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Abstract— A simple analytical model based on the transmission
matrix approach is proposed for equivalent wire medium (WM)
interfaces. The obtained ABCD matrices for equivalent interfaces
capture the non-local effects due to the evanescent transverse
magnetic (TM) WM mode and in part due to the propagating
transverse electromagnetic (TEM) WM mode. This enables one
to characterize the overall response of bounded WM structures
by cascading the ABCD matrices of equivalent WM interfaces
and WM slabs as transmission lines supporting only the prop-
agating TEM WM mode, resulting in a simple circuit-model
formalism for bounded WM structures with arbitrary termina-
tions, including the open-end, patch/slot arrays, and thin metal/
2-D material, among others. The individual ABCD matrices for
equivalent WM interfaces apparently violate the conservation of
energy and reciprocity, and therefore the equivalent interfaces
apparently behave as non-reciprocal lossy or active systems.
However, the overall response of a bounded WM structure is
consistent with the lossless property maintaining the conservation
of energy and reciprocity. These unusual features are explained
by the fact that in the non-local WM, the Poynting vector has
an additional correction term that takes into account a “hidden
power” due to non-local effects. Results are obtained for various
numerical examples demonstrating a rapid and efficient solution
for bounded WM structures, including the case of geometrically
complex multilayer configurations with arbitrary terminations,
subject to the condition that WM interfaces are decoupled by
the evanescent TM WM mode below the plasma frequency.

Index Terms— ABCD matrix, additional boundary condi-
tion (ABC), homogenization theory, metamaterials, spatial dis-
persion (SD), wire medium (WM).
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I. INTRODUCTION

AT MICROWAVE frequencies, wire media as an artificial
material has been known for a long time [1], [2], and it

has gained attention in the last two decades in metamaterials
research ranging from microwaves to optics in relation to
observed anomalous wave phenomena such as negative refrac-
tion [3]–[9], canalization, transport, and magnification of the
near field to distances of several wavelengths [10]–[14], sub-
wavelength imaging of the near field [15]–[22], and radiative
heat transfer [23]–[25]. A broad range of applications of wire-
media metamaterials at terahertz (THz) and optical frequencies
are given in [26].

In addition, wire medium (WM) metamaterials have
been utilized in various applications at microwave frequen-
cies, including high-impedance mushroom-type substrates
as electromagnetic band-gap surfaces for low-profile anten-
nas [27]–[31], broadband high-impedance surface absorbers
with stable angle characteristics [32]–[34], epsilon near-zero
metamaterials [35]–[37], and gap waveguide technology
[38]–[43], among others.

It is already well known that at microwave frequencies, even
in the very long wavelength limit, wire media is characterized
by strong spatial dispersion (SD) effects [44], [45], such
that the constitutive relations between the macroscopic fields
and the electric dipole moment are non-local. The role of SD
in the analysis of electromagnetic interaction with wire media
has been addressed, resulting in the development of non-local
homogenization formalism [29], [30], [46], [47] which
necessitates the use of additional boundary conditions (ABCs)
at WM terminations [34], [48]–[52]. Various non-local
homogenization methods have been developed for excitation,
radiation, and scattering electromagnetic problems involving
wire media and WM-type structures [29], [34], [47], [53]–[61].
In the above publications, the importance of non-local homo-
genization for WM-type structures has been established,
unless the SD effects are suppressed or significantly reduced
as in the mushroom topologies (with electrically short wires)
where the local model formalism can provide physical
results [29], [30], [62].

The analysis proposed here concerns the development of
an equivalent transmission (ABCD) matrix approach for non-
local WM interfaces. This article was triggered by recent
advancements in modeling of non-local material interfaces,
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wherein the smearing of surface charges due to non-local
effects was approximated by a local, finite-thickness layer
[63], [64]. In [63], it was shown that the spatial non-locality
in metals can be represented by a composite material com-
prising a thin local dielectric layer on top of a local metal.
Moreover, in [64], a local thickness-dependent permittivity
was derived in closed form for bounded non-local WM struc-
tures, which takes into account the SD effects as an average
per length of the wires and the effect of the boundary. In this
regard, we should point out [65] where metamaterial effective
parameters that depend on geometry have been discussed.
In [63]–[65], the non-local effects are captured in a subwave-
length effective dielectric layer. In general, in WM, the SD
effects are not confined at the interface; they are distrib-
uted through the entire non-local material due to presence
of two extraordinary waves: the transverse magnetic (TM)
mode, which is evanescent below the plasma frequency of the
WM, and the transverse electromagnetic (TEM) mode, which
propagates in WM as in an uniaxial material with extreme
anisotropy.

We propose a simple analytical model based on the
ABCD-matrix approach for equivalent WM interfaces to cap-
ture the non-local effects due to the evanescent TM WM mode
and in part the non-local effects due to the propagating TEM
WM mode, with the rest of the material supporting only the
propagating TEM WM mode. Two semi-infinite structures are
considered with equivalent WM interfaces: 1) semi-infinite
local dielectric – non-local WM and 2) two semi-infinite
non-local WM. In both cases, the WM in general can be
terminated with an impedance surface (open-end, patch/slot
arrays, thin metal/2-D material, among others). It is observed
that in such approach with the equivalent interfaces (local –
non-local materials and two different non-local WM) leads
to a formalism that is apparently non-reciprocal due to the
unusual form of the Poynting vector in nonlocal media. This is
a critical point in developing an equivalent interface for a WM
used in modeling bounded WM structures with impedance-
surface terminations and in the multilayered WM environ-
ment. The ABCD matrices for equivalent WM interfaces
are retrieved from the conventional boundary conditions and
ABCs depending on the WM termination. The response of
an entire bounded WM structure due to an obliquely incident
TM-polarized plane wave is modeled by cascading the ABCD
matrices at the equivalent WM interfaces and the WM slabs as
transmission lines supporting the only TEM WM propagating
mode. It is found that the ABCD matrix for an equivalent
WM interface seemingly violates the conservation of energy
and reciprocity, and therefore, apparently the interface behaves
as a non-reciprocal lossy or active system. The key point is
that there are always at least two interfaces in a bounded
WM, and so, if one of them provides loss (as the wave
enters the WM), the other interface provides gain (as the wave
exits the WM), such that the overall response is consistent
with the lossless property maintaining the conservation of
energy and reciprocity. The apparent “gain” and “loss” are
explained by the fact that in the non-local WM, the Poynting
vector has an additional correction term corresponding to the
“hidden power” due to non-local effects in the WM [57].

Fig. 1. Semi-infinite uniaxial non-local WM terminated with an impedance
surface at an interface with a semi-infinite local dielectric material.

We should also point out that work, which is closely related
to the material of this article has been presented in [66];
however, in [66], the equivalent network analysis is carried
out for a three-port network, wherein the transmission lines
corresponding to the modes in the local dielectric material
and the non-local WM are coupled at the interface by the
ABC, with the aim of deriving the ABCD matrix for a non-
local WM (supporting TM and TEM extraordinary modes).
This is different from the analysis of this article with the
goal of deriving the ABCD matrices for equivalent WM
interfaces.

Results are obtained for various WM configurations demon-
strating excellent agreement with the non-local solution sub-
ject to the condition that the WM interfaces are decoupled by
the evanescent TM WM mode below the plasma frequency.
The proposed formalism of an equivalent transmission matrix
is generalized for a multilayered WM with arbitrary impedance
surface terminations at the WM interfaces, simplifying the
analysis of geometrically complex WM structures.

This article is organized as follows. In Section II, the
equivalent transmission network analysis is presented for WM
interfaces with the discussion of the additional correction
term in the Poynting vector in WM. In Section III, vari-
ous numerical examples of single-layer and multi-layer WM
structures with different impedance surface terminations at
WM interfaces are presented based on the ABCD-matrix
formalism and compared with the non-local solution. The
conclusions are drawn in Section IV. Also, this article is
accompanied by two appendices with the analytical details
concerning the additional correction term in the Poynting
vector of WM, and derivation of the ABCD matrix for an
equivalent interface of two non-local WM connected by an
impedance surface. A time dependence of the form e jωt is
assumed and suppressed.

II. ABCD-MATRIX APPROACH FOR

EQUIVALENT WM INTERFACES

A. Semi-Infinite Local Dielectric—Non-Local
WM Equivalent Interface

Consider a semi-infinite uniaxial non-local WM (z < 0)
terminated with an impedance surface at an interface with a
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semi-infinite local dielectric material (z > 0) as shown in
Fig. 1. The host permittivity of WM is εh , the permittivity of
dielectric material is εd , the period of vias in the 2-D square
lattice is a, and the radius of vias is r0. The TM-polarized
plane wave is characterized with Hy, Ex , Ez homogenized
field components, and it can be incident either from the side of
the dielectric material as the usual TEM wave or from the side
of the WM as the extraordinary TEM WM mode. Note that for
long wavelengths, the TM WM mode is evanescent (with an
exponential decay), and thereby the interfaces of sufficiently
thick wire media structures are mainly coupled through the
TEM WM mode.

At the interface (z = 0), the fields satisfy the continuity
of the tangential electric field components, jump condition for
the tangential magnetic field components, and the generalized
ABC [51], [52] for the surface current density Jz,wm(z)

Ex,d = Ex,TEM + Ex,TM (1a)

Hy,d = Hy,TEM + Hy,TM − Yg(Ex,TEM + Ex,TM) (1b)

Jz,wm(z) + α
d Jz,wm(z)

dz
= 0. (1c)

Here, Yg is the surface admittance of an impedance sur-
face with the closed-form expressions for printed and slotted
inductive and capacitive grids given in [67]. The parameter α
depends on the material properties of the impedance surface,
and for metallic patches, α = Cp/Cw, where Cw and Cp are
given in [56], and for a thin metal/2-D material characterized
by the surface conductivity σs , α = σs/jωε0εh [52]. The ABC
(1c) can be expressed in terms of the field components in the
WM as follows:

kx Hy,wm + ωε0εh Ez,wm

+ α

(
kx

∂ Hy,wm

∂z
+ ωε0εh

∂ Ez,wm

∂z

)
= 0. (2)

Taking into account Ez,wm ≡ Ez,TM = (1/jωε0
εhεTM

zz )(∂ Hy,TM/∂x), where εTM
zz = 1 − k2

p/(k
2
p + k2

x), and
(∂/∂x) = − jkx , we obtain

Ez,TM = − 1

ωε0εh

k2
p + k2

x

kx
Hy,TM. (3)

Here, kp is the plasma wavenumber defined in [45, eq. (10)]
and kx is the x-component of the wave vector k =
(kx , 0, kz). Then, from Maxwell’s equations, (∂ Hy,wm/∂z) =
− jωε0εh(Ex,TEM + Ex,TM), and with the assumption that
there is no incident TM mode on the WM interface and the
reflected TM mode from the WM interface is in the negative
z-direction (see Fig. 1)

Ex,TM = − 1

jωε0εh

∂ Hy,TM

∂z
= jγTM

ωε0εh
Hy,TM (4)

and that (∂ Ez,wm/∂z) ≡ (∂ Ez,TM/∂z) = −(γTM/ωε0εh)
((k2

p + k2
x)/k2

p)Hy,TM, the ABC (2) can be written as follows:

kx(Hy,TEM + Hy,TM) − k2
p + k2

x

kx
Hy,TM

+ α

(
− jωε0εhkx(Ex,TEM+Ex,TM)−γTM

k2
p+k2

x

kx
Hy,TM

)
=0.

(5)

Substituting (4) in (5) and after simplifications, we obtain

Hy,TM = k2
x Hy,TEM − jωε0εhk2

xαEx,TEM

k2
p(1 + αγTM)

(6)

where γTM =
√

k2
p + k2

x − k2
h is the propagation constant of

the TM WM mode, kh = k0
√

εh is the wavenumber of the host
medium, and k0 = ω/c is the wavenumber of free space. Next,
using (4) and (6) in the continuity equation for the tangential
electric field components (1a) results in

Ex,d =
(

1 + k2
x

k2
p

αγTM

(1 + αγTM)

)
Ex,TEM

+ jηhγTM

kh

k2
x

k2
p

1

(1 + αγTM)
Hy,TEM (7)

and with (4) and (6) substituted in the jump condition for the
tangential magnetic field components (1b), we obtain

Hy,d

=
(

−Yg − j
kh

ηh

k2
x

k2
p

α

(1 + αγTM)

(
1 − Yg

jηhγTM

kh

))
Ex,TEM

+
(

1 + k2
x

k2
p

1

(1 + αγTM)

(
1 − Yg

jηhγTM

kh

))
Hy,TEM (8)

where ηh is the intrinsic impedance of the host medium.
With (7) and (8), we can write for the WM interface at

z = 0 shown in Fig. 1(
Ex,TEM
Hy,TEM

)
= M ·

(
Ex,d
Hy,d

)
(9)

where M is the ABCD matrix for an equivalent WM inter-
face (10), as shown at the bottom of this page.

The ABCD matrix M for an equivalent interface captures
the non-local effects due to the evanescent TM WM mode
and in part, the non-local effects due to the propagating TEM
WM mode, with the rest of a semi-infinite WM supporting
the only propagating TEM WM mode. Note that the theory is
exact within the assumption that there is no incident TM WM
mode. Because of the evanescent nature of the TM WM mode,
this assumption is typically very good in realistic structures
with a finite thickness.

M =

⎛
⎜⎜⎜⎝

1 + k2
x

k2
p

αγTM

(1 + αγTM)

jηhγTM

kh

k2
x

k2
p

1

(1 + αγTM)

−Yg − j
kh

ηh

k2
x

k2
p

α

(1 + αγTM)

(
1 − Yg

jηhγTM

kh

)
1 + k2

x

k2
p

1

(1 + αγTM)

(
1 − Yg

jηhγTM

kh

)
⎞
⎟⎟⎟⎠

−1

(10)
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The ABCD matrix M for a special case of an open-end WM
interface is obtained from (10) with Yg = 0 and α = 0,

M =

⎛
⎜⎜⎜⎝

1
jηhγTM

kh

k2
x

k2
p

0
k2

p + k2
x

k2
p

⎞
⎟⎟⎟⎠

−1

. (11)

For a finite WM slab terminated with impedance surfaces
at both interfaces at z = 0 and z = L (shown in Fig. 2) with
the TM-polarized plane wave incident from the side of the
local dielectric material (z < 0), the ABCD matrix M1 at the
interface at z = 0 is obtained [(12) as shown at the bottom of
this page] as the inverse matrix of M and by changing α to
−α, γTM to −γTM, and Yg to −Yg in (10).

The ABCD matrix M2 for an equivalent WM interface at
z = L is given by (10), and the ABCD matrix Q of the WM
slab (non-local WM between the interfaces in Fig. 2) as the
transmission line supporting only the propagating TEM WM
mode with the wavenumber kh is given by [68]

Q =
⎛
⎝ cos(kh L) jηh sin(kh L)

j

ηh
sin(kh L) cos(kh L)

⎞
⎠ . (13)

Then, the global ABCD matrix Mg for a WM structure
shown in Fig. 2 is obtained by cascading the ABCD matrices
(10), (12), and (13)

Mg = M1 · Q · M2. (14)

The global ABCD matrix Mg for a WM slab without
impedance surfaces (Yg = 0 and α = 0) is particularly simple

Mg =

⎛
⎜⎜⎜⎝

1 − jηhγTM

kh

k2
x

k2
p

0
k2

p + k2
x

k2
p

⎞
⎟⎟⎟⎠·
⎛
⎝ cos(kh L) jηh sin(kh L)

j

ηh
sin(kh L) cos(kh L)

⎞
⎠

·

⎛
⎜⎜⎜⎝

1
jηhγTM

kh

k2
x

k2
p

0
k2

p + k2
x

k2
p

⎞
⎟⎟⎟⎠

−1

. (15)

It should be noted that the proposed ABCD-matrix approach
can be used for WM structures terminated with two different
impedance surfaces at the interfaces z = 0 and z = L corre-
sponding to different conditions on α and different closed-form
expressions for Yg .

An interesting observation is that, although we consider
reciprocal and lossless media, the ABCD matrices M1 and M2
at both interfaces apparently violate reciprocity and seemingly

Fig. 2. Scattering of the TM-polarized plane wave from the WM slab
terminated by impedance surfaces at both interfaces with the dielectric
material.

do not obey the conservation of energy [using (12), (10)] it
can be shown that det M1 = (k2

p + k2
x)/k2

p and det M2 =
k2

p/(k
2
p + k2

x), rather than unity). Moreover, it can be shown
that Re{Ex,d H ∗

y,d} = ((k2
p + k2

x)/k2
p)Re{Ex,TEMH ∗

y,TEM} at
the first interface at z = 0, which apparently corresponds to
the loss in the system, and Re{Ex,TEMH ∗

y,TEM} = (k2
p/(k

2
p +

k2
x))Re{Ex,dH ∗

y,d} at the second interface at z = L (see Fig. 2),
which apparently corresponds to the gain in the system. The
same result is found for a WM slab without impedance surface
terminations, and it can be shown that in general, it does not
depend on the termination and it is a property of the WM.

To verify the above conclusions, we consider the matrix
equation (9) at the interface at z = 0 in Fig. 2 with the
ABCD matrix M1 = M−1 defined by (12). Then, for a lossless
reactive impedance surface, Yg = j Im{Yg} and α real-valued

Re
{

Ex,d H ∗
y,d

}

= Re

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + k2

x

k2
p

αγTM

(1 + αγTM)

)
(

1 + k2
x

k2
p

1

(1 + αγTM)

×
(

1 − (− j Im{Yg}) (− j)ηhγTM

kh

))
×Ex,TEMH ∗

y,TEM

+
(

(− j Im{Yg}) + (− j)
kh

ηh

k2
x

k2
p

α

(1 + αγTM)

×
(

1 − (− j Im{Yg}) (− j)ηhγTM

kh

))

×
(

− jηhγTM

kh

k2
x

k2
p

1

(1 + αγTM)

)
E∗

x,TEMHy,TEM

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(16)

In (16), the terms Ex,TEME∗
x,TEM and Hy,TEMH ∗

y,TEM are not
considered because the coefficients with respect to these terms

M1 =

⎛
⎜⎜⎜⎝

1 + k2
x

k2
p

αγTM

(1 + αγTM)
− jηhγTM

kh

k2
x

k2
p

1

(1 + αγTM)

Yg + j
kh

ηh

k2
x

k2
p

α

(1 + αγTM)

(
1 − Yg

jηhγTM

kh

)
1 + k2

x

k2
p

1

(1 + αγTM)

(
1 − Yg

jηhγTM

kh

)
⎞
⎟⎟⎟⎠ (12)
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are imaginary. The result (16) can be simplified as follows:

Re
{

Ex,d H ∗
y,d

}
= Re

{(
1 + k2

x

k2
p

1

(1 + αγTM)

+ k2
x

k2
p

αγTM

(1 + αγTM)

)
Ex,TEMH ∗

y,TEM

}

+ Re

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k2
x

k2
p

1

(1 + αγTM)
Im{Yg}ηhγTM

kh

+αγTM

(
k2

x

k2
p

1

(1 + αγTM)

)2

+αγTM

(
k2

x

k2
p

1

(1 + αγTM)

)2

Im{Yg}ηhγTM

kh

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×(Ex,TEMH ∗
y,TEM − (

Ex,TEMH ∗
y,TEM

)∗)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= k2
p + k2

x

k2
p

Re
{

Ex,TEMH ∗
y,TEM

}
. (17)

A similar analysis can be done for the second interface
at z = L in Fig. 2 demonstrating the “apparent” gain in
the system. However, the overall response of a bounded WM
structure described by the global matrix Mg (14) (or (15) for a
WM slab) is consistent with the lossless property maintaining
conservation of energy and reciprocity.

The reason for these apparent violations of conservation
of energy is that in the non-local WM, the Poynting vector
has an additional correction term corresponding to a “hidden
power” [57], and in general, such a correction term is present
for any spatially dispersive material [69, Ch. 12, eq. (103-15)].
Specifically, the Poynting vector associated with the TEM
WM mode is not given by 1/2 Re{Ex,TEMH ∗

y,TEM}, but has
rather an additional term due to the “additional potential” and
current associated with the WM structure [57]. As shown in
Appendix A, the additional term of the Poynting vector is
precisely (k2

x/2k2
p)Re{Ex,TEMH ∗

y,TEM}. Thereby, the relation
Re{Ex,dH ∗

y,d} = ((k2
p + k2

x)/k2
p)Re{Ex,TEMH ∗

y,TEM} discussed
earlier does not express a violation of the conservation of
energy, but rather the continuity of the normal component of
the Poynting vector across the interface. Similar arguments
can be used to justify the apparent violation of the reciprocity
at the WM interface. Specifically, the Lorentz reciprocity
theorem in the WM has additional terms associated with the
internal degrees of freedom of the material. The details can
be found in the appendix of [70]. Also, we should point out
that the usual theory of microwave networks [68] requires that
the equivalent voltages V and the equivalent currents I in
the two ports ensure that the power transported in the guide
is given by 1/2Re{V I ∗} (eventually apart from an arbitrary
fixed multiplication factor), such that the reciprocity condition
Z12 = Z21 is satisfied resulting in a symmetric impedance
matrix Z. In the proposed equivalent transmission network
approach, the hypothesis that 1/2Re{V I ∗} describes the power
transported in the guide holds true only in the air region,
where V = Ex and I = Hy. However, it does not hold true
in the WM because of the “hidden power” transported in the
medium. Thus, the usual theory of microwave networks cannot

Fig. 3. Two semi-infinite WM connected by an impedance surface at the
interface.

be applied in our formalism, and due to this reason, we obtain
the apparent non-reciprocity.

The proposed formalism of the equivalent ABCD matrix at
the WM interface captures the non-local effects at the interface
and in the WM material and correctly models the “hidden
power” in the non-local WM.

B. Equivalent Interface for Two-Sided
Non-Local Wire Media

Consider two identical semi-infinite wire media connected
through an impedance surface at the interface as shown
in Fig. 3. The host permittivity in both WM is εh , and it
is assumed that the TEM WM mode is the incident field on
the either side of the interface.

At the interface (z = 0), the fields satisfy the continuity
of the tangential electric field components, jump condition for
the tangential magnetic field components, and the generalized
ABCs for the surface current densities in the WM 1 and 2
[34], [51]

Ex1,TEM + Ex1,TM = Ex2,TEM + Ex2,TM (18a)

Hy1,TEM + Hy1,TM = Hy2,TEM + Hy2,TM

+ Yg(Ex2,TEM + Ex2,TM) (18b)

α

(
d Jz1,wm(z)

dz
+ d Jz2,wm(z)

dz

)
+ Jz1,wm(z) − Jz2,wm(z) = 0

(18c)
d Jz1,wm(z)

dz
= d Jz2,wm(z)

dz
. (18d)

Here, Yg is the surface admittance of an impedance surface
and the parameter α depends on the material properties of
the impedance surface (α = Cp/2Cw for periodic metallic
patches [56] and α = σs/2 jωε0εh for thin metal/2-D material
at the interface of two WM [34]). Following the procedure
for deriving the ABCD matrix presented in Section II-A,
the ABCD matrix for an equivalent interface of two WM
connected by an impedance surface can be obtained (with the
analytical details provided in Appendix B)(

Ex1,TEM
Hy1,TEM

)
= M ·

(
Ex2,TEM
Hy2,TEM

)
(19)
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where

M =
(

1 0
m21 1

)
(20)

and

m21 =
Yg + jωε0εhα

k2
x

k2
p (1+αγTM)

(
2 − jγTMYg

ωε0εh

)
1 + k2

x
2k2

p (1+αγTM)

(
2 − jγTMYg

ωε0εh

) . (21)

It can be seen that in the limiting case of Yg = 0 and α = 0,
m21 = 0.

The resulting ABCD matrix (20) is consistent with the usual
reciprocity constraint (det M = 1), and for a lossless reactive
impedance surface, Yg = j Im{Yg} and α real-valued, such
that m21 = j Im{m21}, it also satisfies the usual condition of
conservation of energy

Re
{

Ex1,TEMH ∗
y1,TEM

}
= Re

{
Ex2,TEM

(
m∗

21 E∗
x2,TEM + H ∗

y2,TEM

)}
= Re

{
Ex2,TEMH ∗

y2,TEM

}
. (22)

It should be noted that both WM 1 and WM 2 (see Fig. 3)
have an additional correction term in the Poynting vector
representation as it has been proven in [57]. However, because
in the case presented here the wire media 1 and 2 are identical,
the additional Poynting vector terms turn out to be also
identical, and thereby cancel out. For two different wire media
(different geometrical and host material parameters) connected
at the interface by an impedance surface, the ABCD matrix
will apparently violate reciprocity and conservation of energy.
This case is omitted here because the generalized two-sided
ABCs (18c), (18d) have not been derived for a general case of
two wire media connected to an arbitrary impedance surface
and having different lattice periods, radii of the wires, and
host permittivities. The only case of generalized two-sided
ABCs has been considered in [34] with two wire media having
different host permittivities connected by a thin metal/2-D
material at the interface. Following the formulation presented
here to derive the ABCD matrix with the generalized ABCs
in [34] (with two different host permittivities), it can be shown
that the ABCD matrix will be seemingly non-reciprocal and
violate the conservation of energy. However, in all bounded
WM structures, there are at least two interfaces such that
if one of them provides apparent loss (as the wave enters
the WM), the other interface provides apparent gain (as the
wave exits the WM), so that the overall response is consistent
with the lossless property maintaining conservation of energy
and reciprocity.

Also, a special case of interest here is a continuous
impedance surface at the interface, Yg = σs , where in general
the surface conductivity σs can be complex-valued. Then with
α = σs/2 jωε0εh , it can be shown that (21) reduces to
m21 = σs . In this case, there is no TM WM mode contribution
in the ABCD matrix for the equivalent interface and the
problem is completely described by the TEM WM mode only.

With the formalism of an equivalent transmission network
approach presented here for two cases of WM interfacing
a local dielectric material and two WM connected by an

Fig. 4. Geometry of a WM slab in air with the obliquely incident
TM-polarized plane wave.

impedance surface enables to model various geometrically
complex multilayer WM structures (with in general differ-
ent impedance surfaces at the interfaces) by cascading the
obtained above ABCD matrices of equivalent interfaces and
ABCD matrices of WM slabs as transmission lines supporting
the only propagating TEM WM mode.

In Section III, several representative numerical examples
will be given based on the proposed equivalent transmission-
network formulation with the results compared to the non-local
solution.

III. NUMERICAL RESULTS AND DISCUSSION

The numerical analysis is carried out based on the proposed
equivalent transmission network approach and the results are
compared to the non-local solution for several representa-
tive examples. The non-local homogenization model have
been extensively verified with full-wave numerical simulations
for various WM topologies [5]–[13], [15]–[18], [29], [30],
[46]–[53], and can be used for an adequate comparison with
the ABCD-matrix approach. In all the examples, the obliquely
incident TM-polarized plane wave is considered for exci-
tation, where the reflection and transmission coefficients
(S-matrix) are retrieved from the ABCD-matrix parameters
with the known expressions from the microwave engineering
[68, p. 192; with Z0 = ηh].

In the first example, a WM slab in air is considered (with
the geometry shown in Fig. 4). The response of the structure
(reflection and transmission) is studied for the following
geometrical and material parameters of WM: k0a = 1, r0/a =
0.05, εh = 2, θi = 75◦. The global ABCD matrix (15) is used
for the calculation of the reflection coefficient S11 and trans-
mission coefficient S21 at the WM interfaces, respectively, with
the results for the magnitudes shown in Fig. 5 and compared
with those based on the non-local solution. The non-local
homogenization model for a WM slab has been extensively
presented in the literature (see for example [15] with the
analytical details for reflection and transmission coefficients).
The results are shown versus L/a demonstrating nearly perfect
agreement with the non-local results for L/a > 2, when the
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Fig. 5. Magnitude of the (a) reflection coefficient |S11| and (b) transmission
coefficient |S21| versus L/a for a WM slab in air. The ABCD-matrix results
are compared with the non-local solution showing excellent agreement for
L/a > 2.

WM interfaces are decoupled by the evanescent TM WM
mode. In other words, the developed ABCD formalism yields
rather accurate results when it is possible to neglect the effects
of the “incident” evanescent TM waves inside the WM. Note
that the non-local effects due to the TM WM mode excited
by the TEM waves propagating inside the WM are captured
by the transmission matrices for equivalent WM interfaces.

In the second example, a two-sided mushroom topology is
considered with the wires terminated with patch arrays at the
WM interfaces (with the geometry shown in Fig. 6).

The following geometrical and material parameters are used
in the calculations: k0a = 1, r0/a = 0.05, g/a = 0.1,
εh = 2, θi = 75◦. The global ABCD matrix (14) (with the
ABCD matrices for the equivalent interfaces (12) and (10)
and the ABCD matrix of the WM slab (13) supporting the
TEM WM mode) is used to determine the reflection and
transmission coefficients. The results for |S11| and |S21| versus
L/a are shown in Fig. 7. It can be seen that the agreement
between the ABCD results and non-local results (with the
analytical details for a non-local model given in [64]) is
even better than for a WM slab (previous example) for a
smaller ratio L/a. This is due to a stronger confinement of
the evanescent TM WM mode at the interface because of the
presence of the patch array.

Fig. 6. (a) Geometry of a two-sided mushroom structure in air with the patch
arrays at the WM interfaces excited by an obliquely incident TM-polarized
plane wave.(b) Top view of the patch array connected to wires.

Fig. 7. Magnitude of the (a) reflection coefficient |S11| and (b) transmission
coefficient |S21| versus L/a for a two-sided mushroom structure. The ABCD-
matrix results are compared with the non-local solution showing excellent
agreement for L/a > 1.8.

In the final example (with the geometry shown in Fig. 8),
we consider a multilayer mushroom topology comprised of
four WM slabs and five patch arrays at the WM interfaces.
An obliquely incident TM-polarized plane at 75◦ from the
air region is used for the excitation. Each WM slab is air-
filled with εh = 1, having thickness L = 2 mm with the
period of wires (and the patches) a = 1 mm, radius of wires
r0 = 0.05 mm, and gap between the patches g = 0.1 mm.
The global ABCD matrix is obtained by cascading the ABCD
matrices of the top equivalent interface (12), WM slabs (13),
two-sided equivalent interfaces (20), (21), and the bottom
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Fig. 8. (a) Geometry of a multilayered mushroom structure with an obliquely
incident TM-polarized plane wave. (b) Top view of the patch array connected
to wires.

equivalent interface (10). Then, the global ABCD matrix is
used to calculate the S-parameters at the top and bottom
interfaces. The results for the magnitudes of the reflection
coefficient |S11| and transmission coefficient |S21| versus fre-
quency are shown in Fig. 9 and compared with the non-local
results (with the non-local formulation given in [6] and [7])
demonstrating perfect agreement in the entire frequency range.

Also, we have considered an infinite periodic structure
comprised of WM slabs with the patch arrays at the interfaces,
and studied Bloch waves propagating along the z-direction.
The dispersion equation is obtained as follows:

AD + e2γb L − (A + D)eγb L − BC = 0 (23)

where γb = αb + jβb is the propagation constant of Bloch
waves of the periodic WM structure, and the ABCD parame-
ters are obtained by cascading the ABCD matrices of WM
slabs (of thickness L/2) and the equivalent interface for a
two-sided WM connected by an impedance surface (20), (21)

[
A B
C D

]
=

⎡
⎢⎢⎣

cos

(
kh

L

2

)
jηh sin

(
kh

L

2

)
j

ηh
sin

(
kh

L

2

)
cos

(
kh

L

2

)
⎤
⎥⎥⎦·
[

1 0
m21 1

]

·

⎡
⎢⎢⎣

cos

(
kh

L

2

)
jηh sin

(
kh

L

2

)
j

ηh
sin

(
kh

L

2

)
cos

(
kh

L

2

)
⎤
⎥⎥⎦ . (24)

The solution of (23) with the reciprocity condition for the
ABCD matrix (24) (AD − BC = 1) results in closed-form
expression for the phase constant of Bloch waves

βb L = Im

{
cosh−1

(
A + D

2

)}
. (25)

The numerical results of (25) are superimposed in Fig. 9(b)
as Brillouin diagram. It can be seen that transmission res-
onances of the finite multilayer structure correspond to the
passbands of the infinite structure, and the rejection band
in the finite structure is well approximated by the stop-
band of an infinite structure. This observation is consistent

Fig. 9. Magnitude of the (a) reflection coefficient |S11| and (b) transmission
coefficient |S21| versus frequency for a multilayer mushroom structure.
Brillouin diagram is also depicted for Bloch waves of an infinite periodic
structure of WM slabs connected to patch arrays at the interfaces.

with the results obtained previously for stacked periodic
2-D metallic meshes [71] and periodic 2-D conducting patc-
hes [72] at microwave frequencies, and in a graphene-dielectric
microstructure at low-THz frequencies [73].

IV. CONCLUSION

We proposed a circuit-model formalism for non-local
bounded WM structures with arbitrary terminations. We intro-
duced the idea of an equivalent interface and derived the
transmission network for a semi-infinite WM interfacing a
local dielectric material, and then generalized the formalism
for two non-local WM connected by an impedance surface.
It is observed that the ABCD matrix for the equivalent
interface apparently violates the conservation of energy and
reciprocity, which seemingly behaves as a non-reciprocal lossy
or active system. However, for a bounded WM structure having
at least two interfaces, the overall response is consistent with
the lossless property maintaining conservation of energy and
reciprocity. We demonstrated that these exotic features are
due to the non-standard expression of the Poynting vector
in the non-local material. It was shown that in the non-local
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WM, the Poynting vector has an additional correction term
corresponding to “hidden power” due to non-local effects, and
the results obtained here for the additional term are consistent
with previously published results.

The equivalent transmission network formalism presented
in this article enables to model multilayer WM configurations
with an arbitrary number of WM layers terminated with in
general arbitrary impedance surfaces. For such a general case,
there is no analytical model available in the literature, and the
approach presented in this article is the first attempt to solve
this problem.

The results presented in this article have been verified
with the non-local solution for several representative examples
showing nearly perfect agreement subject to the condition that
WM interfaces are decoupled by the evanescent TM WM
mode below the plasma frequency. Indeed, the model yields
nearly exact results when the WM interfaces are sufficiently
far apart so that the “incident” evanescent TM WM modes
have a negligible effect.

APPENDIX A

A. Additional Correction Term in the
Poynting Vector for WM

According to [57, eq. (66)], the time-averaged Poynting
vector for the case of fields with a spatial dependence of the
form e− jk·r with k real-valued and for a lossless spatially
dispersive WM in the z-direction is given by the following
expression:

Save,z = 1

2
Re
{
(Ewm × H∗

wm)z
}− ω

4
E∗

wm · ∂
↔
ε(ω, k)

∂kz
· Ewm

(26)

where the effective dielectric function is defined as

↔
ε(ω, k) = ε0εh

(
↔
I − ẑẑ

k2
p

k2
h − k2

z

)
(27)

and kz is the z-component of the wave vector k = (kx , 0, kz).
The additional term in (26) can be written as follows:

ω

4
E∗

wm · ∂
↔
ε(ω, k)

∂kz
· Ewm = ω

4
E∗

z,TEM
∂εzz(ω, k)

∂kz
Ez,TEM.

(28)

The formula is evidently ill-defined for the TEM mode of a
WM with perfectly conducting wires because Ez,TEM = 0 and
εzz(kz,TEM) = ∞. Due to this reason, it will be implicit in the
following that the medium has some infinitesimal loss so that
Ez,TEM is slightly different from zero and kz,TEM is slightly
offset from kh . Then, using ∇ · Dwm = ∇ · (

↔
ε · Ewm) = 0,

we find that Ez,TEM/(k2
h − k2

z ) = (kx/k2
pkh)Ex,TEM. The

right-hand side is well-defined in the limit of vanishing loss.
With the derivative of (27), (∂εzz(ω, k)/∂kz) = (ε0εhk2

p
(−2kz)/(k2

h − k2
z )2), the additional term (28) results in

ω

4
E∗

z,TEM
∂εzz(ω, k)

∂kz
Ez,TEM

= ω

4

kx

k2
pkh

E∗
x,TEM

(− 2ε0εhk2
pkh
) kx

k2
pkh

Ex,TEM. (29)

By relating (Ex,TEM/Hy,TEM) = ZTEM = (kh/ωε0εh), we
obtain

ω

4
E∗

z,TEM
∂εzz(ω, k)

∂kz
Ez,TEM = −1

2

k2
x

k2
p

Ex,TEMH ∗
y,TEM. (30)

All the singularities disappeared: the right-hand side of the
above equation is well-defined in the lossless limit.

Also, by considering the additional term in [57, eq. (65)]
with the Poynting vector in the z-direction and assuming only
the TEM WM mode results in

ϕw I ∗
z,wm

Ac
= − Ac

jωCw

∂ Jz,wm

∂z
J ∗

z,wm (31)

where J ∗
z,wm = (I ∗

z,wm/Ac) and (∂ Jz,wm/∂z) = −( jωCw/
Ac)ϕw. Here, Iz,wm is the net current in the WM square unit
cell of area Ac, ϕw is the additional potential, and Cw is the
self-capacitance of the wire. In terms of field components,
J ∗

z,wm = jkx H ∗
y,TEM and (∂ Jz,wm/∂z) = −kxωε0εh Ex,TEM.

Then

ϕw I ∗
z,wm

Ac
= − Ac

jωCw
(−kxωε0εh) Ex,TEM( jkx)H ∗

y,TEM

= k2
x

k2
p

Ex,TEMH ∗
y,TEM (32)

where k2
p = (Cw/Acε0εh).

The results (30) and (32) for the additional term in the
Poynting vector expressions (65) and (66) in [57] are con-
sistent with the power representation based on the equivalent
transmission-network analysis considered in this article.

APPENDIX B

B. Derivation of the ABCD matrix for an Equivalent
Interface of Two WM Connected by an
Impedance Surface

The ABC (18c) can be expressed in terms of the field
components in the WM 1 and 2 as follows:

kx Hy1,wm+ωε0εh Ez1,wm+α

(
kx

∂ Hy1,wm

∂z
+ωε0εh

∂ Ez1,wm

∂z

)
= kx Hy2,wm + ωε0εh Ez2,wm

− α

(
kx

∂ Hy2,wm

∂z
+ ωε0εh

∂ Ez2,wm

∂z

)
. (33)

Taking into account (3) results in

Ez1,2,TM = − 1

ωε0εh

k2
p + k2

x

kx
Hy1,2,TM. (34)

Then, from Maxwell’s equations and with the assumption that
there is no incident TM WM mode from either side on the
interface at z = 0 (see Fig. 3)

Ex1,TM = − 1

jωε0εh

∂ Hy1,TM

∂z
= jγTM

ωε0εh
Hy1,TM

Ex2,TM = − 1

jωε0εh

∂ Hy2,TM

∂z
= − jγTM

ωε0εh
Hy2,TM (35)

and that (∂ Ez1,wm/∂z) ≡ (∂ Ez1,TM/∂z) = −(γTM/ωε0εh)
((k2

p + k2
x)/k2

p)Hy1,TM, (∂ Ez2,wm/∂z) ≡ (∂ Ez2,TM/∂z) =
(γTM/ωε0εh)((k2

p +k2
x)/k2

p)Hy2,TM, the ABC (33) can be
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written as follows:

kx(Hy1,TEM + Hy1,TM) − k2
p + k2

x

kx
Hy1,TM

+ α

(
− jωε0εhkx(Ex1,TEM+Ex1,TM)−γTM

k2
p +k2

x

kx
Hy1,TM

)

= kx(Hy2,TEM + Hy2,TM) − k2
p + k2

x

kx
Hy2,TM

− α

(
−jωε0εhkx(Ex2,TEM+Ex2,TM)+γTM

k2
p+k2

x

kx
Hy2,TM

)
.

(36)

Substituting (35) in (36) and after simplifications we obtain

k2
x Hy1,TEM − k2

p(1 + αγTM)Hy1,TM − jωε0εhαk2
x Ex1,TEM

= k2
x Hy2,TEM−k2

p(1 + αγTM)Hy2,TM + jωε0εhαk2
x Ex2,TEM.

(37)

The ABC (18d) can be expressed in terms of the field
components in WM 1 and 2

kx
∂ Hy1,wm

∂z
+ωε0εh

∂ Ez1,wm

∂z
= kx

∂ Hy2,wm

∂z
+ωε0εh

∂ Ez2,wm

∂z
(38)

and taking into account (34) and (35) the ABC (38) can be
written as

− jωε0εhkx

(
Ex1,TEM + jγTM

ωε0εh
Hy1,TM

)
−γTM

k2
p + k2

x

kx
Hy1,TM

= − jωε0εhkx(Ex2,TEM − jγTM

ωε0εh
Hy2,TM)

+ γTM
k2

p + k2
x

kx
Hy2,TM (39)

which results in

− jωε0εhk2
x Ex1,TEM − γTMk2

p Hy1,TM

= − jωε0εhk2
x Ex2,TEM + γTMk2

p Hy2,TM. (40)

By solving the system of equations (37) and (40) for Hy1,TM
and Hy2,TM we obtain

Hy1,TM = k2
x

2k2
p(1 + αγTM)

(Hy1,TEM − Hy2,TEM)

− jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

× (Ex1,TEM(1 + 2αγTM) − Ex2,TEM) (41)

Hy2,TM = − k2
x

2k2
p(1 + αγTM)

(Hy1,TEM − Hy2,TEM)

− jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

× (Ex1,TEM − (1 + 2αγTM)Ex2,TEM). (42)

The continuity condition (18a) for tangential electric field
components with the relation (35) can be written as

Ex1,TEM + jγTM

ωε0εh
Hy1,TM = Ex2,TEM− jγTM

ωε0εh
Hy2,TM. (43)

Substituting (41), (42) in (43) we obtain

Ex1,TEM + jγTM

ωε0εh

k2
x

2k2
p(1 + αγTM)

(Hy1,TEM − Hy2,TEM)

− jγTM

ωε0εh

jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

× (Ex1,TEM(1 + 2αγTM) − Ex2,TEM)

= Ex2,TEM + jγTM

ωε0εh

k2
x

2k2
p(1 + αγTM)

(Hy1,TEM − Hy2,TEM)

+ jγTM

ωε0εh

jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

× (Ex1,TEM − (1 + 2αγTM)Ex2,TEM) (44)

which after simplifications results in

Ex1,TEM = Ex2,TEM. (45)

Thus, interestingly, the continuity of WM tangential electric
field components (TEM + TM) at the interface reduces to
the continuity of the TEM WM modes only, in other words,
the lumped loads do not lead to a modal coupling.

Next, substituting (41), (42) in the jump condition (18b)
for tangential magnetic field components gives the following
result:

Hy1,TEM + k2
x

2k2
p(1 + αγTM)

(Hy1,TEM − Hy2,TEM)

− jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

× (Ex1,TEM(1 + 2αγTM) − Ex2,TEM)

= Hy2,TEM − k2
x

2k2
p(1 + αγTM)

(Hy1,TEM − Hy2,TEM)

− jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

× (Ex1,TEM − (1 + 2αγTM)Ex2,TEM)

+ Yg Ex2,TEM + jγTMYg

ωε0εh

k2
x

2k2
p(1 + αγTM)

× (Hy1,TEM − Hy2,TEM)

+ jγTMYg

ωε0εh

jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

× (Ex1,TEM − (1 + 2αγTM)Ex2,TEM) (46)

which can be simplified further

Hy1,TEM

(
1 + k2

x

2k2
p(1 + αγTM)

(
2 − jγTMYg

ωε0εh

))

+ Ex1,TEM
jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

(
−2αγTM− jγTMYg

ωε0εh

)

= Hy2,TEM

(
1 + k2

x

2k2
p(1 + αγTM)

(
2 − jγTMYg

ωε0εh

))

+ Ex2,TEM

(
Yg + jωε0εh

γTM

k2
x

2k2
p(1 + αγTM)

×
(

2αγTM − jγTMYg

ωε0εh
(1 + 2αγTM)

))
. (47)
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The system of equations (45), (47) results in the ABCD
matrix (20), (21).
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