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Abstract—The total-internal-reflection (TIR) principle and the
concept of an epsilon-near-zero (ENZ) material are combined to
form an antenna exhibiting sum and difference patterns with good
impedance properties. The ENZ material has been realized using
a uniaxial wire medium (WM) metamaterial, and the departure
from the behavior of an ideal ENZ material is discussed. The radi-
ation pattern of the fabricated antennas has been measured and
compared with simulation results.

Index Terms—Antenna, epsilon-near-zero, radiation pattern,
total internal reflection (TIR), wire medium (WM).

I. INTRODUCTION

B ESIDES being the operating principle of optical fibers,
the total internal reflection (TIR) has numerous other

applications at optical frequencies such as in microscopes [1]
and in spatial filtering of light [2]. Although less popular than
at optical frequencies, TIR also has applications at microwave
frequencies. Dielectric waveguides [3], dielectric resonators
[4], and long distance communication based on ionospherical
TIR [5] are among a host of important applications. The TIR
law, which is a special case of Snell’s law, can be extracted from
classical electromagnetic theory quite easily. Based on TIR, if
the incident angle of a TM wave on a boundary is larger than the
critical angle, the wave will be totally reflected. This is similar
to the case in which a TM wave impinges on a PEC boundary.
However, the two cases are different in the phase shift of the
reflected electric field, as clarified in Fig. 1. Reflection from a
PEC boundary preserves the phase of the magnetic component
of a TM wave. In contrast, TIR adds 180◦ phase change to the
magnetic component of a TM wave. This phase shift difference
is crucial to the antenna design described here.

ENZ materials are shown to have interesting applications,
such as increasing transmission through a subwavelength nar-
row aperture [6], increasing the directivity of emission from
a source [7], [8], and tailoring the radiation pattern of radia-
tors [9]. Scattering from and propagation in ENZ materials are
studied in [10]. In an ideal ENZ material, the phase velocity of
a plane wave is infinite. As a result, picturing a ray model of
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radiation, if a radiator is placed inside an ideal ENZ material,
the rays emerging from different points of the ENZ bound-
ary are in phase [see Fig. 2(b)]. An alternative explanation
of the beam shaping property of an ENZ material is possi-
ble by considering Snell’s law. Since the critical angle for TIR
from an ENZ material boundary is zero, a ray can only emerge
from its boundary normally. This phenomenon is also of great
importance in our proposed geometry.

Several antennas have been designed using ENZ metamate-
rial properties [11]–[15]. In [16], the beam forming property of
a slab of metamaterial with a small permeability (rather than
the permittivity) is studied. In [17], the pattern of a monopole
antenna is shaped by immersing it in a uniaxial wire medium
(WM) acting as an ENZ material.

A common method to realize ENZ materials is to use a
plasma or a material which effectively behaves as a plasma.
Noble metals and semiconductors below optical frequencies
can be described by a plasma model, although loss is a big
limiting factor for metals. At microwave frequencies, a WM
is known to implement an artificial plasma, and can be used to
realize the ENZ condition. Based on the simple Drude model
for permittivity of a plasma [18]–[23],

εr = α

(
1− ω2

p

ω (ω − jΓ)

)
(1)

where α is a constant, Γ is the damping frequency, and ωp is the
plasma frequency. If carriers friction is small (i.e., Γ � ω), the
ENZ condition occurs at the plasma frequency. The equivalent
plasma frequency of a uniaxial WM is given as [19]

ωp � 1

p
√
μ0ε0

√
2π

ln
(

p
πd

)
+ 0.5275

(2)

where p and d are the period and diameter of the WM,
respectively (see [19] for exact equations).

However, if the spatial dispersion is included in the WM
model, the ENZ condition does not necessarily occur at the
plasma frequency given by (2). In general, the ENZ condition
is equivalent to having zero electric displacement field inside a
material (D = 0). If a material is local,

D (r, ω) = ε (ω)E (r, ω) (3)

and the ENZ condition will become ε = 0 (which occurs at ωp

in the case of (1) and Γ � ω). But, for a spatially dispersive
(nonlocal) material such as WM [24]–[26],

D (r, ω) =

∫
ε (r′, r, ω)E (r′, ω) dr′ (4)
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Fig. 1. TM wave incident on: (a) dielectric; and (b) PEC material at a
45◦ angle. The ratio ε2/ε1 is assumed small enough to allow total internal
reflection.

in which the integration is over the entire space and r and r′

are the source and the observation coordinates, respectively. It
is evident from (4) that the ENZ condition (D = 0) depends on
the excitation electric field. The ENZ condition (ωENZ) in WM
has been discussed with more detail in [24] and it is shown that
the exact ENZ condition in isotropic WM can occur with some
specific electric field excitations. As such, for a transverse wave
traveling inside an isotropic WM (i.e., if the electric field is
perpendicular to the propagation direction), the ENZ condition
will be realized at [24]

ωENZ =
ωp√
εh

(5)

where εh is the host permittivity of the wires. Equation (5) is the
same ENZ condition as would occur in a local medium indepen-
dent from the excitation electric field. For longitudinal waves
(i.e., the electric filed is parallel to the propagation direction),
the ENZ condition in WM will occur at [24]

ωENZ =
ωp√

εh (1− 1/l0)
(6)

where l0 is a constant between 2 and 3. The radiation proper-
ties of an elementary source in a WM are discussed in [27].
These relations will be used in the following to ascertain the
ENZ condition.

II. PROPOSED GEOMETRY

Fig. 2(a) shows half of the proposed structure. It consists of a
rectangular ENZ volume with its upper and lower surfaces cov-
ered by PEC (to inhibit direct vertical radiation from the ENZ
block). A monopole antenna is placed in the middle of the lower
PEC (GND plane) so that it can be easily fed by a coaxial cable.
The monopole antennas are chosen for its simplicity and useful
radiation pattern. A dielectric flare-shaped non-ENZ dielectric
material with 45◦ side angles surrounds the ENZ block. The
permittivity of the dielectric flare is chosen to be large enough
so that the critical angle for TIR is less than 45◦. Radiation
from the monopole exits the ENZ block normal to the block
surface (i.e., the ENZ block converts the radiation pattern of
the monopole feed to four lateral beams, normal the the side
walls of the block), and impinges on the side walls of the flare
at a 45◦ angles and reflects up to the radiating surface, the top

Fig. 2. (a) Half of the proposed antenna geometry. Full geometry will be
obtained by adding a mirror image in the x− z plane. (b) x− z view of the
geometry showing a ray model of radiation.

surface of the non-ENZ dielectric flare material, as depicted in
Fig. 2(b). The ENZ block is necessary to ensure that radiation
will impinge on the dielectric flare side walls at a 45◦ angle.
Since the monopole is in the z direction, assuming permittivity
is almost zero, Ampere’s law simplifies to

∇×H = J (7)

which implies that Hz = 0 everywhere inside the ENZ region,
assuming a sufficiently long wire. Knowing this and the fact that
plane waves can only radiate normally from an ENZ boundary,
one can conclude that the electric field is mostly in the z direc-
tion. Therefore, the outcoming wave from the ENZ block is a
TM wave. Also, the permittivity of the dielectric flare is chosen
to be greater than two, which leads to a critical angle less than
45◦ for TIR at the flare boundary.

The geometry of Fig. 2 will create four beams with a null
at θ = 0 (called the difference pattern) as shown in Fig. 3.
However, different metalization patterns can be placed on the
side walls of the flare to shape the radiation pattern. This is in
fact the most important property of this geometry. As a sim-
ple example, to generate a single beam (called the sum pattern
[28]), two adjacent side walls can be covered by conducting
sheets. These side walls have been labeled as #1 and #2 in Fig. 2
and the sum radiation pattern is shown in Fig. 4. In other words,
depending on whether edges #1 and #2 are covered with PEC
or not, the electric field distribution on the radiating edge is as
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Fig. 3. Simulated directivity of the difference pattern assuming an ideal ENZ
block.

Fig. 4. Simulated directivity of the sum pattern assuming an ideal ENZ block.

shown in Fig. 5(a) or (b) and the radiation pattern is as shown
in Figs. 4 or 5. The size of the ENZ block is another degree of
freedom in controlling the radiation pattern. For example, as the
xy size of the ENZ block in Fig. 2 increases, the null of the dif-
ference pattern becomes sharper. Equivalently, gain increases
and the four lobes become closer to each other. Furthermore, as
the xy size of the ENZ block increases, the sum pattern beam
angle becomes closer to θ = 0.

Figs. 3–5 are obtained by simulation [29] of a structure
with the following flare size: the bottom rectangle is 8× 8 cm,
the upper rectangle is 16× 16 cm, and the angle is 45◦. The
dielectric flare material surrounding the ENZ block has permit-
tivity 3.84 (plaster material), the frequency is 10 GHz, and the
monopole antenna length is 7.5 mm. These simulations have
been done using a wire monopole with zero thickness and an
ideal ENZ block. Although the purpose of these examples is to
demonstrate the capabilities of mixing the TIR and PEC reflec-
tions, it can be noted that the sum and difference patterns [28]
are similar to what is used in tracking systems. In a tracking
system, the difference pattern of a steerable antenna is used
to lock the target in the null of the pattern. There are several

Fig. 5. Simulated electric field distribution on the radiating surface assuming
an ideal ENZ block.

well known realizations for sum and difference patterns such as
Taylor and Bayliss distributions, which use phased arrays with
complex feed networks [30]–[33].

The four radiating apertures in Fig. 5 can be seen as two
arrays of two elements, rotated one from another by 90◦.
Therefore, it is fairly straight forward to find the array factor
of the structure. For the two apertures on the x-axis, the array
factor of Eθ in the far field is [34]

AF θ
x = 1 + exp (jϕx + jk sin (θx)) (8)

where k is the wavenumber, d is the spacing between the ele-
ments, ϕx is the phase difference between the elements, and
θx is the angle between the z- and the x-axes, as indicated in
Fig. 2. Similarly, the Eθ array factor of the two apertures on the
y-axis is

AF θ
y = 1 + exp (jϕy + jk sin (θy)) (9)

in which ϕy is the phase difference between the apertures, and
θy is the angle between the z- and the y-axes. Note that in
Fig. 5(a) and (b), ϕx and ϕx are both equal to π and zero,
respectively. We have used the angle set (θx, θy) instead of the
conventional spherical coordinate angles, (ϕ, θ), since it leads
to simpler equations for our purpose. Then, the z- and the radial
(parallel to xy plane) components of the array factors are

AF z
x,y = −AF θ

x,y × sin (θx,y) , AF ρ
x,y = AF θ × cos (θx,y) .

(10)

Therefore, the total z-component of the structure’s array
factor is

AF z
t = −AF θ

x × sin (θx)−AF θ
y × sin (θy) . (11)

Similarly, we can find the radial component of the structure’s
array factor (AF ρ

t ). However, we should note that the cur-
rents of the apertures on the x- and the y-axes (and therefore
their array factor’s radial components) have 90◦ orientation
difference. Hence,

AF ρ
t =

√
(AF ρ

x )
2
+ (AF ρ

y )
2

=

√
(AF θ

x × cos (θx))
2
+
(
AF θ

y × cos (θy)
)2
. (12)



1912 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 5, MAY 2015

Fig. 6. Array factors of Eθ for: (a) array of Fig. 5(a); and (b) array of Fig. 5(b).

Finally, the total Eθ array factor of the structure is

AF θ
t =

√
(AF ρ

t )
2
+ (AF z

t )
2
. (13)

As an example, Fig. 6 shows the array factors of the structures
of Fig. 5, for the separation d = 2.5λ (which is the approxi-
mate separation in the fabricated antenna in this paper), leading
to sum and difference patterns. Obviously, the element factor
(radiation pattern of the aperture) should be multiplied to the
array factor to find the total sum and difference patterns. As is
clear from Fig. 6, the separation between radiating edges for the
designed antenna (d = 2.5λ) leads to multiple grating lobes. In
fact, the main lobes of the array factor are located at large angles
(>20◦) where they cannot contribute to the overall radiation
pattern due to the directive element factor (by the aperture). As
will be seen later in this paper, the lobes of the array factor at
small angles (below 20◦) will be important in the total radiation
pattern of the fabricated antenna due to the directivity of the
element pattern. Choosing a smaller separation would lead to
a larger directivity, would remove the grating lobes, and would
shift the main lobes of the array factor to smaller angles. But,
practically, the separation between the apertures has to be large
enough to be able to fit enough wires in the ENZ block and has a
valid homogenized model for WM. With the chosen d = 2.5λ,
we were able to accommodate 12 wires in the fabricated ENZ
block, as will be discussed later in this paper.

Having described the antenna idea, in the next two sections
we validate first the ENZ block portion of the antenna using
fullwave simulations of the WM, and then the full antenna
results are presented.

III. ENZ BLOCK

Due to the advent of three-dimensional (3-D) printers, it is
quite easy to fabricate structures as in Fig. 2. We chose to
sectionize the geometry into a WM block section and a dielec-
tric flare section and fabricate them separately. This allowed
us to measure the exact frequency at which the ENZ condition
occurs by comparing the radiation pattern of the ENZ block
with an ideal ENZ block at different frequencies. The fabri-
cated ENZ block consisted of a 12× 12 array of parallel wires
forming a uniaxial WM. The period, diameter, and length of
the wires were 6, 1.2, and 40 mm, respectively. The wires were
stripped TP1109-Y-1W06 jumper wires. The dielectric material
supporting the wires was a plastic material (ABS-plus) which
was a typical insulating material used by 3-D printers. The rel-
ative permittivity of the plastic was measured using a split post
dielectric resonator (SPDR) [35] to be 2.25. The plastic block
with holes was 3-D printed, and then the wires were inserted in
the holes.

Equation (2) predicts a plasma frequency of 13.6 GHz for
the designed WM. However, since strong spatial dispersion
is expected, and since the near field of the monopole feed
excites both transverse and longitudinal components (although
the transverse wave will dominate in the far field), it is expected
that the ENZ condition will occur in a range between the
nonlocal predications (5) and (6), associated with pure trans-
verse and longitudinal excitations, respectively [24]. For the
fabricated geometry, (5) predicts that the ENZ condition will
occur at 9.1 GHz, and (6) yields 11.1 GHz (assuming l0 =
3), so we expect that the fabricated, monopole-fed WM will
exhibit ENZ behavior somewhere in the range 9.1–11.1 GHz.
As we show next, the measured ENZ behavior is observed
near 10.5 GHz, within the expected range from the nonlo-
cal model and well below the plasma frequency based on
(2). Although (5) and (6) are derived for an isotropic WM,
it is a good approximation to use them for the uniaxial WM
in our ENZ block, because the electric field in the block is
mostly z directed (parallel to the wires). Therefore, the exis-
tence/absence of wire sets in the x and y directions is not
very important. Note that, at the ENZ frequency, only normal
radiation from the lateral sides of the uniaxial WM cube is
possible (similar to a cube made of isotropic WM). In fact, a
source in uniaxial WM can excite two different propagating
waves.

1) Ordinary TEM waves with the electric field perpendicu-
lar to both the anisotropy axis (along the wires) and the
wave vector, which can only propagate along the wires.
These waves neither can be excited nor can contribute to
radiation because of the metal caps on both sides of the
wire (the metal caps prevent qz = ω

√
εhμ0 which is the

required condition for these waves. qz is the z-component
of the wave vector, and εh is the host permittivity
of WM).
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Fig. 7. Expected radiation pattern of the WM at the ENZ frequency.

Fig. 8. Fabricated ENZ block. (a) 3-D printed dielectric block having holes to
inhibit wires; (b) with wires installed; (c) after installing the feed and metal
caps.

2) Extraordinary TM waves with the magnetic field perpen-
dicular to the wires with the dispersion equation

q2 = μ0

(
εhω

2 − ε0ω
2
p

)
(14)

in which q is the wave vector, ωp is the plasma radial
frequency, and εh is the host permittivity of the WM.
Because of the metal caps on two sides of the cube,
q2z ≤ 0. For the case qz = 0 (which means a uniform
wave in z-direction), (14) forces the propagating waves
in x- and y- directions to have both qx = 0 and qy = 0
at ω = ωp/

√
εh. This is in fact a transverse wave which

propagates to the lateral sides of the cube with no delay
(i.e., ENZ condition) and, as expected, its ENZ condition

Fig. 9. Measured and full wave simulated radiation pattern Eθ of the ENZ
block for: (a) θ = 90, 0 < φ < 360; and (b) φ = 0, 0 < θ < 360.

is the same as (5). It can be easily seen from (14) that
for higher order modes (i.e., q2z < 0), qx and qy cannot
become zero simultaneously at ω = ωp/

√
εh.

Fig. 7 shows the expected radiation pattern of the WM block
at the ENZ frequency. Two metal caps on on top and bottom
block faces confine the radiation to the lateral sides. At the same
time, they provide more mechanical strength (especially for the
feed) and one of them serves as the ground plane for the feed as
well. The feed monopole has a length of 12 mm.

Fig. 8 shows the fabricated ENZ block. As shown in Fig. 9,
the measured pattern of the WM block is in acceptable agree-
ment with the expected radiation pattern of an ideal ENZ block
(i.e., four lobes normal to the lateral sides of the block) at
10.5 GHz.

Using transmission line theory, a monopole antenna placed
inside a layer of ENZ material sees an effective intrinsic
impedance (ηin)

ηin = lim
ε→0

(
ηENZ

η0 + jηENZtan (kENZL)

ηENZ + jη0tan (kENZL)

)
= η0 (1 + jωk0L) (15)
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Fig. 10. Measure S11 of the fabricated ENZ block and of the same monopole
in free space.

Fig. 11. (a) Fabricated dielectric flare. (b) Complete antenna including the ENZ
block and the dielectric flare.

where η =
√

μ/ε is the intrinsic impedance, μ is the perme-
ability, ε is the permittivity, k is the wave number, and L is
the length of the ENZ layer. The subscripts 0 and ENZ denote
air and the ENZ layer, respectively. Therefore, the monopole
in Fig. 8 sees ηin = η0(1 + j8.79) as the surrounding intrinsic

Fig. 12. Measured and full wave simulated radiation pattern Eθ of the antenna:
(a) difference pattern; and (b) sum pattern.

impedance (since L = 4 cm and f = 10.5GHz). The measured
input characteristic (S11) of the block is shown in Fig. 10. The
ENZ frequency (10.5 GHz) and epsilon near unity frequency
(10.9 GHz) are specified in Fig. 10. At the ENZ frequency,
the monopole has a marginally smaller reflection than the
monopole in air due to the scaling of intrinsic impedance by
the ENZ layer.

IV. MEASURED ANTENNA RESULTS

By adding the 3-D printed dielectric flare to the fabricated
WM block, the proposed antenna of Section II has been
realized as shown in Fig. 11. Then, placing/removing two PEC
covers on the side walls of the flare will provide the expected
sum/difference pattern. Fig. 12 shows the normalized simulated
and measured difference and sum patterns of the fabricated
geometry (simulations have been done in HFSS [36]), which
show good agreement with the expected results. We believe
the discrepancies seen between the simulation and the mea-
surement results are mainly due to the fabrication inaccuracies.
This can be seen from the nonsymmetrical radiation pattern of
the ENZ cube in Fig. 9(a). Also, the ground plane does not have
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a perfect contact with wires (it needed 144 holes to be drilled
in it for good connection) and is causing some unwanted lobes
in Fig. 9(b). The simulations in this section (Figs. 9 and 12) are
performed assuming the actual 12× 12 wire array forming the
WM (in contrast to Figs. 3–5 in which an ideal ENZ block was
used).

Note that although the null in the difference pattern is exactly
located at θ = 0◦, the main beam of the sum pattern is at
θ = 7◦. The half power beam width (HPBW) of the difference
and sum patterns are 4◦ and 20◦, respectively. The change in
the input characteristic of the antenna with and without the flare
section is not noticeable and remains the same as in Fig. 10.

V. CONCLUSION

An antenna geometry was proposed based on the TIR princi-
ple, and the concept of ENZ materials, to control the radiation
pattern. The antenna consists of a cubical ENZ material sur-
rounded by a dielectric flare and fed by a monopole. The ENZ
material was realized using a uniaxial WM. Two different radi-
ation patterns, sum and difference patterns, were realized by
placing different arrangements of conductive sheets on the side
walls of the flare. The antenna was built using a 3-D printer and
measured, and good agreement was found between theory and
experiment.
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