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Abstract 

A partial eigenfunction expansion of the  electric-type dyadic Green’s function used in aperture-coupled waveguide problems is 
discussed in connection with the traditional Green’s function expansion in terms of the waveguide modes. Based on the 
principles of distributions, the delta-function term is extracted from a double series, resulting in the complete representation of 
the Green’s function in the source region. This, in turn, is related to inclusion of the term with zero indices in the computation 
of the double-series expansion, even though it does  not correspond to any waveguide mode. The effect of exclusion of this 
term from the series, and controversies over published results in the analysis of slotted-waveguide couplers and radiators, are 
illustrated. 
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1. Introduction 

complete representation of the electric dyadic Green’s func- A tion of cylindrical waveguides and cavities has been actively 
discussed over the past few decades, resulting in a good 
understanding of the singular behavior of the Green’s function in 
the source region. Nevertheless, there are controversies conceming 
published results for the analysis of slotted waveguides (particn- 
larly, for longitudinal and tilted slot coupling) that employed a par- 
tial eigenfunction expansion of the electric dyadic Green’s func- 
tion. This paper is intended to clarify this disagreement by provid- 
ing insight into the correlation between different forms of the 
Green’s function. 

Below we summarize some previous work on this topic. In 
[I], the expansion of the electric dyadic Green’s function in terms 
of solenoidal eigenfunctions [Z] for the electric current source in a 
rectangular waveguide was revisited by adding a delta-function 
term to make this expansion complete.in the source region. This 
was generalized in [3] for a rectangular cavity for different 
representations and types (magnetic vector potential and electric) 
Green’s dyadics. In [4]. an altemative approach, using the theory 
of distributions, was proposed to obtain a complete representation 
of electric dyadic Green’s functions for rectangular waveguides 

and cavities. It was based on the solution of a vector potential 
Green’s dyadic and the relation between electric and magnetic 
Green’s dyadics. In [SI, general expressions for the complete 
expansions of electric and magnetic Green’s dyadics in the source 
region were obtained in terms of solenoidal eigenfunctions with an 
additional delta-function term introduced for the electric Green’s 
dyadic. Also, complete expansions of different dyadic Green’s 
functions for cylindrical waveguides were presented in [6] ,  
emphasizing the presence of the delta-function term. In [7], electric 
and magnetic Green’s dyadics were given in connection with the 
scattering from discontinuities in a hollow waveguide. The electric 
Green’s functions discussed above were obtained to represent the 
electric field due to an electric-current source in the presence of a 
perfectly conducting boundary (waveguide, cavity). A dual proh- 
lem for the magnetic field due to a magnetic current involves the 
magnetic dyadic Green’s function (or electric Green’s dyadic of 
the second kind), wherein the delta-function term is introduced to 
complete the expansion of solenoidal eigenfunctions in the source 
region [SI. 

The above work is related to the analysis of the electric field 
in the source region within an unbounded domain using a princi- 
pal-volume integration of the free-space electric dyadic Green’s 
function [9-131, where different principal-volume geometries (pill- 
box, sphere, slice, etc.) can be used. Also, it is important to note 
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that the~delta-function term in the electric dyadic Green’s function 
for waveguides is not a singularity of the Green’s function, but 
instead corresponds to its irrotational part. The remaining solenoi- 
dal-eigenfunction-expansion part of the Green’s function is highly 
singular in the source region [14, 151. This was also pointed out in 
[I21 by comparing different forms of the electric Green’s dyadic 
for the rectangular cavity. 

~n altemative representation of the elechic (magnetic) 
dyadic Green’s function for closed-boundary cylindrical 
waveguides and cavities, due to the electric (magnetic) current 
source, is the pmial eigenfunction expansion [16-181. In this case, 
the Green’s function is obtained as a series expansion over the 
complete (in Lz (a), where Q represents the waveguide’s cross 
section) system of eigenfunctions of a self-adjoint Sturm-Liouville 
operator (particularly, for cylindrical waveguides and cavities, the 
transverse Laplacian operator), with the one-dimensional 
characteristic Green’s functions in the direction of propagation. 
This type of expansion has been applied in [I91 in the theory of 
slotted rectangular waveguides, and later in the analysis of 
cylindrical tubes [20, p. 301, and references therein] and 
waveguide discontinuities [21]. In [4], this expansion was used in 
the derivation of the vector-potential Green’s dyadic for rectangu- 
lar waveguides and cavities. Electric dyadic Green’s functions for 
a multilayered rectangular waveguide were developed in [22, 231 
in the analysis of shielded microstrip-like transmission lines. In [24 
and references therein], the partial-eigenfunction-expansion 
method was applied to obtain electric dyadic Green’s functions of 
the first and second kind for a transversely layered rectangular 
waveguide, with applications to waveguide-based aperture-coupled 
patch arrays used in spatial power combiners. 

It should he noted that the partial eigenfunction expansion of 
the electric (magnetic) Green’s dyadic does not contain the delta- 
function term separately, hut it does represent a complete form of 
the Green’s function in the source region. Regarding rectangular 
waveguides coupled to an exterior region (waveguide, cavity, free 
space), this expansion of different Green’s functions (vector poten- 
tial, electric, magnetic) was extensively applied to determine the 
magnetic field due to the magnetic current source [8, 19, 25-31]. It 
appears that the computation of the Green’s function in the form of 
a partial eigenfunction expansion was not that straightforward, par- 
ticularly in the directional waveguide couplers or waveguides 
radiating in free space through longitudinal or tilted slots. For this 
class of problems there is a term in a double series expansion with 
zero indices (the (0,O) term) that corresponds to a contribution 
occurring in the source region only. It should also be noted that the 
(0,O) term does not represent a TEoo waveguide mode. It is obvi- 
ous that this “mode” does not propagate in the waveguide, and this, 
in tum, resulted in a dilemma. The question was whether to 
exclude this term from the series expansion of the Green’s func- 
tion, or whether it must necessarily be included in the expansion to 
guarantee the complete representation of the Green’s function in 
the source region. In some papers, this term was “hidden” by not 
showing the limits in the series expansion, but, for example, in 
[26], it was clearly stated that ”the term with (m,n)=(O,O)  is 
omitted.” In [32], it was demonstrated that the (0,O) ”mode” is 
associated with the ”power stored” inside the waveguide and 
should be included in the series. The discussion on this topic was 
continued in a series of comments [33-351 based on 1271. Finally, it 
became evident that the (0,O) term must be included in the Green’s 
function series expansion. 

The purpose of this paper is to anempt to clearly explain how 
the inclusion of the (0,O) term in the series expansion of the 

Green’s function makes its representation complete in the source 
region. This is demonstrated by extracting the delta-function term 
directly from the series expansion, using principles of the theory of 
distributions. Moreover, it is shown that the delta-function term 
can be extracted only if the (0,O) term is included in the series, 
which is associated with completeness of eigenfunctions. Numeri- 
cal results presented illustrate a comparative analysis for longitudi- 
nally coupled waveguides and for waveguides radiating in free 
space through longitudinal and tilted slots, emphasizing the impor- 
tance of the (0,O) term to their frequency-dependent characteristics. 

2. Problem Formulation and 
Electric Dyadic Green’s Function 

Consider an infinite rectangular waveguide with arbitrarily 
shaped apertures (slots) SA placed in the perfectly conducting 
waveguide surface S,, as shown in Figure 1. The waveguide inte- 
rior is characterized by material parameters E and p (in general, 
E and p can include losses). The incident electric and magnetic 
fields are generated inside the waveguide by an impressed electric 
current source, Jim, (r) , r E vimp c V . The integral representation 
of the magnetic field inside the waveguide is given in a general 
form for arhitrarily shaped and arbitrarily oriented slots; however, 
in the analysis of the Green’s dyadic, we will be particularly inter- 
ested in the 22 component of the Green’s function associated with 
the longitudinal slot. Also, it should he noted that the formulation 
presented below for the waveguide part of the slotted waveguide 
radiating in free space can be used in the analysis of waveguides 
coupled through the slots, or any waveguide-based aperture-cou- 
pled antennas, including microstrip and dielectric-resonator anten- 
nas. 

The solution for the waveguide coupled to some exterior 
region is based on the integra-equation formulation for the equiva- 
lent magnetic surface current density, K i ,  induced on the surface 

of the apertures SA. Thus, the total magnetic field inside the 
waveguide can he obtained as [I81 

H ( r ) =  1 e,(r,r’).[VrxJimp(r’)]dV’ 
v“ 

- jooc  1ce(r,r’)-Ki(r’)dS’, (1) 
i 8; 

t 

X 

Figure 1. An infinite rectangular waveguide with arbitrarily 
shaped radiating slots. 
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where K, ( r )  = -hi x E i  ( r )  , r t SA ; di  is the normal to the sur- 

face $ pointing inwards to the waveguide; and the distribution 
ce (r , r ' )  is the electric dyadic Green's function of the second 
kind obtained for an infinite rectangular waveguide as the solution 
of the boundary-value problem 

Vx V x c ,  (r,r')- k%, (r,r') = i 8 ( r  -r'), r,r' E Y , 

i i x v x c ,  (r,r') = T ,  r € 3 ,  (2) 

ii.G,(r,r')=O, r s S .  

In Equation (Z), S = S ,  U US: , k = 6 1 6  , ii is the inward 

normal to s , and we assume that E ,  is regular at infinity. 
( i  '1 

It should be noted that the volume integral in Equation (1) is 
ostensibly taken over the entire source region. The distribution E ,  
will he separated into a principle-value term (associated with 
evaluating the integral of this term over a certain principle vol- 
ume), and a source dyadic delta-function term (containing a 
multiplicative factor that is associated with the same principle vol- 
ume). This decomposition is not unique, since it depends on the 
principle volume, although the sum of these two terms leads to the 
unique field. 

The components of the Green's function are obtained in the 
form of an expansion over the complete system of eigenfunctions 

q&(,r,y) of a transverse Laplacian operator, V, = s + 2 ,  
with the one-dimensional characteristic Green's functions 
f i ( z , z ' ) ,  a ,P=x ,y , z  in the waveguidingdirection, 

a2 a2 

" 

G,"B ( A Y ,  z;x',Y', 2') = q,% (v) dn ( x ' ,  y')f,,! (2 ,~ ' )  
,=nn=o 

(3) 

Here, we are particularly interested in the ii component of the 
Green's function, which is obtained in the form [I81 

For the ii component, it reduces to 

where Cy(r , r ' )  is obtained as [18] 

Derivatives in Equation (6)  can be applied term-by-term in 
the sense of distributions. Indeed, the resulting series for the elec- 
tric Green's dyadic is divergent in the classical sense at z = z' , hut 
the integral in Equation (1) of the Green's function with SUE- 
ciently smooth currents is well defined. 

Also, it should he noted that the first term, (m,n)  = (O,O), of 

all components of the electric, @, and vector-potential, C y  
(diagonal tensor), Green's dyadics vanishes, except for the 2i 
component. Although this combination of m and n corresponds to a 
value of y,, that is equal to that of the unbounded medium 
(yon = - j k ) ,  this term still represents a solution to the eigenvalue 
problem for the differential operator V, ; it satisfies the houndaly 
conditions and, therefore, should not be discarded on the hasis that 
it does not represent a waveguide mode. 

In fact, the exclusion of the (0,O) term from the series expan- 
sion in Equation (4) violates the property of completeness of the 
cross-sectional eigenfunctions. This can be shown by separating 
the series, understood in the sense of distributions, into two parts 
as follows: 

where ymn = - + - - k 2  , and snm is the Neumann 

index such that where PV indicates a slice principle-volume integration [13] with 
normal to the z-axis, which naturally arises from the one-dimen- 

/m 
= 1 for m = 0 and E ~ , , ,  = 2 for m f 0, 

It should be noted that the partial eigenfunction expansion, sional Green's function f,",(z,z') in Equation (3), and where in 
Equation (4), of the electric Green's function can be obtained as a 
direct solution of the problem in Equation (2), or by using a 
relationship between electric, e, , and vector potential, e, , 

the first term in Equation (E) we have applied the distributional 
Property U61 

Green's dyadics, qz - z,)e-Ym"lz-4 = q2 - .') (9) 
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(In general, S(z - z')f ( z  - 2') = S( z - z ' ) f  (z = 2') for f continu- 
ous at z = 2'). Note that the decomposition in Equation (8) ,  and 
later in Equations(l1) and (12), is equivalent to the procedure 
described in [37, Sections 3.14 and 3.261. The well-hown spectral 
expansion of the two-dimensional delta function (valid in 
[o,a]x[O,b])canbeohtainedas [17, 181 

S(x--x')S(y-y')= " e-cos E E (m;) - cos ( m y ' )  - 
m=On=O ab 

cos - cos - . (IO) r Y )  [nY') 
Of course, the (0,O) term must necessarily be included in the 

expansion of Equation (IO) for the equality to hold in the distribu- 
tional sense. Now, taking into account the spectral representation 
of Equation(lO), the expression for the ii component of the 
Green's function in Equation (8) can be written as 

1 1 " 

k k 2  m=on=O ab 
G," (r,r') = -+(r -r' )+-PV - (k2 + y i n )  

(11) 

It is worth noting that the first term in the series expansion, 
(m,n) = (0,O) , vanishes due to y& = -k2 . The remaining terms 
correspond to the TE and TM propagating and evanescent modes 
in the waveguide. The expression of Equation (1 1) for the Green's 
function explicitly shows that the delta-function term is extracted 
from the partial eigenfunction expansion, which makes it complete 
in the source region. It can he written in a similar form introduced 
in [4] for the electric Green's dyadic due to the electric current 

In the case of a longitudinal slot, the ii component of c: (r,r') 
can be written in the form 

(13) 

It should he noted that the a:(r,r') part (13) of the Green's 
dyadic, Equation (12), results in a divergent series when z = z' , 
even though x # x' and/or y # y' . This is associated with the slice- 
pillbox exclusion volume of the source plane at 2'. 

While mathematically the existence of the (0,O) term is 
necessary to satisfy completeness in the source region, this term 
can also he regarded from a different perspective. Equation (4) 
may be rewritten in the form 

1 
G," (c,r') = ---S(z-z') abk2 

where 

0, m = n = O ,  

zmn = 2, m = 0 or n = 0, m f n, 1 4, m,n#O. 

The expression in Equation(14) implies that the (0,O) 
"mode" exists in the source plane z - z ' ,  hut is not allowed to 
propagate in the waveguide (vanishes at any point z f 2'). This 
"mode" is associated with the "power stored" in the vicinity of the 
source plane [32]. Note also that it has no variation with respect to 
x ory variables. Still, this does not violate the houndaly conditions, 
as the longitudinal magnetic field should have the maximum value 
on the perfectly conducting walls of the waveguide, including the 
special case of a constant value all over the cross section. It is 
worth mentioning that this term will also occur in the dual prob- 
lem: the electric field produced hy a longitudinal electric current 
source in a waveguide with perfectly magnetic walls. 

In the class of problems where a longitudinal slot couples the 
waveguide to an arbitrary exterior region (another waveguide, free 
space, etc.), this term has a significant effect on the scattering 
parameters. Regarding the application of tilted slots, where the 
longitudinal component of the magnetic current is associated with 
the i$ component of the electric dyadic Green's function dis- 
cussed above, this effect decreases as the slot tilts from the 
longitudinal direction, until it vanishes for a transverse slot. 

It was noticed, however, that some previous publications dis- 
card this term explicitly [26] or implicitly [28]. The effect of 
discarding this term will be illustrated in the next section. 

3. Numerical Results and Discussion 

The analysis of the Green's function presented in the previ- 
ous section has been validated numerically and compared to the 
numerical and experimental results published in the literature for a 
few representative structures, including directionally (in the 
waveguiding direction) coupled rectangular waveguides, and 
waveguides radiating in free space through longitudinal and tilted 
slots. In all examples, a standard hollow waveguide, of dimensions 
2.286 cm x 1.016 cm has been used to operate in the X hand. 

In the first example of two longitudinally coupled 
waveguides, the results of the scattering parameters obtained using 
a Method of Moments (MOM) numerical code, with the electric 
dyadic Green's function discussed in the previous section, and a 
Finite-Difference Time-Domain (FDTD) commercial software 
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-_ - , 
-' packaz[38], are compared with the results published in [28]. Fig- 

ures2 and 3 show the coupling coefficient (S3l) of a broad-wall 
longitudinal slot coupler between two identical rectangular 
waveguides with the common wall being of 0 mm and 2 mm thick- 
ness, respectively. In both cases, the slot dimensions were 1.6 cm 
x 1 mm, and its centerline was at 0.943 cm from the narrow wall. 
The results obtained by the MOM technique without the (0,O) term 
in the Green's function expansion show good agreement with the 
results presented in [28, Fig. 31, leading to the conclusion that this 
term was missing in the calculation of the S parameters in [28]. 
The other two MOM curves in Figures 2 and 3 were obtained with 
the (0,O) term in the expansion, and show good agreement with the 
results generated by the commercial FDTD software [38]. Figure 4 
shows the results for the same structure, but with a slot of dimen- 
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Figure 2. The coupling coefficient ( S , , )  as a function of 
frequency for a longitudinal-slot waveguide coupler with the 
following dimensions: the waveguide was 2.286 cm x 1.016 em, 
the slot was 1.6 cm X 1 mm, the slot centerline was at 0.943 em 
from the narrow wall, and the wall thickness was 0 mm. 

Figure 3. The coupling coefficient (S,, ) as a function of 
frequency for a longitudinal-slot waveguide coupler with a wall 
thickness of 2 mm. 

Figure 4. The coupling coefficient (S,,) as a function of fre- 
quency for a longitudinal-slot waveguide coupler with the 
following dimensions: the waveguide was 2.286 cm x 1.016 em, 
the slot was 1.56cm x 1 mm, the slot centerline was at 
0.643 cm from the narrow wall, and the wall thickness was 
1.27 mm. 

, ,___ , 4 0.35 
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Figure 5. The return loss (Si i )  as a function of frequency for a 
longitudinal-slot waveguide radiator with the following dimen- 
sions: the waveguide was 2.286 cm x 1.016 em, the slot was 
1.6 cm X 1 mm, the slot centerline was at 0.343 cm from the 
narrow wall, and the wail thickness was 1.27 mm. 

sions 1.56 cm x 1 mm and a wall thickness of 1.27 mm. Again, as 
in the previous figures, the results obtained by the MOM technique 
with and without the (0,O) term are comparedto those published in 
[28, Fig. 51 and to the FDTD results. It can be seen that the exclu- 
sion of the (0,O) term results in erroneous values of the scattering 
parameters. For this reason, we conclude that the results presented 
in [28] (including the experimental data) are incorrect. 

In the second example, the waveguide was radiating in free 
space through the longitudinal slot, and the results obtained by the 
MOM technique are compared to those generated by the commer- 
cial FDTD sofhvare [38]. Figure 5 exhibits the effects of the (0,O) 
term on the scattering characteristics of the radiating waveguide. 



Table 1. A comparison of theory and experiment (IS,, I). 

Tilt Theory Experiment 
(9 1301 1301 

Theory with Theory 
(0,O) term without (0,O) 

5 
IO 
20 

In the third example, the results were obtained for the 
waveguide radiating in free space through a tilted slot. Table 1 
compares the results obtained from the present theory (with and 
without the (0,O) term) for the retum loss of a tilted slot radiator at 
resonance on the broad wall of an infinite waveguide with those 
obtained experimentally and theoretically in [30]. The waveguide 
dimensions were the same as in the previous examples, the slot 
dimensions were 1.6 cm x 1.5875 mm, the wall thickness was 
1.27 mm, and the slot center was at 0.381 cm from the waveguide 
centerline. The MOM numerical solution was based on the rooftop 
expansion and testing with nine unknowns and used 50 X 50 terms 
in the Green’s function expansion. It should be noted that the reso- 
nance occurs at 9 GHz if the (0,O) term is included in the Green’s 
function expansion, and at 8.8 GHz if it is not. 

term 
0.161L172” 0.1571167’’ 0.1591 176” 0.178L176° 
0.172L153” 0.168L151” 0.1701 156” 0.189L158° 
0.208L12Io 0.203L116” 0.2051 123” 0.2221127” 

4. Conclusion 

It was shown here that based on the theory of distributions, 
the delta-function term can be extracted from the partial eigenfunc- 
tion expansion of the electric Green’s dyadic for a rectangular 
waveguide. It was also shown that the first term (the (0,O) term) of 
the double series expansion, which does not correspond to any of 
the waveguide modes, has to be included in the calculation of the 
series to guarantee completeness of the eigenfunctions in the 
source region. The effect of this term on the scattering cbaracteris- 
tics of directionally coupled waveguides and waveguides radiating 
in free space through longitudinal and tilted slots was illustrated, 
where the results obtained using the MOM and FDTD techniques 
were compared to those published in the literature with and with- 
out this term. 
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Editor‘s Comments Continuedfrom page 8 
ties for inadequately identified multiple submission range from 
rejection of the paper and a formal waming to the author being 
banned from publishing in IEEE publications for periods of years. 

The key to all of this is very simple: if you use your own 
prior work or someone else’s work or ideas, provide full credit and 
citation! 

Our Feature Articles 

A layer of charge or current at the boundary of a material is 
usually associated with a discontinuity in the electromagnetic field 
at the boundary. Similarly, a discontinuity in the field is often 
assumed to have certain implications regarding surface charges 
and/or currents at a material boundary. As Jack Nacbadin shows 
in his feature article, the latter may or may not be true. He shows 
that an accurate calculation of surface currents and charge layers at 
a material boundary must include not only the electromagnetic 
fields, but the stresses (and possibly the strains) and the transfer of 
momentum at the boundary. He presents a correct method for cal- 
culating the surface currents and charges at a boundary, based on 
momentum transfer. This more-complete picture of the interaction 
among fields, surface currents and charges, and momentum at the 
boundary of a material has significant implications for a variety of 
interesting problems. In particular, it provides a basis for demon- 
strating that spatially bounded spherical plasma regions are con- 
sistent with the physics and mathematics goveming electromag- 
netic fields and plasmas. There is also basis for speculating that 

‘such plasma regions could have a.degree of stability. This could he  
a possible explanation for some forms of ball lightning. This is a 
ve‘y thought-provoking article, with a variety of other potential 
applications, as well. I urge you to read it carefully. 

Raj Mittra has provided us with an interesting overview of 
part of the field of computational electromagnetics. The emphasis 
is on problems that challenge today’s computational methods and 
resources, focusing on problems that have been worked on at the 
EMC Laboratory at Penn State. The problems considered include 
large planar arrays, a variety of problems involving frequency. 
selective surfaces, conformal arrays, EMCEMI problems on com- 
plex platforms, coupling between aperture antennas in situations 
where ray techniques cannot be used, and EM1 for systems located 
inside buildings. A description is given of several approaches taken 
to addressing such problem, with particular emphasis on the 
Characteristic Basis Function Method and on the Windowed Plane 
Wave Spectrum approach, developed at Penn State. As stated in 
the conclusion, it is hoped that other methods will be (and, per- 
baps, already have been) applied to some of the problems 
described in this article. I will add that where such results are or 
become available, here is an invitation to share descriptions of 
them with the readers of this Magazine. 

There has been a substantial amount published on the com- 
plete representation of the electric dyadic Green’s function for 
cylindrical and rectangular waveguides. There bas also been some 
controversy related to this, particularly in connection with whether 
or not - and in what manner - the first, or “(O,O),” term in the dou- 

Continued on page 64 
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