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Effective Local Permittivity Model for
Nonlocal Wire Media

Alexander B. Yakovlev , Senior Member, IEEE, Mário G. Silveirinha , Fellow, IEEE,
and George W. Hanson , Fellow, IEEE

Abstract— A local permittivity model is proposed to accu-
rately characterize spatial dispersion (SD) in nonlocal wire
medium (WM) structures with arbitrary terminations. A closed-
form expression for the local thickness-dependent permittivity
is derived for a general case of a bounded WM with lumped
impedance insertions and terminated with impedance surfaces,
which takes into account the effects of SD and loads/terminations
in the averaged sense per length of the wire medium. The pro-
posed approach results in a local model formalism and accurately
predicts the response of WM structures for near-field and far-
field excitation. It is also shown that a traditional transmission
network and circuit model can be effectively used to quantify
the interaction of propagating and evanescent waves with WM
structures. In addition, the derived analytical expression for the
local thickness-dependent permittivity has been used in the full-
wave numerical solver (CST Microwave Studio) demonstrating
a drastic reduction in the computation time and memory in the
solution of near-field and far-field problems involving wire media.

Index Terms— Additional boundary condition (ABC), circuit
model, homogenization theory, metamaterials, spatial disper-
sion (SD), wire medium (WM).

I. INTRODUCTION

SPATIAL dispersion (SD) of continuous materi-
als, or homogenized materials with effective material

parameters, characterizes the dependence of constitutive
parameters on wavevector, such that the constitutive relations
between the macroscopic fields and electric/magnetic dipole
moment are nonlocal [1], [2]. Nonlocal effects generate
extra propagating or evanescent waves which in case of wire
medium (WM) can be viewed as extraordinary waves. The
wave-matter interaction in bounded nonlocal materials is
typically modeled by expanding the field in terms of the waves
of unbounded domains, and then imposing the usual boundary
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conditions as well as additional boundary conditions (ABCs)
at material interfaces. The ABCs are needed to account for
the extra waves present in nonlocal materials [3], [4].

In this article, we focus on the analysis of electromagnetic
interactions with bounded WM structures. It is already well
known that wire media exhibits strong SD at microwave
frequencies, even for very long wavelengths [5], [6]. The role
of SD effects has been addressed [7]–[10], and it has been
shown that the nonlocal homogenization formalism is essential
in the solution of scattering, radiation, and excitation problems
involving WM-type structures [8], [9], [11]–[24]. In this
regard, the methodology proposed in [25] is of particular
interest, wherein the nonlocal susceptibility of the bounded
homogenized WM in the spatial transform-domain is given
by the Green’s function for the same geometric region subject
to ABCs at the wire-end terminations [26]–[29]. Based on the
nonlocal formalism for bounded WM proposed in [25], a local
thickness-dependent permittivity has been derived in closed
form for a grounded WM and symmetric WM terminated with
impedance surfaces at the wire connections [30]. It was shown
that the local permittivity that accounts for SD must depend
on the thickness of the WM slab and on the termination of
the wires ([31] discusses the dependence of effective material
parameters on geometric metamaterial parameters).

In recent work [32], it is shown that the spatial nonlocality
in metals can be effectively modeled by a composite material
comprising a thin local dielectric layer on top of a local
metal, such that the nonlocal effects are captured in a deeply
subwavelength effective dielectric layer. In general, this is
not the case with WM, wherein the nonlocal effects are
distributed throughout the entire structure due to the presence
of two extraordinary waves: transverse magnetic (TM), which
is evanescent below the plasma frequency, and transverse
electromagnetic (TEM), which propagates in WM as in a
uniaxial material with extreme anisotropy.

Here, we generalize the concepts developed in [25], [30],
[33], and [34] to the case of WM slab with lumped impedance
insertions (including the case of p-i-n diodes at the wire
connections) and terminated with different impedance surfaces
at the top and bottom WM interfaces. A local thickness-
dependent permittivity is derived in closed form, and takes
into account SD and the effect of the loads/terminations in
the averaged sense per thickness of the WM slab. The local
thickness-dependent permittivity for an asymmetric configu-
ration with lumped impedance insertions and terminated with
arbitrary impedance surfaces first appeared in [35], and here
the theory is verified with full-wave results, and several other
geometries/examples have been added.
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Fig. 1. Geometry of a 2-D WM structure with the wires connected to
impedance surfaces through lumped impedance insertions.

This article is organized as follows. In Section II,
we introduce the formalism of the nonlocal susceptibility/
permittivity in the spatial domain for a WM slab with lumped
loads/impedance surfaces terminations, and derive a closed-
form expression for the local thickness-dependent permittivity.
Also, a transmission network approach and a circuit model
are discussed. In Section III, various numerical examples in
the local framework are demonstrated and the results are
compared with the nonlocal solution and full-wave numerical
simulations. Section IV summarizes the main results and
conclusions. An appendix provides analytical details of the
Green’s function problem. A time dependence of the form
e jωt is assumed and suppressed.

II. LOCAL THICKNESS-DEPENDENT

PERMITTIVITY OF WM

Consider a WM structure with the geometry shown in Fig. 1.
The structure is comprised by a 2-D lattice of z-directed
thin metallic wires of thickness L connected through lumped
impedance insertions to impedance surfaces at the wire-end
interfaces at z = 0 and z = −L. For simplicity, we assume air
semi-infinite regions external to the structure. The period of
wires is a, the radius of wires is r0, and the relative permittiv-
ity of the host medium is εh . The impedance surfaces are char-
acterized by the surface admittance, Ȳg1,2 = (x̂x̂ + ŷŷ)Yg1,2,
with the closed-form expressions for periodic printed (capac-
itive) or slotted (inductive) subwavelength grids presented
in [36]. The lumped impedance insertions are given in terms
of the effective load impedance, Z load eff1,2 [23], [28], [37].

According to [25], the nonlocal response for the geometry
in Fig. 1 that accounts for a material boundary in the spatial
transform-domain satisfies the following system of equations
written from a macroscopic perspective for a homogenized
WM

∇ × E = − jωμH (1)

∇ × H = (Ȳg1δ(z)+Ȳg2δ(z + L))·E+ jωPcond
z ẑ+ jωε0εhE

(2)�
k2

h + ∂2

∂z2

�
Pcond

z = −k2
pε0εh Ez (3)

where Pcond
z is the conductive polarization due to the

z-directed WM

Pcond
z (z) = ε0

� 0

−L
χcond(z, z�)Ez(z�)dz�. (4)

Here, the susceptibility χcond determines the nonlocal response
for the uniaxial WM that accounts for the material inter-
face. It is proportional to the Green’s function associated
with (3) subject to the ABCs at the interfaces, such that
χcond(z, z�) = εhk2

pg(z, z�). The Green’s function problem
for the geometry in Fig. 1 is presented in the appendix.
From (1) to (3), kh = k0

√
εh is the wavenumber of the

host medium, and kp is the plasma wavenumber defined by
(kpa)2 ≈ 2π/(ln(a/(2πr0)) + 0.5275) [6].

The nonlocal permittivity for WM can be described in terms
of a Green’s function, g(z, z�), which takes into account the
material SD and the effect of the lumped loads and the material
boundaries (see Fig. 1)

εnonloc(z, z�) = εhk2
pg(z, z�) + εhδ(z − z�). (5)

With the known Green’s function (see Appendix) the nonlocal
permittivity (5) can be approximated by a local response,
εnonloc(z, z�) ≈ εlocδ(z − z�), where εloc is the local thickness-
dependent permittivity [30] for a WM structure of thickness
L with the wires connected to impedance surfaces through
lumped loads (see Fig. 1) resulting in

εloc = 1

L

� 0

−L

� 0

−L
εnonloc(z, z�)dzdz�

= εhk2
p

L

� 0

−L

� 0

−L
g(z, z�)dzdz� + εh . (6)

Equation (5) is an exact relation, and by representing
εnonloc(z, z�) ≈ εlocδ(z − z�), we assume that the material
response in a WM slab is localized. This may happen either
because the SD of the medium is weak (which evidently is not
the case of the WM), or, alternatively, because the material
boundaries effectively localize the response to a spatial region
with thickness L. The latter is the mechanism relevant in our
system.

Performing the double integral (6) with the Green’s func-
tion in (19) and (20), a closed-form expression of the local
thickness-dependent permittivity for a general case presented
in Fig. 1 can be obtained

εloc = εh

�
1 − k2

p

k2
h

�

+εh
k2

p

Lk3
h

2 − 2 cos(kh L)+kh(α1+α2) sin(kh L)

(1−k2
hα1α2) sin(kh L)+kh(α1+α2) cos(kh L)

(7)

where α1 and α2 are defined in the appendix for different
cases of wire-end terminations. The first term in (7) is the
usual local permittivity of a bulk WM (Drude permittivity),
and the second thickness-dependent term takes into account
SD in the WM in the averaged sense per thickness L and the
effect of the loads/boundaries and the interaction between the
boundaries. In a few limiting cases, the obtained expression (7)
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Fig. 2. Local uniaxial anisotropic material with impedance surfaces at the
interfaces as an equivalent geometry to the WM structure presented in Fig. 1.

simplifies to those presented in [30], such that for a grounded
WM slab with impedance surface at z = 0 (α1 = α, α2 → ∞),
we obtain the expression in [30, eq. (16)], and for a grounded
WM slab with open-end wires (no impedance surface at z = 0
(α1 = 0, α2 → ∞)) (7) results in [30, eq. (17)]. Also, it can be
verified that the limiting cases to symmetric structures (two-
sided WM slab with identical impedance surfaces, α1 = α2 =
α, and the WM slab with open-end wires, α1 = α2 = 0) are
also satisfied resulting in [30, eqs. (16) and (17)] by changing
L to L/2 in the obtained expressions.

The closed-form expression (7) for a local thickness-
dependent permittivity can be used in the analysis of various
near-field and far-field electromagnetic problems formulated
on a local framework

∇ × H = jωε0ε̄total(z) · E(z) (8)

where

ε̄total(z)

= 1

jωε0
(Ȳg1δ(z) + Ȳg2δ(z + L)) + εlocẑẑ + εh(x̂x̂ + ŷŷ).

(9)

The scattering problem for the geometry shown in Fig. 1
with the WM slab (including the lumped loads) replaced by
the local uniaxial anisotropic material shown in Fig. 2 with
the host permittivity εh in the x- and y-directions and the
thickness-dependent permittivity (7) in the z-direction can be
formulated in a local framework. We assume the TM-polarized
plane wave is obliquely incident on the structure from the air
region with z > 0. The plane wave is characterized by Hy, Ex ,
and Ez components, and the magnetic field in the air regions
and in the WM slab can be expressed as follows:

Hy =

⎧⎪⎨
⎪⎩

eγ0z − ρe−γ0z, z > 0

A+eγlocz + A−e−γlocz, −L ≤ z ≤0

T eγ0(z+L), z < −L

(10)

where ρ and T are the reflection and transmission coefficients,

respectively, γ0 =
�

k2
x − k2

0, γloc =
�

(εhk2
x/εloc) − k2

h [30],
and kx is the x−component of the wavevector k = (kx , 0, kz).

By imposing the usual boundary conditions for tangential
electric-field and magnetic-field components at the interfaces
at z = 0 and z = −L, the following system of linear equations
is obtained⎛
⎜⎜⎜⎜⎜⎝

εhγ0 −γloc γloc 0

1+ γ0

jωε0
Yg1 1 1 0

0 γloce−γloc −γloceγloc −εhγ0

0 e−γloc eγloc −1− γ0

jωε0
Yg2

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

ρ
A+
A−
T

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−εhγ0

1 − γ0

jωε0
Yg1

0
0

⎞
⎟⎟⎟⎠ (11)

which can be solved for the unknown coefficients ρ, T ,
and A±.

Also, for the geometry in Fig. 1 with the local thickness-
dependent permittivity (7) for a WM slab (with the equivalent
problem shown in Fig. 2) the transmission network (ABCD
matrix) can be easily obtained�

A B
C D

�
=

�
1 0

Yg2 1

�

×
⎡
⎣ cosh(γlocL) Z loc sinh(γlocL)

1

Z loc
sinh(γlocL) cosh(γlocL)

⎤
⎦

×
�

1 0
Yg1 1

�
(12)

where Z loc = (γloc/jωε0εh) is the characteristic impedance
of the WM slab as the transmission line with the local
thickness-dependent permittivity (7). The reflection and trans-
mission coefficients (S-parameters) are retrieved from the
ABCD-matrix parameters with the known expressions from
the microwave engineering [38, p. 192; with Z0 replaced
by Z loc]. Obviously, in a local framework the transmission
network (12) (with conversion to the S-parameters) and the
field approach (11) give the same results for ρ and T .

For a symmetric WM structure with respect to the
impedance surface terminations, Yg1 = Yg2 = Yg, even
though the lumped impedance insertions can be different and
in general α1 	= α2, a simple circuit model with even and odd
excitations (corresponding to the symmetry of the structure
by a perfect electric conductor (PEC) and perfect magnetic
conductor (PMC), respectively, placed at the center of the
structure) can be obtained [39]

ρe = Y0 − Yg − Yloc coth
�
γloc

L
2

�
Y0 + Yg + Yloc coth

�
γloc

L
2

� (13)

ρo = Y0 − Yg − Yloc tanh
�
γloc

L
2

�
Y0 + Yg + Yloc tanh

�
γloc

L
2

� (14)

where Yloc = 1/Z loc and Y0 = jωε0/γ0. The reflec-
tion/transmission response of the entire WM structure is
obtained by the superposition principle as ρ = (ρe + ρo)/2
and T = (ρe − ρo)/2.
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Fig. 3. Geometry of a mushroom high-impedance surface with loaded vias
with an obliquely incident TM-polarized plane wave.

We should point out that the geometry in Fig. 1 serves as a
building block and with the obtained local thickness-dependent
permittivity (7) it can be easily modified to other cases of
interest by changing accordingly the coefficients α1,2 in (7)
(depending on terminations/lumped loads) and Yg1,2 in the
local model formalism (11)–(14).

In Section II, we will present several numerical examples
to validate the proposed local thickness-dependent permittivity
model for far-field and near-field excitation problems. The
nonlocal model for WM structures (which requires the ABCs
at wire terminations) have been extensively verified in the
literature [7]–[12], [15]–[24], [26]–[29], [37], [40], among
others, versus full-wave numerical simulations for a variety of
scattering, excitation, and radiation problems involving wire
media, and can be used for an adequate comparison with
the local thickness-dependent permittivity model results. Also,
we will demonstrate that the homogenized local WM can
be effectively used in the full-wave numerical simulator to
significantly reduce the computation time and memory in the
analysis of true physical WM structures. Once the accuracy
of our model has been established, its usefulness compared to
both the nonlocal model (necessitating ABCs, and restricted
to canonical planar geometries) and full-wave solvers should
be clear.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the first numerical example we consider a mushroom-type
high-impedance surface with lumped impedance insertions
at the connection of the vias to the ground plane with the
geometry shown in Fig. 3. The response of the structure
with the TM-polarized plane-wave incidence has been studied
in [37] based on the nonlocal homogenization model.

The local thickness-dependent permittivity model is utilized
with α1 = Cp/Cw and α2 = ( jωCw Z load eff)

−1 in (7).
The reflection coefficient is obtained by solving either (11)
or (12), or directly using (13) (with L/2 replaced by L)
corresponding to the equivalent geometry in Fig. 2. The
results for the phase of the reflection coefficient with dif-
ferent values of inductive and capacitive loads (including the
cases of open circuit (OC) and short circuit (SC) vias) are

Fig. 4. Phase of the reflection coefficient for a mushroom structure with the
vias connected to the ground through inductive and capacitive loads (including
the cases of SC and OC). The dimensions of the structure are: a = 2 mm,
g = 0.2 mm, r0 = 0.05 mm, L = 1 mm, εh = 10.2, and θi = 60◦ .
The load is connected to the ground through a gap of 0.1 mm with the
parasitic capacitance Cpar ≈ 0.02 pF and parasitic inductance Lpar ≈ 0.06 nH
(estimated by curve fitting).

shown in Fig. 4 and compared with the exact nonlocal results
and full-wave numerical simulations using HFSS from [37],
demonstrating good agreement with the previously obtained
results.

As pointed out in Section II, the local thickness-dependent
permittivity (7) takes into account SD in WM in the averaged
sense per thickness of the WM slab and the effect of the
loads/terminations. Fig. 5 shows the frequency dispersion of
the local permittivity for a WM with the vias connected
to the metallic patches at z = 0 and to the ground plane
through the lumped inductive or capacitive loads at z = −L
(Fig. 3). The values of the loads and the dimensions of
the structure are as in Fig. 4. It can be seen that the local
permittivity depends on the type and the value of the load
and resonates at the Fabry–Pérot (FP) condition associated
with the effective thickness of the WM slab, resulting in
extremely large values of the local permittivity. We should
point out that for a fixed L and very long wavelength and
in the static limit the local permittivity (7) does not reduce
to the host permittivity εh and it strongly depends on the
lumped loads and wire terminations. It can be seen in Fig. 5(b)
for the cases of SC and inductive lumped insertions that the
local permittivity (7) has very large positive values in the
limit of frequency approaching zero. We should also point
out that for a typical scenario of a mushroom structure (with
SC wires in this case) considered in the literature (see [9]),
wherein the conclusion was about the suppression of SD by
the presence of patches at the wire connection such that the
local Drude (bulk) permittivity is valid in this case, this is not
true at low frequencies (as the Drude model predicts a negative
permittivity at low frequencies). In the quasi-static limit SD
in WM structures is strongly pronounced and it is taken
into account by the local thickness-dependent permittivity (7).
The local permittivity (7) turns to the local Drude (bulk)
permittivity only if SD effects are completely suppressed at
all the frequencies, including the static limit.

The local thickness-dependent permittivity (7) reduces to
the host permittivity εh only in the limit of L → 0 such that
for a sufficiently small frequency kh L → 0 and εloc → εh .
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Fig. 5. (a) Local thickness-dependent permittivity of the WM slab with
the vias connected to the metallic patches and to the ground plane through
the lumped loads and (b) same at low frequencies for the cases with SC
and inductive lumped loads demonstrating very large values of the local
permittivity even in the static limit. The various lumped loads correspond
to those in Fig. 4.

The results in Fig. 5 show that at some frequencies the
local thickness-dependent permittivity is zero. This results
in a singularity of the propagation constant along the wires

in the local model γloc =
�

(εhk2
x/εloc) − k2

h leading to

a rapid variation in phase and spurious resonances in the
reflection phase in a very narrow frequency band. The spurious
resonances are highly sensitive to small perturbations (for
example, they vanish for small dielectric loss in the host
permittivity). The issue of spurious resonances in the local
model has been discussed in [9].

In Fig. 6, the reflection-phase characteristics are shown for
an air-filled mushroom structure with the vias connected to
inductive loads of a large value, and the results are compared
with the nonlocal solution and the full-wave numerical simula-
tions from [37], demonstrating nearly perfect agreement. The
effects of the parasitic inductance and parasitic capacitance are
negligible in such a case of an air-filled structure. It should be
noted that the local thickness-dependent permittivity model
accurately captures the response of the structure even with
large discrete lumped loads.

In the second numerical example, we consider a two-sided
mushroom structure (with the same patch arrays at the WM

Fig. 6. Phase of the reflection coefficient for the air-filled mushroom structure
with the vias connected to the ground plane through inductive loads (2.5 and
5 nH) (with the geometry in Fig. 3). The dimensions of the structure are:
a = 2 mm, g = 0.2 mm, r0 = 0.05 mm, L = 1 mm, εh = 1, and θi = 45◦.

Fig. 7. Geometry of a two-sided mushroom structure with the vias connected
to p-i-n diodes with an obliquely incident TM-polarized plane wave.

interfaces) with the vias connected to p-i-n diodes in the
middle of the structure (with the geometry shown in Fig. 7).
This structure has been studied in [40] using a nonlocal
homogenization model.

The local thickness-dependent permittivity model has been
applied in the analysis of the structure due to the obliquely
incident TM-polarized plane wave. Because of the symmetry
of the structure, even and odd excitations can be used with
α1 = Cp/Cw and α2 = ( jωCw Zdiode eff)

−1 in the PEC
symmetry in (7), and with α1 = Cp/Cw and α2 = 0 in
the PMC symmetry in (7). The response of the structure
is obtained with (13) and (14) (for the equivalent problem
in Fig. 2). The p-i-n diodes are modeled as effective diode
loads with the impedance of diodes in the ON and OFF states
as the series connection of lumped resistors and capacitors
with R = 3 Ohms and C = 0.025 pF. The diodes are inserted
in the vias through a gap of 0.73 mm. The parasitic loads in
order to characterize the gap were estimated with the values of
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the parasitic capacitance of Cpar ≈ 0.02 pF and the parasitic
inductance of Lpar ≈ 0.1 nH [40].

The results of the transmission coefficient (magnitude and
phase) based on the local thickness-dependent permittivity for-
malism are shown in Fig. 8 for both OFF [see Fig. 8(a) and (b)]
and ON [Fig. 8(c) and (d)] states and compared with the
nonlocal and CST MWS results from [40], demonstrating great
agreement.

Next, we validate the proposed local thickness-dependent
permittivity model for near-field excitation, with a specific
application to subwavelength imaging problems involving
WM-type lenses. First, we consider a WM slab with the
magnetic line source excitation (with the geometry shown
in Fig. 9). The transmission coefficient for propagating and
evanescent waves from the source is calculated either by
(11) or (12), or with the even and odd excitation (due to
symmetry of the structure) using (13) and (14) with α1 =
α2 = 0 in (7) (see Fig. 2 for an equivalent problem).
Then, the magnetic field at the image plane at a distance z
from the lower interface of the WM slab is calculated as a
numerical solution of the Sommerfeld integral in the spectral
domain [23]

Hy(x) = I0k2
0

jπωμ0

� ∞

0

1

2γ0
e−γ0(2d)T (ω, kx ) cos(kx x)dkx . (15)

The response of the WM slab to evanescent waves from
the source is studied based on the local thickness-dependent
permittivity model and compared with the nonlocal homog-
enization model results in Fig. 10 (with the nonlocal model
formulation from [11]).

The square normalized amplitude of the magnetic-field
profile at the image plane as a function of x/λ at the operating
frequency of 19 THz is calculated as a numerical solution
of (15) for both local thickness-dependent permittivity model
and nonlocal model and shown in Fig. 11. It is assumed that
the magnetic line source and the image plane are located at
d = 150 nm. Good agreement is observed between local and
nonlocal results.

We follow-up with the example of a WM slab loaded with
a 2-D material (such as a graphene) at the WM interfaces
and excited by a magnetic line source (with the geometry
shown in Fig. 12). The nonlocal homogenization model and
the numerical results with the line source excitation have been
presented in [24]. The transmission response of the structure
based on the local thickness-dependent permittivity formalism
is obtained for propagating and evanescent waves from the
source either by (11) or (12), or using the even and odd
excitation (13) and (14) with α1 = α2 = σs/jωε0εh in
(7) (see Fig. 2 for an equivalent problem), where σs is the
complex surface conductivity of graphene modeled with the
Kubo formula [41].

The response of the graphene loaded WM slab to evanescent
waves is shown in Fig. 13 based on the local thickness-
dependent permittivity model and compared with the nonlocal
homogenization model results from [24], demonstrating good
agreement.

Fig. 8. Transmission response (magnitude and phase) of the two-sided
mushroom structure with the vias connected to p-i-n diodes in the middle of
the WM slab in (a) and (b) OFF, and (c) and (d) ON states under illumination
of an obliquely incident TM-polarized plane wave. The dimensions of the
structure are: a = 2 mm, g = 0.2 mm, r0 = 0.05 mm, L = 2 mm, εh = 10.2,
and θi = 60◦.
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Fig. 9. Geometry of a WM slab excited by a magnetic line source.

Fig. 10. Transmission response (in logarithmic units) of a WM slab for
evanescent waves excited by a magnetic line source. The dimensions of the
structure are: a = 215 nm, r0 = 21.5 nm, L = 7894 nm, and εh = 1.

Fig. 11. Square normalized amplitude of the magnetic field at the image
plane as a function of x/λ at the operating frequency of 19 THz for a WM
slab excited by a magnetic line source.

The square normalized amplitude of the magnetic field at the
image plane as a function of x/λ at the operating frequency

Fig. 12. Geometry of a WM slab loaded by graphene sheets at the WM
interfaces and excited by a magnetic line source.

Fig. 13. Transmission response (in logarithmic units) of a WM slab loaded
with graphene sheets for the evanescent waves due to a magnetic line source
excitation. The dimensions of the WM slab and graphene parameters are:
a = 215 nm, r0 = 21.5 nm, L = 2400 nm, εh = 1, T = 300 K, τ = 0.5 ps,
and μc = 1.5 eV.

of 19 THz is shown in Fig. 14 by numerically integrating
(15) with the known expression for the transmission coefficient
(based on the local and nonlocal homogenization models). The
location of the magnetic line source and the image plane is
the same as in the previous example, d = 150 nm. The results
of both analytical models are in very good agreement.

In the final examples, the obtained analytical expression (7)
for the local thickness-dependent permittivity of WM has been
used in the full-wave numerical simulator CST Microwave
Studio [42]. The WM slab is modeled in CST MWS as a
uniform local anisotropic material with the host permittivity
in the x- and y-directions and the local thickness-dependent
permittivity along the z-direction (see Fig. 2 for an equivalent
problem). This significantly reduces the computation time and
memory when modeling true physical WM structures. The
examples of a WM slab and WM slab loaded with graphene
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Fig. 14. Square normalized amplitude of the magnetic field at the image
plane as a function of x/λ at the operating frequency of 19 THz for a WM slab
loaded with graphene sheets at the WM interfaces and excited by a magnetic
line source.

Fig. 15. Numerical simulations of the magnetic-field distribution for (a) true
physical WM slab and (b) homogenized local anisotropic material excited by
a magnetic line source.

Fig. 16. Square normalized amplitude of the magnetic field at the image
plane for a true physical WM slab and homogenized local anisotropic slab
excited by a magnetic line source.

sheets at the interfaces and excited by a magnetic line source
considered above are included here to demonstrate the idea
of using a homogenized material in the full-wave simulator.

TABLE I

COMPARISON OF COMPUTATION TIME AND MEMORY IN CST
SIMULATIONS FOR A WM SLAB EXCITED BY A

MAGNETIC LINE SOURCE

Fig. 17. Numerical simulations of the magnetic-field distribution for (a) true
physical WM slab loaded with graphene sheets and (b) homogenized local
anisotropic material loaded with graphene sheets and excited by a magnetic
line source.

Fig. 18. Square normalized amplitude of the magnetic field at the image
plane for a true physical WM slab with graphene sheets and homogenized
local anisotropic slab with graphene sheets excited by a magnetic line source.

The same dimensions are used for WM and parameters of
graphene as in the previous examples (see Figs. 9 and 12).
In Fig. 15, for the case of a WM slab excited by a magnetic line
source (see Fig. 9), the magnetic-field distribution is shown for
homogenized and true physical structures, with the results for
the square normalized amplitude of the magnetic field at the
image plane demonstrated in Fig. 16.

The same accuracy of 250 mesh cells per wavelength are
used in both simulations for homogenized and true physical
WM slab. Table I documents the simulation time and the
number of mesh cells used in the CST MWS simulations.
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TABLE II

COMPARISON OF COMPUTATION TIME AND MEMORY IN CST
SIMULATIONS FOR A WM SLAB LOADED WITH GRAPHENE

SHEETS AND EXCITED BY A MAGNETIC LINE SOURCE

The numerical simulation results for the magnetic-field dis-
tribution for the example of a WM slab loaded with graphene
sheets at the interfaces (see Fig. 12) are shown in Fig. 17 for
homogenized and true physical structures.

The simulation results for the square normalized amplitude
of the magnetic field at the image plane are shown in Fig. 18.
The same accuracy of 200 mesh cells per wavelength is used in
both simulations for homogenized and true physical structures.
Table II [33] documents the simulation time and the number
of mesh cells used in the CST MWS simulations.

IV. CONCLUSION

A local thickness-dependent permittivity model has been
proposed for a general case of a WM structure with the wires
connected to impedance surfaces through lumped impedance
insertions. A closed-form expression of a local thickness-
dependent permittivity has been derived which takes into
account SD in WM in the average sense per thickness of
the WM slab and the effect of lumped loads and impedance
surface terminations. The local model necessitates the solution
for the nonlocal permittivity in the spatial domain; however,
once it is derived, it enables to obtain a general closed-
form expression for the local thickness-dependent permittivity,
which simplifies the formulation for various geometrically
complex excitation and scattering problems involving WM.
In the local framework, the WM slab with lumped impedance
insertions and terminated with impedance surfaces is replaced
by a local uniaxial anisotropic material subject to traditional
boundary conditions at the interfaces (without the need for
ABCs required in the nonlocal model). It is demonstrated with
various numerical examples that the local permittivity frame-
work provides accurate solutions for far-field and near-field
electromagnetic problems. In general, the proposed theory
captures accurately the nonlocal wave dynamics of the WM
for metamaterial slabs with electrically short wires, kh L ≤ 1
and L ≤ a. For long wires, L/a � 1, the model is accurate at
low frequencies when the WM behaves as the material with
extreme anisotropy, or when the wires are densely packed,
a/L � 1, and not necessarily electrically short, so that the
plasma frequency is extremely large.

We have also introduced the local thickness-dependent per-
mittivity in the full-wave numerical simulator CST Microwave
Studio and have demonstrated a significant reduction of

computation time and memory when modeling true physical
WM structures as homogenized anisotropic materials.

Moreover, the theory highlights that the dependence of
the effective permittivity of “local” models on the material
thickness, which is a feature common to most metamaterials,
is a consequence of a nonlocal electromagnetic response.

APPENDIX

GREEN’S FUNCTION PROBLEM

For a general case of a WM structure shown in Fig. 1 the
Green’s function problem is formulated for the wave equation
(3) subject to the ABCs at the wire-end connections at z = 0
and z = −L [25]–[29]�

∂2

∂z2 + k2
h

�
g(z, z�) = −δ(z − z�) (16)�

g(z, z�) + α1
∂g(z, z�)

∂z

� ����
z=0

= 0 (17)�
g(z, z�) − α2

∂g(z, z�)
∂z

� ����
z=−L

= 0. (18)

The solution of the boundary-value problem (16)–(18) is
obtained as follows:

g(z, z�) = e− j kh |z−z�|

2 jkh
− e− j kh (z−z�)

2 jkh

+
�

e jkh z − e− j kh z 1 + jkhα1

1 − jkhα1

�
B(z�) (19)

where B(z�) is given at the bottom of this page as (20).
In (19) and (20), α1 and α2 depend on the lumped

impedance insertions and impedance surface terminations,
such that for lumped loads attached to metallic patches

α1 =
�

jωCw Z load eff1 + Cw

Cp1

�−1

α2 =
�

jωCw Z load eff2 + Cw

Cp2

�−1

(21)

and for lumped loads connected to thin metal/2-D material

α1 =
�

jωCw Z load eff1 + jωε0εh

σs1

�−1

α2 =
�

jωCw Z load eff2 + jωε0εh

σs2

�−1

. (22)

Here, Z load eff1,2 are defined in [23], [28], and [37], and Cw

and Cp1,2 are given in [43], and σs1,2 determines a complex
surface conductivity of 2-D material.
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B(z�) = 1 − jkhα1

2 jkh

e jkh (z�+L)(1 + jkhα2) − e− j kh (z�+L)(1 − jkhα2)
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(20)
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