e). λSPP is the SPP wavelength. In (f), s is the arc length defined as s = ρ0cos(φ − φ0) where
φ is the angle of the observation point with respect to the x-axis and ρ0 is the radius of the dashed circle. The magnetized plasma is characterized by (1)
where ne = 3.6 × 1021 m−3, m∗ = 0.0175m0, ε∞ = 15.68, B0 = 0.6 T, given ω∗

p = ωp/
√

ε∞ = 2π(1.03 THz), ωc/ω
∗
p = 0.93 and � = 0.00015ωp . The top

region is metal with a dielectric constant of εr = −104. The resonance frequency f = 1.567 THz is within the upper bandgap.

This dispersion relation is the same as for axial bias in the
Voight configuration. Fig. 1(b) shows the dispersion diagrams
of the nontrivial TM, trivial TE bulk modes, and the SPP
modes. The shaded gray regions indicate bandgaps between
the nontrivial bulk bands. Like usual topological plasma sys-
tems when an axial bias is applied, the SPPs crossing the non-
trivial bandgaps are potentially topological. Their frequency
response is asymmetric.

Then, we simulate the system under study using COMSOL
Multiphysics. The plasma region is characterized by parame-
ters presented in [42] and [43] and provided in the caption
of Fig. 1, related to an undoped InSb crystal at moderate
temperatures. The SPPs are excited by a point source located
at the interface of the gyrotropic/isotropic media, operating at
a frequency within the upper nontrivial bandgap. The electric
field profile at the interface is shown in Fig. 1(c). It shows
the SPPs propagating counterclockwise (CCW) on a circular
path about the origin. There is no propagation in the opposite
direction due to the unidirectional nature of the wave. So, the

excited SPPs have a circular trajectory rather than a linear
trajectory as a result of applying the radial bias.

For comparison, we obtain the field profile of the SPPs
when the axial biases b̂c = −x̂ and b̂c = ŷ are applied
(the usual cases). The results are shown in Fig. 1(d) and (e).
Here, the unidirectional SPPs have linear propagation. They
are characterized by the same dispersion equation as (4), but
with surface momentum ks = −qy and ks = qx , respectively.
Comparing Fig. 1(c) with Fig. 1(d) and (e), the deviation of
the SPPs from a straight line to a circular path is evident. In all
cases, the SPPs tend to propagate perpendicular to the static
bias. For that reason, in the radial bias system, the surface
plasmons gain orbital angular momentum and form curved
SPPs.

The line graphs in Fig. 1(f)–(h) indicate the electric field
oscillation along the circular, vertical and horizontal straight
line traces shown by white dashed lines in the field profile
plots. According to the period of the oscillation, the SPP
wavelength for radial and axial bias cases are almost equal
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Fig. 2. Electric field distribution (Ez) of the curved SPPs excited at the interface of dielectric/radially magnetized plasma (B = B0ρ̂) media using (a) GF
model (14) and (b) full-wave COMSOL simulation. The radial bias is centered on the origin and the dipole is located at (250 μm, π, 0). The observation
points are on a plane with distance z = 0.003λp above the interface (λp = 2π/ωp). (c) Electric field oscillation along the circular trajectories (white
dashed semicircles). The electric field profile of the linear propagating SPPs excited at the interface of the dielectric/axially biased plasma (B = −B0x̂)
using (d) GF model and (e) COMSOL simulation. (f) Extracted data from dashed line trajectories. The magnetized plasma is characterized by (1) where
ne = 3.6 × 1021 m−3, m∗ = 0.0175m0, ε∞ = 15.68, B0 = 0.6 T and � = 0.00015ωp . The dielectric constant of the top region is εr = 8. The resonance
frequency is f = 1.567 THz.

(λS P P � 84 μm). The obtained wavelength is consistent
with the estimated value obtained from the dispersion diagram
(λS P P = 2π/Re(ks)). The SPPs have similar propagation
properties, however, the decay rate of the curved SPP is much
higher. We find that the curved SPPs are leaky modes, while
the linear SPPs in the axially biased systems are confined
propagating modes. The difference in results is due to the
hybrid nature of the nontrivial and trivial bulk modes in the
radially biased system. In fact, the curved SPPs excited at a
resonance frequency within the upper nontrivial bandgap can
be coupled to the trivial TE cylindrical bulk modes. This does
not occur in an axially biased system, because in that case the
trivial TE and nontrivial TM modes are orthogonal modes, and
hence, the TE modes do not contribute to the excitation of the
TM SPP. Consequently, the TM SPPs are confined modes at
frequencies within the nontrivial bandgaps and their energy
does not couple to the trivial TE mode.

We also evaluated the curved SPPs by considering a central
metal with different radii rm in the radially biased system.
We found that the results remain unchanged where rm is
small and the source is located far away from the origin.
Accordingly, we assume that rm → 0 in the following to avoid
adding an extra boundary condition to the problem.

III. DYADIC GREEN’S FUNCTION FOR A

RADIALLY MAGNETIZED PLASMA

Here, we analytically obtain the electric field of the curved
SPPs in a radially magnetized system. They are excited by a
point source at the interface of two half-space media where
the z < 0 region is filled by a radially magnetized plasma
and the z > 0 region is an isotropic material. The radial
bias is centered on the origin and the dipole is located
inside the isotropic region at r0 = (ρ0, φ0, d). By doing a
GF analysis in a polar coordinate system, the tangential and
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Fig. 3. (a) and (b) Unidirectional curved SPPs by considering different amounts of dissipation (metal or dielectric on top). (c) Vertical cross section view of
the two-layer magnetized system (hi = hg = 200 μm). Energy leakage occurs in the dielectric region after several wavelengths of curved SPP propagation.
(d) Electric field density of the curved SPPs on the surfaces parallel to the interface located at different distances (z) from the interface z = 0 (εr = 8).
ne = 3.6 × 1021 m−3, m∗ = 0.0175m0, ε∞ = 15.68, B0 = 0.6 T, f = 1.567 THz.

normal components of the scattered field in the isotropic region
at r = (ρ, φr, z) due to a vertical dipole source with moment
of p = γ ẑ are governed by

Es
||(r) = 1

(2π)2

∫ ∞

0

∫ 2π

0
R̄(q) · iq

γ e−γ0(z+d)

2εrε0
eiq·(r−r0)qdφqdq

(5)

and

Es
z(r) = −1

(2π)2

∫ ∞

0

∫ 2π

0
Cr (q)

γ e−γ0(z+d)

2γ0εrε0
eiq·(r−r0)qdφqdq

(6)

where Cr (q) = q · R̄(q) ·q and R̄(q) is a 2×2 reflection coef-
ficient. The GF derivation details and quantities are defined in
the Appendix. The integrand of the above 2-D Sommerfeld
integrals are rapidly oscillatory, which cause difficulty in
numerical integration of the integrals. The field computation
is very time-consuming and does not converge well. This
problem can be solved using an asymptotic approximation
such as the saddle point approximation (SPA), in which the
vicinity of the saddle points has the most contribution in the

integration. Using SPA, the 2-D integral (6) is converted to
the 1-D integral (15) in the Appendix, whose integrand has
rather smooth oscillation. As a result, the integrating this 1-D
integral is much faster than the 2-D integral.

Next, using the presented GF model, we generate the field
density profile shown in Fig. 2(a) by computing the electric
field of the observation points on a plane above the inter-
face with the local position (ρ, φr, z = 0.003λp), where
λp = 2π/ωp. The top region is a dielectric with εr = 8.
The plot shows one-way SPPs with CCW propagation on a
circular path. For comparison, we generated Fig. 2(b) based
on a numerical computation using COMSOL. The GF result
is consistent with the numerical result. Then, the data are
extracted from the circular traces shown by white dashed
lines to generate the line graph in Fig. 2(c). As shown, the
results arising from the GF model are very close to the
COMSOL results, which validates the accuracy of our GF
model for a radially biased system. We also develop the GF
model presented in [44] and [45] for an axial bias along the
−x-direction. For this case, the SPPs are propagating along a
straight line. Fig. 2(d) and (e) demonstrates the electric field
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Fig. 4. Electric field profile of the SPP propagating at the interface of metal/magnetized plasma, passing through (a) 90◦ circular bend junction under radial
bias versus (b) oblique junction under 5π/4 axial bias. (c) Output power versus frequency. ne = 3.6 × 1021 m−3, m∗ = 0.0175m0, ε∞ = 15.68, B0 = 0.6 T,
� = 0.00015ωp , εr = −104, f = 1.567 THz, w = 4h = 360 μm, andd = 300 μm.

density and Fig. 2(g) shows the SPP oscillation along the
dashed line trajectories using axial GF model and COMSOL
simulation.

Fig. 3(a) and (b) shows the unidirectional curved SPP
oscillation along the circular path in the radially magnetized
system by considering different amounts of dissipation when
the top region is metal or dielectric. As shown, by reducing the
loss, the magnitude increases and the curved SPPs propagate
longer, as expected. However, even in a loss-less system, the
SPPs do not rotate in a full circle. They stop their orbital
propagation on the surface after several SPP wavelengths of
propagation and they radiate to the plasma or dielectric region.
The leakage to the dielectric is illustrated in Fig. 3(c), showing
a vertical cross section of the system (including the dielectric
and the radially magnetized plasma); a cut cylinder that is
intersected by a plane. The curved SPP is leaky for this
operating frequency, as discussed in Section I. In addition, for
the case of dielectric on top, the mode lies within the light cone
of the dielectric region. Since the curved SPPs do not have a
full-round trip on a circular optical path, at the source point we
do not observe a change in the local density of state (LDOS)
or any additional oscillation due to interference of the source
field and returned surface wave (which would be similar to
Drexhage oscillations caused by the interaction of a source
field and the reflected wave from a mirror).

Fig. 3(d) shows the electric field profile on surfaces parallel
to the interface, located at different heights below and above
the interface. In the plasma region and close to the surface, the
SPPs spiral on a circle centered at the origin. In the dielectric
region, they remain on this path at distances close to the
interface. Moving farther vertically from the interface, SPPs
spiral out of the circle. We also observed that SPPs are more
confined to the surface when the top layer is a metal.

IV. APPLICATION FOR CURVED SPPs

Waveguide bends connecting two straight waveguides are
important components in plasmonic integrated circuits. Using
unidirectional curved SPPs, a bent waveguide with minimal

bending loss can be designed. We propose that a 90◦ circular
bend magnetized by a radial bias can be used as a nonrecipro-
cal plasmonic junction. As shown in Fig. 4(a), the excited
unidirectional SPPs steer from a straight line to a circular
path through the 90◦ bend, resulting in the reduction of the
radiation loss due to the curvature of the waveguide junction.
Black arrows indicate the magnetic bias vectors applied in each
segment. It forms an optical nonreciprocal plasmonic junction,
which allows power transmission only in one direction.

To provide a comparison to the axial-bias case, in Fig. 4(b),
two straight waveguides are connected by an oblique junction
magnetized by an axial bias with an angle of 5π/4 radian.
When unidirectional SPPs reach the input port of the oblique
junction, they change direction and align themselves along a
line perpendicular to the bias. That is because the unidirec-
tional SPPs inherently tend to propagate perpendicular to the
magnetic bias at frequencies within the nontrivial bandgap.

The surface power that flows through these two junctions
is computed at the output ports for different operating fre-
quencies within the upper bandgap and shown in Fig. 4(c).
The power is transmitted through the radially magnetized
circular bend more than two times higher than the power
transmitted through the oblique junction. In addition, the
power transmission is significantly higher than in an unbiased
circular junction. In the circular bend with radial bias, the
energy routing only occurs in one direction. By reversing the
magnetic field direction, the energy is routed in the opposite
direction.

V. CONCLUSION

In conclusion, we obtained unidirectional curved SPPs by
applying an in-plane radial magnetic bias in topological con-
tinua. In a magnetized system, the unidirectional SPP trajec-
tories are steerable by the magnetic bias direction. We derived
a GF model for a radially magnetized system. The properties
of unidirectional curved SPPs were compared to the linear
SPP. Using unidirectional curved SPPs, a bent waveguide with
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minimal bending loss and nonreciprocal features was proposed
for plasmonic integrated circuits.

APPENDIX

Here, we obtain the scattered field in a radially biased
system based on a GF analysis in polar coordinates. Consider
two half-space isotropic/magnetized plasma media having an
interface at z = 0. An electric source with dipole moment
of p = γ ẑ is located at r0 = (ρ0, φ0, d) in the isotropic
region. The primary electric and magnetic fields are Ep(r) =
(εr k2

0I + ∇∇) · π p and Hp(r) = iωε0εr∇ × π p, where the
Hertzian potential π p is given by π p(r) = g p(r, r0)p/εrε0.
The primary GF is

g p(r, r0) = e−i
√

εr k0 |r−r0|

4π |r − r0|
= 1

(2π)2

∫ ∞

0

∫ 2π

0

e−γ0|z−d|

2γ0
eiq·(r−r0)qdφqdq (7)

where q · r = qρ cos(φq − φr) and q · r0 = qρ0 cos(φq − φ0),
with {φq, φr, φ0} denoting the angles q, r, and r0 make with
the Cartesian unit vector x̂. The exponential factor is γ0 =√

q2 − εr k2
0 , where εr is the dielectric constant of the isotropic

region (z > 0). Using the Fourier transform pairs and nabla
relations in a polar coordinate, we have

Ep(r) = γ g p(r, r0)

εrε0

[
∇t∂z +

(
∂2

∂z2
+ εr k2

0

)
ẑ
]

(8)

Ep(z, q) = Ep
|| + E p

z ẑ

= γ g p(z, q)

εrε0

[
iq∂z +

(
∂2

∂z2
+ εr k2

0

)
ẑ
]

(9)

where g p(z, q) = e−iq·r0 e−γ0 |z−d|/2γ0. The total field in the
isotropic region is a superposition of the primary and scattered
field, E(1)(r) = Ep(r) + Es(r). Let R̄ be a reflection tensor
such that the tangential components of the scattered field at
the interface are related to the tangential primary field as

Es
||(z, q) = Es

||(q)e−γ0z = R̄(q) · Ep
||(0, q)e−γ0z. (10)

Substitution of (9) gives

Es
||(z, q) = R̄(q) · iq

γ

2εrε0
e−γ0(z+d)e−iq·r0 . (11)

According to the Gauss’s law for the scattered field ∇·Es = 0,
the z component of the scattered field is Es

z(r) = − ∫ ∇t ·
Es

||(r)dz. Using (11), we have

Es
z(z, q) = −iq · Es

||(q)

∫
e−γ0zdz

= −γ

2εrε0γ0
q · R̄(q) · qe−γ0(z+d)e−iq·r0 . (12)

Finally, by taking the spatial Fourier transform, we have

Es
||(r) = 1

(2π)2

∫ ∞

0

∫ 2π

0
R̄(q) · iq

γ e−γ0(z+d)

2εrε0
eiq·(r−r0)qdφqdq

(13)

and

Es
z(r) = 1

(2π)2

∫ ∞

0

∫ 2π

0
Cr (q)

−γ

εrε0

e−γ0(z+d)

2γ0
eiq·(r−r0)qdφqdq

(14)

Fig. 5. SPA versus exact solution. (a) and (b) Real and imaginary part of
the integrand of SPA integral (14) versus the integrand of the outer integral
of (15), respectively, over q variation for f = 1.567 THz at observation
point (ρ = 250 μm, φ = 5π/4, z = 0.003λp ). (c) and (d) Real (δ′) and
imaginary (δ′′) of the relative error between the SPA approximation and
the exact solution. ne = 3.6 × 1021 m−3, m∗ = 0.0175m0, ε∞ = 15.68,
B0 = 0.6 T, and εr = 8.

where Cr (q) = q · R̄(q) · q. Using the SPA, the last 2-D
Sommerfeld integral can be simplified as

Es
z(r) =

∫ ∞

0
I (q)

−γ e−γ0(z+d)

2εrε0γ0
qdq (15)

where

I (q) = 1

(2π)2

√
π

2q|g(φs)|
[
Cr (q, φs)e

iqg(φs)eiπς/4

+ Cr (q, φs − π)e−iqg(φs)e−iπς/4
]

(16)

with g(φs) = ρ cos(φs − φr) − ρ0 cos(φs − φ0), ς is the sign
of g′′(φs), and the saddle point is

φs = tan−1

(
ρ0 sin(φ0) − ρ sin(φr)

ρ0 cos(φ0) − ρ cos(φr)

)
(17)

where φs ∈ (0, π). Fig. 5(a) and (b) shows that the real
and imaginary parts of the approximated relation is matched
with the exact solution. Their relative errors are shown in
Fig. 5(c) and (d), respectively. As seen, for q > k0, the
relative error is insignificant. Even though at a few points
in q < k0 range the error is rather large, it does not affect
the integration result considerably. However, to reach more
accuracy, one can apply double integral nearby the branch
point and the SPA integral over remainder of the integral range.

A. Reflection Tensor in a Radially Biased System

A plane wave in a gyrotropic medium satisfies the wave
equation k × (k × E) + k2

0 ε̄r · E = 0. Consider a coordi-
nate system, having a unit vector along the magnetic bias
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{k̂t , ρ̂, k̂t × ρ̂}, where k = kt + qρρ̂ with kt = qϕφ̂ + kzẑ.
We define qρ ≡ kρ cos(φk − φb) and qϕ ≡ kρ sin(φk − φb),
where qρ, qϕ ∈ [−∞,∞]. Note that the permittivity tensor
is given in (ρ̂, φ̂, ẑ) polar basis which is related to (ρ̂́, φ̂́, ẑ)
basis by projection relations of ρ̂́ · ρ̂ = cos(φk − φb) and
ρ̂́ · φ̂ = sin(φk − φb). Also, the permittivity elements are not
spatially dependent. In the wave equation, the nonzero solution
of E exists only if |k2

0 ε̄r − k2Ī + kk| = 0. The determinant is
a general relation for dispersion equation of the bulk modes
propagating in a gyrotropic medium in any arbitrary direction.
By plugging ε̄r tensor and k into the dispersion relation,
we obtain two solutions for kz as

kz j =
√

−q2
ϕ + 1

2εt

[
−κ ±

√
κ2 − 4εtν

]
(18)

for j ∈ {1, 2} where

κ = q2
ρ(εt + εa) + k2

0

(
ε2

g − εt(εt + εa
)

(19)

ν = εa
(
q2

ρ − k2
0εt

)2 − εaε
2
gk4

0 . (20)

Hence, the field in the gyrotropic region (z < 0) can be written
as a superposition of two waves with the wave vectors k j =
kt j +qρρ̂, where kt j = qϕφ̂ + kz j ẑ. The electric field vector in
the selected coordinate is written as E j = E0 j eik j ·r = [α1k̂t j +
α2ρ̂+α3(k̂t j ×ρ̂)]eik j ·r. By plugging E, k and ε̄r into the wave
equation, the unknown coefficients αi are obtained. Then we
have

E0 ∼ kt j + qρθ j ρ̂ + � j
(
kt j × ρ̂

)
(21)

where

� j ≡ iεgk2
0

εtk2
0 − k2

j

, θ j ≡ −k2
t j

εak2
0 − k2

t j

(22)

and the magnetic field is H = (k × E)/ωμ0. In the isotropic
region, the field can be expanded as E = [B1(kd × ẑ) +
B2kd × (kd × ẑ)]eikd ·r where kd = qρρ̂ + qϕφ̂ + kzd ẑ and
kd = k2

0εr , taking into consideration the equality of the tan-
gential momentum at the interface. Finally, we decompose the
field vectors in both regions to their components in a regular
polar coordinate system. Let Ȳg and Ȳ0 be the admittance
tensors in the gyrotropic and the isotropic regions, respectively.
The tangential electric and magnetic field components are
related as (−η0 Hϕ

η0 Hρ

)
(2)

= Ȳg ·
(

Eρ

Eϕ

)
(2)

= Ȳg · E(2)
|| (23)

and (−η0 Hϕ

η0 Hρ

)
(1)

= ±Ȳ0 ·
(

Eρ

Eϕ

)
(1)

= ±Ȳ0 · E(1)
|| (24)

with the ± sign indicates upward and downward propagating
waves, respectively, and

Ȳ0 = 1

ik0γzd

( −γ 2
zd + q2

ρ qρqϕ

qρqϕ −γ 2
zd + q2

ϕ

)
(25)

Ȳg = −1

k0�

[
�11 �12

�21 �22

]
(26)

have units of admittance where

� = qρθ1(qϕ − i�2γz2) − qρθ2(qϕ − i�1γz1) (27)

�11 = qρ�1(qϕ − i�2γz2) − qρ�2(qϕ − i�1γz1) (28)

�12 = −θ2�1q2
ρ + θ1�2q2

ρ (29)

�21 = �1k2
t1(qϕ − i�2γz2) − �2k2

t2(qϕ − i�1γz1) (30)

�22 = −θ2�1k2
t1qρ + θ1�2k2

t2qρ (31)

with � j = � j qϕ − i(θ j − 1)γz j , γzd = −ikzd , and γz j = ikz j .
In the isotropic region, E(1)

|| = Ep
|| + Es

|| and Es
|| = R̄(q) · Ep

|| .
By imposing the continuity of tangential fields at z = 0, the
reflection tensor is R̄ = (Ȳ0 + Ȳg)

−1 · (Ȳ0 − Ȳg).
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