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Dynamical Casimir effects: The need for nonlocality in time-varying dispersive nanophotonics
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We study the role of material nonlocality (spatial dispersion) in dynamical Casimir effects in time-varying
frequency-dispersive nanophotonic systems. We first show that local models may lead to nonphysical predictions,
such as diverging emission rates of entangled polariton pairs. We then theoretically demonstrate that nonlocality
regularizes this behavior by correcting the asymptotic response of the system for large wave vectors and leads
to physical effects missed by local models, including a significant broadening of the emission rate distribution,
which are relevant for future experimental observations. Our work sheds light on the importance of nonlocal
effects in this new frontier of nanophotonics.
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The energy levels of a quantum harmonic oscillator are
given by En = (n + 1/2)h̄ω, which implies a nonvanishing
minimum energy (the zero-point energy) in the ground state
n = 0 [1]. Indeed, if the Hamiltonian of a harmonic oscilla-
tor, H = p2/2m + mω2z2/2, were zero, then both position z
and momentum p would need to be identically zero, which
would violate Heisenberg’s uncertainty principle. Hence, z
and p must fluctuate in the ground state, producing zero-point
fluctuations. Each mode of the electromagnetic field is anal-
ogous to a quantum harmonic oscillator, thus the quantized
field exhibits zero-point fluctuations (virtual photons) in the
lowest-energy state, i.e., the vacuum state. Since the quantum
electromagnetic vacuum fluctuates, it interacts with atomic
systems even in the absence of real photons [2], thereby giving
rise to many observable effects including van der Waals and
Casimir forces [3], spontaneous emission [4–6], the Lamb
shift [7], noncontact quantum friction [8,9], and all the way up
to its potential role in the evaporation of black holes through
Hawking radiation [3,10] and the cosmological constant
problem [11].

Among all these phenomena, the most well known is
arguably the Casimir effect, described by Casimir in the
1940s [12–14]. Since the strength of the Casimir (and re-
lated) effects is determined by how the electromagnetic modes
are modified and constrained by the considered structure,
they can be controlled by engineering the geometry, ma-
terial, and symmetries of the system. For example, it has
been shown [5,15,16] that strong photonic resonances in
nanophotonic structures and polaritonic materials, as well as
breaking reciprocity through magneto-optic effects [17–20],
can be used to enhance and engineer Casimir forces/torques
and other vacuum fluctuation effects. In addition to these
“static,” i.e., time-invariant, mechanisms, also “dynamical”
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approaches, based on moving media or time-modulated sys-
tems, have been investigated to amplify fluctuation-based
phenomena and convert virtual photons into entangled pairs
of real photons [10]. Examples include cavities with oscil-
lating boundaries [21], spatially localized index perturbations
accelerated on some trajectory [22], and time-modulated polar
insulator thin films [23].

Investigating the effects resulting from vacuum fluctua-
tions in dynamically modulated structures becomes especially
complicated when the material optical properties are simul-
taneously temporally dispersive and time dependent [23,24].
Particularly interesting and subtle are scenarios in which
the time-modulation frequency becomes comparable with the
material optical transition frequencies, where an “adiabatic”
description of the time-varying material cannot be used. In
Ref. [23], an elegant theoretical framework was proposed to
study dynamical Casimir effects in these scenarios, showing
that pairs of entangled phonon polaritons are generated on
thin films of polar insulators when the transverse optical (TO)
phonon frequency is rapidly modulated in time.

In this Letter, we revisit this pair generation process, and
also investigate the decay rate of a two-level system, in a time-
modulated photonic structure made of a material that is not
only temporally dispersive, but also spatially dispersive, i.e.,
its spatial impulse response is nonlocal [25–29]. We demon-
strate that taking into account the natural nonlocal response of
the material is essential in accurately describing dynamical
Casimir effects in these systems. Ignoring nonlocality may
lead to nonphysical behaviors.

The geometry under consideration is shown in Fig. 1(a):
An isotropic slab made of a polar dielectric, with overall
thickness ds, is temporally modulated over a thin layer of
thickness d . The time-invariant permittivity of the material, in
the spatially local case, follows a standard Lorentz oscillator
model, εbg(ω) = ε∞[1 + ω2

p/(ω2
0 − ω2 − iγω)], where ε∞ is

the permittivity at high frequencies, ω0 is the TO phonon
frequency, ωp is the plasma frequency (oscillator strength),
and γ is the damping rate. When a (weak) temporal
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FIG. 1. (a) A polar dielectric slab subject to a time modulation of
its permittivity over a thin layer. The polar dielectric is supposed to
be silicon carbide (SiC). (b) Time-modulated slab interacting with a
two-level dipole source. (c) Hilbert space of the configuration in (b).

modulation is applied to this dispersive material, the
frequency-domain perturbed permittivity can be written
as [23]

ε(ω,ω′) = εbg(ω)2πδ(ω − ω′) + �χ (ω,ω′). (1)

Note the two-frequency formulation commonly used for sys-
tems with a time-varying linear response function in the
nonadiabatic regime [24]. In a time-varying dispersive planar
structure as in Fig. 1, the probability of pair generation, per
unit frequency, per unit area of the sample, was then shown
in Ref. [23] to be given by the following expression (see also
Ref. [30]),

1

A

dP

dω
=

∫ ω′=∞

ω′=0
dω′ |�χ (ω,−ω′)|2

16π3

∫ q=∞

q=0
dq q(1 − e−2qd )2

× Im[Rp(ω′, q)]Im[Rp(ω, q)], (2)

where q is the wave number and Rp is the p-polarized reflec-
tion coefficient of the slab [30–32].

An inspection of Eq. (2) reveals that this quantity diverges
if the upper limit of the integral over wave number approaches
infinity. Indeed, for the considered material model, Im(Rp)
takes a finite nonzero value as q → ∞, whereas the wave-
number-dependent factor q(1 − e−2qd )2 never converges. A
related issue is that, if arbitrarily large wave numbers need
to be considered in Eq. (2), q would eventually become
comparable to 2π/a0, where a0 ≈ 10−11 m is the Bohr ra-
dius [1]. In such a large-wave-number regime, this entire
formulation would become inapplicable, as the validity of
the dipole approximation itself would break down since the
propagator factor eiqx would not be approximately constant
over atomic/molecular scales (hence, multipolar responses
would need to be included).

We found that these issues do not appear only in the
configuration considered above, but also in other related sce-
narios, such as in the problem of spontaneous emission from
a two-level system in a time-modulated dispersive photonic
reservoir. Considering a two-level atom radiating above a

time-modulated polar dielectric slab, as in Fig. 1(b), the total
interaction Hamiltonian takes the form

Hi(t ) = V1(t ) + V2(t ) = −ε0

∫
dr

∫ +∞

t ′=−∞
dt ′�χi j (r, t, t ′)

× Ej (r, t ′)Ei(r, t ) − μ · E, (3)

where μ is the dipole transition matrix of the two-level
atom source. The sub-Hamiltonian V1 consists of the operator
terms aman, a†

man, ama†
n, a†

ma†
n, and V2 contains terms such as

σa†
m, σ †am, where σ, σ † and a, a† are the lowering/raising

dipole and bosonic field operators, respectively, and m, n are
mode indices. Assuming the system is initially prepared in
the |e, 0〉 state (excited atom and no photon in the bosonic
mode), the total Hilbert space can be found by applying the
interaction Hamiltonian to the initial state. As illustrated in
Fig. 1(c), an atom can make a transition from |e, 0〉 to different
states: Among them, it can be shown that the transition to
|g, 1m, 1n, 1l〉 (atom in the ground state and photons at modes
m, n, l) via the red path in Fig. 1(c), occurs with the following
decay rate (see Supplemental Material [30]),

γ|e,0〉→|g,1m1n1l 〉 = γ0

16π3

∫
dω′|�χ (ωa,−ω′)|2

×
∫ +∞

q=0
dq q(1 − e−2qd )2

× Im[Rp(ω′, q)]Im[Rp(ωa, q)], (4)

where γ0 is the decay rate of an atom in the correspond-
ing time-invariant photonic environment [30] and ωa is
the atomic transition frequency. By inspecting Eq. (4), we
note that similar issues exist as in the previous case, namely,
the q integral diverges and, at large enough wave numbers, the
dipole approximation validity would break down.

These issues are rooted in the dispersive nature of the con-
sidered time-varying material properties and how the asymp-
totic behavior for large wave numbers is modeled. A local,
wave-vector-independent material model implies that the ma-
terial polarization response persists for arbitrarily large wave
vectors and predicts flat dispersion asymptotes for polaritonic
modes such as surface plasmon or phonon polaritons, leading
to unphysical behaviors and thermodynamic paradoxes even
in the time-invariant case [28,33,34]. A qualitative way to ad-
dress this issue is to consider a local material response but set
a large-wave-vector cutoff in the form of a finite upper limit
qc for the q integral in Eqs. (2) and (4), as it has been done
so far in the literature (e.g., Ref. [23]). While this approach is
inspired by how physical nonlocal effects make the material
response vanish for large wave vectors, difficulties may arise
because (i) the choice of an upper limit can be rather arbitrary
and, therefore, different values of qc would lead to different
results, especially around material resonance frequencies, as
shown in the following; and (ii) setting a sharp upper limit
implies that the material polarization abruptly vanishes as the
wave vector increases, which is not physical. Thus, assuming
a local material model, with or without a sharp wave-vector
cutoff, may lead to potentially inaccurate results. In the fol-
lowing, we show that these issues are more satisfactorily
addressed by formally considering the impact of nonlocal
effects on the response of dispersive time-varying materials.
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A time-modulated polar dielectric at frequencies near its
phonon resonance can be modeled as a lossy Lorentz oscil-
lator with a time-varying resonant frequency ω0 → ω0[1 +
δω f (t )], where f (t ) is a time-dependent function and δω � 1
is a small dimensionless parameter [23]. The equation of mo-
tion underlying this model is derived from Newton’s second
law for ions subject to a harmonic electric field, a time-
varying restoring force, and a damping force. Here, to include
nonlocality in a phenomenological manner [26], a pressure
term is also added, analogous to a hydrodynamic treatment
of nonlocality for plasmonic materials [25,27,28], but with
some important differences as discussed below, as well as in
Ref. [26] and in the Supplemental Material [30]. Thus, we
obtain an equation for a nonlocal and time-varying Lorentz
model,(

∂2

∂t2
+ γ

∂

∂t
+ ω2

0[1 + δω f (t )] + β2∇(∇·)
)

p(t )

ε0ω2
p

= E(t ),

(5)

where p(t ) is the induced dipole moment and β is a phe-
nomenological velocity indicating the strength of nonlocality.
For simplicity, we assumed the high-frequency nonresonant
polarization response is negligible, i.e., ε∞ = 1. The above
equation is the generalization of Eq. (A1) in Ref. [26] for
a polar dielectric material that is both nonlocal and, here,
temporally modulated with a time-dependent TO resonant
term. Assuming |δω| � 1, we show in the Supplemental Ma-
terial [30] that the resulting spatially and frequency-dispersive
two-frequency permittivity can be written as in Eq. (1) with

εbg(ω, q) =
(

1 + ω2
p[

ω2
0(q) − ω2 − iγω

]
)

,

�χ (ω,ω′, q) = −ω2
0ω

2
pδω f (ω′ − ω)[

ω2
0(q) − ω′2 − iγω′][ω2

0(q) − ω2 − iγω
] ,

(6)

where ω2
0(q) = ω2

0 − β2q2, and f (ω) is the Fourier transform
of the time-modulation profile. Importantly, for infinitely large
wave numbers, q → ∞, Eq. (6) predicts that the material
permittivity converges to that of free space regardless of
temporal modulation. For instance, for the considered ma-
terial (SiC with β given in the caption of Fig. 2), one can
easily verify that �χ vanishes and εbg converges to unity
for q ≈ 108 rad/m � 2π/a0, namely, the material response
vanishes significantly before the relevant wavelength reaches
the atomic scale, where the dipole approximation would break
down.

Next, we examine the dispersion of surface phonon po-
laritons (SPhPs) supported by the structure in Fig. 1(a) in
the presence and absence of nonlocality in the time-invariant
case. The calculated local and nonlocal dispersion curves are
shown in Fig. 2. For small wave numbers [Figs. 2(a) and 2(b)],
the local and nonlocal cases are very similar, whereas signif-
icant differences appear at larger wave numbers [Figs. 2(c)
and 2(d)]. In particular, in the local case the dispersion curves
asymptotically converge to a flat line, which implies that (i)
the material is still polarized for q → ∞, as discussed earlier,
and (ii) it supports an infinite number of photonic states within
a finite frequency range, leading to thermodynamic paradoxes

FIG. 2. (a) Local (β = 0) and (b) nonlocal (β = 15.39 ×
105 cm/s [26]) dispersion diagrams for surface phonon polaritons
(SPhPs) on a time-invariant SiC slab with thickness ds = 100 nm.
SiC dielectric parameters are taken from Ref. [35]: ωp = 1.049 ×
1014 rad/s, ω0 = 1.49 × 1014 rad/s, ε∞ = 6.7, and � = 8.97 × 1011

rad/s. [(c),(d)] Dispersion diagrams over a larger wave-number range
for the local and nonlocal cases, respectively. The dispersion dia-
grams are plotted as density plots of the magnitude of the slab reflec-
tivity, with bright lines corresponding to SPhP poles (brighter colors
mean higher intensity). The vertical dashed line in (c) marks the lo-
cation of the wave-number cutoff used for the local case in Fig. 4(a).
The vertical dashed line in (d) marks where the relevant integrals in
the nonlocal case converge, whereas the vertical solid red line
marks where the wave number starts approaching the atomic scale
(q ≈ 2π/a0).

and other issues, as extensively discussed in Refs. [28,33,34]
in the plasmonic case. The inclusion of nonlocality in the polar
dielectric material model resolves these issues by making
the material response gradually vanish for very large wave
numbers and bending the dispersion asymptote downward, as
seen in Fig. 2(d). This downward bend originates from the
redshift of the phonon resonance frequency in the presence
of nonlocality, i.e., ω2

0 → ω2
0 − β2q2, which strongly affects

the large-wave-vector behavior of SPhPs. For large values
of q (until the dipole approximation holds), the dispersion

is given by ω =
√

ω2
0 − β2q2 + ω2

p/(1 + ε∞), indicated by

the dashed line in Fig. 2(d). Interestingly, this behavior is
qualitatively different from that of plasmonic systems where
hydrodynamic nonlocality leads to a blueshift, instead of a
redshift, in the plasma frequency, and an upward bend of the
plasmon-polariton dispersion asymptotes [26,28,30].

These nonlocality-induced effects have several important
consequences, both quantitative and qualitative, for the dy-
namical Casimir effects described above. To see this, we
consider the case of SPhP pair generation when the top layer
of a SiC slab [Fig. 1(a)] is time modulated with a resonant-
frequency perturbation of the form f (t ) = cos(
t )e−t2/2T 2

where T is the temporal width of the modulation, as in
Ref. [23]. First, we show in Figs. 3(a) and 3(b) the wave-
vector- and frequency-resolved normalized emission rate
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FIG. 3. Wave-vector- and frequency-resolved normalized emis-
sion rate [magnitude of integrand of Eq. (2)], for (a) local (β = 0)
and (b) nonlocal (β = 15.39 × 105 cm/s [26]) cases.

[integrand of Eq. (2)], for the local and nonlocal cases,
respectively. Different from the dispersion diagrams in
Figs. 2(c) and 2(d), which simply indicate the location of the
SPhP poles for the time-invariant slab, Figs. 3(a) and 3(b)
indicate which parts of these dispersion diagrams contribute
more strongly to the considered process, namely, the SPhP
pair generation in the time-modulated case. Since the inte-
grand of Eq. (2) is a function of three variables, the wave
number q and the pair frequencies ω and ω′, in Figs. 3(a) and
3(b), we set ω = 1.2ω0 and plot the integrand as a density
plot as a function of ω′ and q [for a short pulse modulation
with 
 = 2.2ω0 and T = 80 fs or T = 1.89(2π/ω0)]. We see
from Fig. 3(a) that, as expected, there are two main factors
that cause a strong enhancement of the SPhP emission: (i)
high photonic local density of states (LDOS) around the flat
dispersion asymptote at ω′/ω0 = 1.2, and (ii) the presence of
a resonance in the material response around ω′/ω0 = 1, where
|�χ |2 becomes large. This plot also clearly shows that, in the
local case, the integral never converges as larger values of q
contribute more strongly to the pair emission rate. The nonlo-
cal case [Fig. 3(b)] is drastically different: Both high-intensity
features bend downward and the contribution of large wave
vectors gradually vanishes. Moreover, due to this downward
bend, the range of frequencies ω′ that strongly contribute to
the emission process widens significantly for the same ω and
modulation properties.

Finally, Figs. 4(a)–4(c) show the normalized emission rate
per frequency, 1/(AT )dP/dω, for local and nonlocal SiC
models for three different modulation frequencies. As dis-
cussed in Ref. [23], this quantity corresponds to the emission
rate that can be detected classically at frequency ω (hence,
without discriminating between the two emitted photons).
In the local scenario, two different wave-number cutoffs at
qc = 630ω0/c and 20qc were considered, truncating the in-
tegral in Eq. (2) at these values. With these local models,
the emission rate distribution is characterized by sharp peaks
at ω/ω0 = 1.2 and ω/ω0 = 1, as expected, and their relative
strength can be modified by varying the central frequency

 of the modulation pulse, as seen in Figs. 4(a)–4(c). Un-
der monochromatic time modulation, T → ∞, generated pair
frequencies would respect the energy conservation constraint
ω + ω′ = 
; therefore, as long as 
/2 lies between ω/ω0 =
1.2 and ω/ω0 = 1, SPhP pair generation would take place at
a high rate, as both SPhPs can experience high LDOS and/or
a strong material resonance. For a more realistic case with

FIG. 4. [(a)–(c)] Normalized emission rate distribution
1/(AT )dP/dω, for the local and nonlocal cases, for different
time-modulation frequencies: (a) 
/ω0 = 2.01, (b) 
/ω0 = 2.2,
and (c) 
/ω0 = 2.4. The other temporal modulation parameters are
as in Fig. 3.

a modulation pulse with finite T (as considered here), and
hence finite modulation spectrum, energy conservation can be
satisfied over a wider range of frequencies ω,ω′, but a similar
behavior is expected as long as T is not too small. As an
example, by modulating the SiC material close to 
/2 = ω0,
SPhP pairs are preferentially generated around ω,ω′ ≈ ω0,
corresponding to the main peak visible in Fig. 4(a) (red
curve), which physically originates from a parametric reso-
nance of phonons [23]. Another peak around the frequency of
the SPhP flat dispersion asymptote, ω/ω0 = 1.2, can also be
observed, which is however orders of magnitude smaller. Con-
versely, for a modulation frequency close to 
/2 = 1.2ω0,
SPhP pairs are preferentially generated around the asymptote
frequency, as shown in Fig. 4(c). Finally, the two emission
peaks can be equally enhanced (hence, with no preference
for SPhP generation at these two frequencies) by tuning the
modulation frequency in the middle of the range between
material resonance and flat asymptote, 
/ω0 = 1.1, as in
Fig. 4(b).

While these results for the local case are sensible, they
strongly depend on the choice of large-wave-vector cutoff,
which moderately affects their qualitative behavior and dras-
tically changes their numerical values, as seen by comparing
the solid red and dashed green curves in Figs. 4(a)–4(c).
Considering nonlocal effects, as described above, solves this
issue by providing a physically justified correction for the
asymptotic behavior of time-modulated dispersive systems for
large wave vectors. The solid blue lines in Fig. 4(c)–4(e)
show the corresponding emission rates for a model that in-
cludes nonlocality. The most evident qualitative difference is
a significant broadening of the emission rate distribution—the
peaks are broader with significantly expanded tails—which
ultimately originates from the downward bend of the dis-
persion asymptote and of the material resonance condition
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(Figs. 2 and 3), and the resulting spreading of the LDOS.
These physical effects are completely missed by the local
model and suggest that a strong emission rate can be obtained
over a larger range of frequencies than the local model would
suggest, but with less pronounced maxima, which are relevant
features for future experimental observations.

In conclusion, our work shows that considering ma-
terial nonlocality is necessary for an accurate, physically
satisfactory, and self-consistent description of dynamical
Casimir effects in time-varying dispersive systems. More

broadly, we believe that, as nonlocal effects have proved
critical in understanding extreme effects in plasmonics
[25,28,29,33,34], they also represent an essential element in
the study of dynamical quantum-vacuum effects in resonant
nanophotonics.
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