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Abstract—Dyadic Green’s functions for an electric dipole source
over an infinite periodic metasurface are obtained using homog-
enized, nonlocal, anisotropic, generalized sheet-transition condi-
tions. The homogenized Green’s functions can efficiently model
near-field point source excitation of typical metasurface struc-
tures. The Green’s functions can be decomposed into discrete and
continuous spectral components, providing physical insight into
the wave dynamics. Several different metasurfaces are consid-
ered, and the results are validated by comparison with a full-wave
array-scanning method, demonstrating computational efficiency
of the proposed homogenized Green’s function approach.

Index Terms—Green’s functions, homogenization, metasurface.

I. INTRODUCTION

M ETASURFACES are single-layer, electrically thin
metamaterial structures that have been attracting grow-

ing interest in recent years among researchers in microwave
[1]–[3], terahertz [4], [5], and optical [6]–[8] communities.
Metasurfaces possess extraordinary capabilities to manipulate
wavefronts and control polarization, reflection and transmission
characteristics, and beam-forming [6]–[11]. Wavefront manip-
ulation has also been shown to be promising with Huygens
metasurfaces [12], [13]. Due to the subwavelength nature of
metasurfaces, low loss compared to bulk materials, and capa-
bilities of modifying propagating and radiating characteristics,
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they find potential applications in radio frequency, optical, and
biomedical devices [1].

It has been shown that finite-thickness effective medium
models of metasurfaces are inappropriate [14]. Here, we follow
in part Holloway and Kuester [15] and model a metasurface
as a two-dimensional (2-D) surface with equivalent electric
and magnetic susceptibility dyadics and generalized sheet-
transition conditions (GSTCs). Although considerable attention
has been given to the plane-wave problem [16]–[18], much less
work has been done on the near-field excitation (homogenized
Green’s functions) of metasurfaces, although the problem of
line-source excitation of a metasurface modeled by suscepti-
bilities has been presented in [2].

Another 2-D representation of a metasurface is in terms
of homogenized surface impedances [19], [20]. Here also,
most attention has been given to the plane wave problem
[21]–[24], although homogenized Green’s functions for line-
source excitations were presented in [25], and previously for
one-dimensional (1-D) periodic structures, in [26]. Thus, all
previous works on homogenized Green’s functions, either using
susceptibility dyadics or surface impedances, have been done
assuming a line-source excitation.

In this paper, we present homogenized dyadic Green’s func-
tions for a point source near an anisotropic metasurface,
using both the susceptibility dyadic and the surface-impedance
approach. Both methods result in nonlocal anisotropic sheet-
transition conditions and lead to the Green’s function in quasi-
analytical (Sommerfeld integral) form. This provides physical
insight into the wave dynamics, e.g., identifying surface-wave
propagation and allowing the field to be decomposed in terms of
discrete and continuous spectra. Results are compared to those
obtained using a full-wave method of moments in conjunc-
tion with the array-scanning method (ASM-MoM) [27]–[29].
It should be noted that the ASM is quite specialized, and not
implemented in any commercial code, and so a commercial
simulator cannot model these structures (periodic surfaces with
a single source—if one uses periodic boundary conditions in a
commercial code, the source is also made periodic). The only
alternative in a commercial code is to model a finite structure
consisting of a sufficiently large number of unit cells, which is
extremely time-consuming. Also, often commercial simulators
are inaccurate when the source point is close to the observation
point. As such, the method presented here is computationally
much more efficient than full-wave methods, and the homog-
enized Green’s functions are found to be accurate when the
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homogenization is valid (period small compared to wavelength)
except for points extremely close to the surface (less than a
period). Although recent work on metasurfaces mainly con-
siders structures with inhomogeneous (nonperiodic) surface
properties, we point out toward the end of the paper a poten-
tial application of controllable surface-wave excitation on an
infinite periodic graphene metasurface, which can be analyzed
using our efficient method.

II. GENERAL DYADIC GREEN’S FUNCTIONS

Consider a metasurface represented by an equivalent homog-
enized 2-D surface with electric conductivity tensor σe and
magnetic conductivity tensor σm. We will initially assume
that the metasurface is at the interface of two half-spaces, as
shown in Fig. 1(a); later we will consider layered media. A
dipole source is above the surface in region 1, with region 2
being below the surface. The electric field can be written as
(time-dependence ejωt)

E(n) (r) = −jωμ

∫
Ω

G(n)
e (r, r′) · J (r′) dΩ′ (1)

H(n) (r) =

∫
Ω

∇×G(n)
e (r, r′) · J (r′) dΩ′ (2)

where G(1)
e = G

(1)
0 +G(1)

r ,G(2)
e = G

(2)
t

G
(1)
0 =

(
I+

∇∇
k21

)
g, g =

e−jk1R

4πR
(3)

and R = |r− r′|. The scattered (reflected and transmitted)
Green’s functions are [30], [31]

G(1)
r =

−j

8π2

∫∫
1

k1z

(
rttt̂

+
1 t̂

−
1 + rtpt̂

+
1 p̂

−
1 + rptp̂

+
1 t̂

−
1

+ rppp̂
+
1 p̂

−
1

)
e−jk+

1 ·rejk
−
1 ·r′dkxdky (4)

G
(2)
t =

−j

8π2

∫∫
1

k1z

(
tttt̂

−
2 t̂

−
1 + ttpt̂

−
2 p̂

−
1 + tptp̂

−
2 t̂

−
1

+ tppp̂
−
2 p̂

−
1

)
e−jk−

2 ·rejk
−
1 ·r′dkxdky (5)

where k±
n = x̂kx + ŷky ± ẑknz and knz =

√
k2n − k2x − k2y ,

such that k̂±
n = 1

kn
(x̂kx + ŷky ± ẑknz), kn = |k±

n |, and

t̂±n =
ẑ× k̂±

n∣∣∣ẑ× k̂±
n

∣∣∣ , p̂±
n = k̂±

n × t̂±n . (6)

The tensor boundary conditions (i.e., GTSCs) in the tangen-
tial transform domain (kx, ky, z) are [1]

ẑ×
(
H(1) −H(2)

)
=

1

2
σe ·

(
E

(1)
T +E

(2)
T

)
(7)

−ẑ×
(
E(1) −E(2)

)
=

1

2
σm ·

(
H

(1)
T +H

(2)
T

)
(8)

where the subscript T denotes the tangential components,
and where the nonlocal material tensors are defined below.
Applying the boundary conditions, the coefficients rαβ and tαβ
(where α = t or p, β = t or p) can be obtained by solving eight

Fig. 1. Original problem and its equivalent homogenized problem represented
by (a) general sheet with electric conductivity tensor σe and magnetic con-
ductivity tensor σm; (b) one-sided impedance surface; and (c) two-sided
impedance surface.

linear equations. Assuming the special case k1 = k2 = k and
k1z = k2z = kz leads to greatly simplified coefficients, and in
the following, we will assume this condition, writing simply k
and kz .

The generally nonlocal electric and magnetic conductivity
tensors σe and σm can be expressed in terms of susceptibili-
ties [1], [14], [15], [18], [32] or surface impedances [20], [25].
Which method is more convenient to use depends on which
characterization of the subwavelength objects is available. For
simple objects, one can obtain both the surface susceptibili-
ties and the surface-impedance values in a simple closed form
(e.g., for metal patches, the susceptibilities are available in [32]
and [33], and the surface-impedance values in [20] and [25]).
For more complicated unit cells, [1] and references therein
provide a means of obtaining the surface susceptibilities from
full-wave numerical computation. In the following, we will
use both the susceptibility and the surface-impedance meth-
ods for a metasurface in a homogeneous host medium [see
Fig. 1(a), with ε1 = ε2]. For a metasurface over a layered
medium [e.g., Figs. 1(b) and (c)], it is more convenient to use
the surface-impedance method.

A. Susceptibility Method

Representing the equivalent electric and magnetic
conductivity tensors in terms of susceptibilities leads to
the nonlocal dispersive tensors [1]
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σe(ω,k) = σe = jωεχ
ES

+
jχzz

MS

ωμ
(ẑ× k) (ẑ× k) (9)

σm(ω,k) = σm = jωμχ
MS

+
jχzz

ES

ωε
(ẑ× k) (ẑ× k) (10)

where χ
ES

= x̂x̂χxx
ES + ŷŷχyy

ES + ẑẑχzz
ES and χ

MS
=

x̂x̂χxx
MS + ŷŷχyy

MS + ẑẑχzz
MS are the surface electric and

magnetic susceptibility dyadics, respectively, assumed to be
diagonal in the xyz reference frame.

The Green’s function coefficients rαβ and tαβ in the general
case are extremely complicated. However, when χyy

ES = χxx
ES

and χyy
MS = χxx

MS (valid when the physical structure is symmet-
ric in the x and y directions), these coefficients reduce to [2]

rtt =
2j

(
k2χxx

ES − k2zχ
xx
MS + k2Tχ

zz
MS

)
(k2χxx

ES + k2Tχ
zz
MS − 2jkz) (kzχxx

MS − 2j)
(11)

ttt =
−kz

[
4 + χxx

MS

(
k2χxx

ES + k2Tχ
zz
MS

)]
(k2χxx

ES + k2Tχ
zz
MS − 2jkz) (kzχxx

MS − 2j)
(12)

with rpp and tpp obtained by replacing (ES, MS) with (MS,
ES) in (11) and (12), respectively, and rtp = rpt = ttp =

tpt = 0, where kT =
√

k2x + k2y is the tangential wavenumber.

B. Surface-Impedance Method

As an alternative to the polarizability/surface-susceptibility
method, a planar metasurface can be modeled in terms of a one-
sided or two-sided surface-impedance condition. In general,
the two-sided surface-impedance method and the susceptibility
method can be made equivalent to each other if the impedances
are defined in terms of the susceptibilities, see e.g., (6) in [1].
Here, we assume that there is no magnetic response (σm),
which is valid for strictly planar geometries (e.g., an array of
spheres would lead to σm �= 0), and we consider unit cells for
which TE-TM coupling is absent or negligible.

1) Method I One-Sided Surface Impedance: This method
makes it particularly convenient to account for multiple pla-
nar layers below the metasurface. In this method, the boundary
conditions (7) and (8) reduce to

ẑ×H(1) = σe ·ET
(1) (13)

where σe = Z−1
s and Zs is the nonlocal surface-impedance

tensor. For a planar metasurface with square periodic elements,
one has [34]

σe =K
[(
ZTE
s k2x + ZTM

s k2y
)
x̂x̂+

(
ZTM
s k2x + ZTE

s k2y
)
ŷŷ

+
(
ZTE
s − ZTM

s

)
kxky (x̂ŷ + ŷx̂)

]
(14)

where K = 1/(ZTE
s ZTM

s k2T ), Z
TE
s , and ZTM

s represent the
parallel connection of the grid impedance Zg of the metalliza-
tion pattern and the input impedance of the region below the
surface. Referring to Fig. 1(b), the latter is the input impedance
Zd of the grounded dielectric, so that Zs = Zg‖Zd (where ‖
indicates a parallel connection), or, considering Fig. 1(a), this is
the input impedance of the dielectric half space (for free space,
Z0, such that Zs = Zg‖Z0). The expressions for Zg and Zd

(dependent on the dielectric height, h) can be found in [20] and
[25] with replacement of kx with kT . The coefficients in the
Green’s functions can be obtained as

rtt =
kzZ

TE
s − ωμ

kzZTE
s + ωμ

, rpp =
k2ZTM

s − ωμkz
k2ZTM

s + ωμkz
(15)

and rtp = rpt = 0.
2) Method II: Two-Sided Surface Impedance: In this

method, fields can be partially reflected from and transmitted
through the metasurface. For the grounded dielectric geometry
shown in Fig. 1(c), the boundary conditions (7) and (8) reduce
to

ẑ×
(
H(1) −H(2)

)
=

1

2
σe ·

(
E

(1)
T +E

(2)
T

)
(16)

ẑ×
(
E(1) −E(2)

)
= 0 (17)

at the metasurface, and

ẑ×E(2) = 0 (18)

at the ground plane, where σe = Z−1
g and Zg is the grid

impedance tensor. For a planar metasurface with square peri-
odic elements, we obtain the expression of Zg and σe by
replacing subscript “s” by “g” in (14). The expressions for the
grid impedance ZTE

g and ZTM
g for typical metallization pat-

terns can be found in [20] and [25] by replacement of kx with
kT . For the special case of a metasurface in a homogeneous
medium, the coefficients are

rtt =
−ωμ

2kzZTE
g + ωμ

, rpp =
ωμkz

2k2ZTM
g + ωμkz

(19)

ttt =
2kzZ

TE
g

2kzZTE
g + ωμ

, tpp =
2k2ZTM

g

2k2ZTM
g + ωμkz

(20)

and rtp = rpt = ttp = tpt = 0.
When applied to the same geometry, these one-sided and

two-sided surface-impedance methods lead to identical results,
as shown in [25] for the line-source case. To calculate the fields
in the region of the source position (region 1 in Fig. 1), one
can choose either the one-sided or two-sided surface-impedance
method. When calculating the transmitted fields through the
metasurface structure, one needs to use the two-sided surface-
impedance method.

III. ELECTRIC DIPOLE EXCITATION

The formulations in Section II can be applied to arbitrary
electric current source excitations. For electric dipole excita-
tions, these formulations can be further simplified. Here, we
will consider both vertical electric dipole (VED) and horizontal
electric dipole (HED) excitations having unit amplitude (i.e., a
1 A source). In general, for anisotropic and nonlocal materials
modeled by (9) and (10), the Green’s function is computed as
a 2-D integral over tangential wavenumbers. For the isotropic
case [starting with (11) and (12)], the spectral integrals can be
reduced to one-dimension as shown as follows.
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A. VED Source Excitation

For a vertical electric point source J = ẑδ (x− x′)
δ (y − y′) δ (z − z′), we obtain the z-component of electric
field in the same half-space as

Ez = −jωμ (G0,zz +Gr,zz) (21)

where

Gr,zz =
−j

4π

∫ ∞

0

rppk
3
T

k2kz
J0 (kT ρ) e

−jkz(z+z′)dkT (22)

G0,zz = g + (1/k2)∂2g/∂z2 and ρ =√
(x− x′)2 + (y − y′)2. The scattered field can be decom-

posed (exactly) into residue (surface wave) and branch-cut
(radiation continuum) components as

Gr,zz = Gres
r,zz +Gbc

r,zz (23)

where the residue field is

Gres
r,zz =

−1

4

n∑
i=1

rpp
′k3T

k2kz
H

(2)
0 (kT ρ)e

−jkz(z+z′)
∣∣∣∣
kT=kT,i

(24)
with

rpp
′ =

Nrpp

∂Drpp/∂kT
(25)

where kT,i is the ith pole of rpp that supports surface-wave
propagation, and Nrpp and Drpp are the numerator and denomi-
nator of rpp, respectively. The branch-cut (radiation continuum)
contribution is

Gbc
r,zz =

−j

8π

∫
Γbc

rppk
3
T

k2kz
H

(2)
0 (kT ρ)e

−jkz(z+z′)dkT (26)

where the branch-cut integration is performed over the usual
hyperbolic Sommerfeld branch-cuts [35].

B. HED Source Excitation

For a horizontal electric point source J =
ŷδ (x− x′) δ (y − y′) δ (z − z′), we consider the y-component
of scattered electric field in the same half-space

Gr,yy =
−j

4π

∫ ∞

0

(
rttftt
kz

− rppkzfpp
k2

)
kT e

−jkz(z+z′)dkT

(27)
where

ftt =
(
sin2 φ− cos2 φ

)
J ′′
0 (kT ρ) + sin2 φJ0 (kT ρ) (28)

fpp =
(
cos2 φ− sin2 φ

)
J ′′
0 (kT ρ) + cos2 φJ0 (kT ρ) (29)

φ = tan−1 [(y − y′) / (x− x′)], and J ′′
0 (kT ρ) =

d2J0(kT ρ)/d(kT ρ)
2.

To decompose the total field into residue and branch-cut
components, (27) can be rewritten as

Gr,yy =
−j

8π

∫ ∞

−∞

(
rtthtt

kz
− rppkzhpp

k2

)
kT e

−jkz(z+z′)dkT

(30)

where

htt =
(
sin2 φ− cos2 φ

) H(2)
1 (kT ρ)

kT ρ
+ cos2 φH

(2)
0 (kT ρ)

(31)

hpp =
(
cos2 φ− sin2 φ

) H(2)
1 (kT ρ)

kT ρ
+ sin2 φH

(2)
0 (kT ρ) .

(32)

Then

Gr,yy = Gres
r,yy +Gbc

r,yy (33)

where the residue field is

Gres
r,yy =

−1

4

n∑
i=1

rtt
′htt

kz
kT e

−jkz

(
z+z

′)∣∣∣∣
kT=kT,i

− 1

4

n∑
j=1

rpp
′kzhpp

k2
kT e

−jkz

(
z+z

′)∣∣∣∣
kT=kT,j

(34)

with

rtt
′ =

Nrtt

∂Drtt/∂kT
(35)

where kT,i is the ith pole of rtt that supports surface-wave prop-
agation, kT,j is the jth pole of rpp, and Nrtt and Drtt are the
numerator and denominator of rtt, respectively. The branch-cut
(radiation continuum) contribution is

Gbc
r,yy =

−j

8π

∫
Γbc

(
rtthtt

kz
− rppkzhpp

k2

)
kT e

−jkz(z+z′)dkT .

(36)

IV. EXAMPLES AND RESULTS

In the following, we restrict attention to planar metalliza-
tions, for which χzz

ES = χxx
MS = χyy

MS = 0. In this case, for the
surface-susceptibility method, the coefficients rtt and rpp can
be further simplified as

rtt =
−k2χxx

ES − k2Tχ
zz
MS

k2χxx
ES + k2Tχ

zz
MS − 2jkz

(37)

rpp =
kzχ

xx
ES

kzχxx
ES − 2j

. (38)

A. Square Patch Array

Consider a suspended PEC periodic array of square patches
with edge length l, gap between patches g, and period p = l +
g, as shown in Fig. 2(a).

1) Susceptibility Analysis: The effective electric and mag-
netic polarizability densities for a square PEC patch array are
αE,xx = αE,yy = 1.02l3, αE,zz = αM,xx = αM,yy = 0, and
αM,zz = 0.4548l3 [32], [33], and from these, the components
of the electric and magnetic surface-susceptibility dyadics can
be analytically calculated in the sparse approximation [14]; see
Appendix A. The vertical wavenumbers in air corresponding
to the guided-wave poles (zeros of the reflection-coefficient
denominators) are [2]

kz,tt =
−j ±√

k2χzz
MS (χxx

ES + χzz
MS)− 1

χzz
MS

(39)
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Fig. 2. (a) Square patch array. (b) Wire-mesh grid. (c) Jerusalem-cross array.
(d) Strip array.

for rtt, and

kz,pp =
2j

χxx
ES

(40)

for rpp. To generate a surface wave, one needs Im(kz) < 0 so
that the wave is evanescent along the vertical (z) direction. For
a square patch array, we have χxx

ES > 0 and χzz
MS < 0. Since

for a VED source, only rpp is involved in the calculation of
the electric and magnetic fields, we can conclude that a VED
source over a square patch array will not excite a surface wave
(the surface is capacitive). For a HED, both rtt and rpp are
needed in the field calculations, and so a HED over a square
patch array will excite a surface wave if χxx

ES > −χzz
MS (which

is satisfied for a PEC square patch array), and the corresponding
wavenumber is (39) with the minus sign chosen.

2) Surface-Impedance Analysis: The scalar equivalent grid
impedances for TE and TM modes are [20], [25]

ZTE,patch
g = −j

η

2α

[
1− k2T

2k2

]−1

(41)

ZTM,patch
g = −j

η

2α
(42)

where α = kp
π ln

[
csc

(
πg
2p

)]
. Then from (19), the pole of rpp

is

kz,pp = j
k

α
. (43)

We always have α > 0, and hence Im(kz,pp) > 0, so that the
VED source excitation cannot support surface-wave propaga-
tion (as obtained above). The poles of rtt are

kz,tt = j
k
(
1±√

1 + α2
)

α
. (44)

Since α > 0, only one solution (having the minus sign) satisfies
the condition Im(kz) < 0, and this condition is always satisfied.

Fig. 3. Electric field excited by a 1-A HED (upper plot) or VED (lower plot)
source above a square PEC patch array at f = 15 GHz, for l = 1.8 mm, g =
0.2 mm, p = l+ g = 2 mm (p/λ = 0.1), x′ = 0, y′ = 0, z′ = 3 mm, and
y = 0.

That is to say, the HED source excitation can always support
surface-wave propagation, as noted above.

As expected, the susceptibility method and the surface-
impedance method lead to the same conclusion: the VED
source excitation over a square PEC patch array cannot support
surface-wave propagation, while the HED source excitation can
always support surface-wave propagation. Considering the two
methods (surface susceptibility and surface impedance), the
surface-wave propagation constants will be equal if kχxx

ES =
2α, which is

1.02l3

p2 − 1.02l3/(2.78p)
≈ 2p

π
ln

[
csc

(
π(p− l)

2p

)]
. (45)

Although these expressions appear quite different, it can be
checked numerically that the expressions are approximately
equal for a wide range of structural parameters.

We omit in the following a comparison of results using
the susceptibility method and the surface-impedance method,
although excellent agreement was found for g ≥ p/10. For
extremely dense arrays (g < p/10), the surface-impedance
method yielded better results than the susceptibility method in
comparisons with a full-wave array-scanning method (ASM,
described below), although that is likely due to the fact that
the patch polarizabilities were calculated assuming a sparse
approximation. More accurate, numerically retrieved patch sus-
ceptibilities (either measured, or numerically computed, as
described in [1], [14], and [18]) would be expected to restore
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Fig. 4. Normalized total, residue, and bc Ey excited by a HED source above
a square patch array. Structural parameters: l = 1.8 mm, g = 0.2 mm, x′ =
y′ = 0, x = y = λ0/

√
2, and (a) z′ = z = λ0/5; (b) z′ = z = λ0/10. (The

vertical dashed-dotted line represents the homogenization condition p/λ0 =
0.1, and the vertical dotted line represents the condition z = p. These two ver-
tical lines overlap in Fig. 4(b). The vertical lines in the later figures have the
same meaning).

accuracy to the susceptibility method for dense arrays of
patches. In the following figures, we make comparisons to
results obtained using the full-wave ASM [27], [28], which
can be considered to yield the exact (up to numerical accuracy)
result.

Fig. 3 shows the electric field spatial profile (as a function of
x) over several periods of a square PEC patch array for HED
and VED excitation. Excellent agreement is observed between
the proposed homogenized method and full-wave ASM-MoM.

Fig. 4 shows the amplitude of the total, residue, and branch-
cut Ey fields (normalized to the direct source-excited field
without the metasurface, denoted as Ein

y ) versus frequency for
a HED source excitation. The representation in terms of such
normalized fields has been chosen to outline and quantify the
effects of the metasurface on the source radiation. As one
expects, when the source and observation points move closer to
the surface [from z′ = z = λ0/5 in Fig. 4(a) to z′ = z = λ0/10
in Fig. 4(b)], the residue field (surface wave) is enhanced, while
the branch-cut field (radiation wave) decreases. Moreover, both
the residue field and branch-cut field contribute significantly to

Fig. 5. z-component of electric field (normalized to the incident field) excited
by a VED source above a square patch array. Parameters: l = 1.8 mm, g =
0.2 mm, x′ = y′ = 0, x = y = ρ/

√
2. (a) z′ = z = λ0/5 and (b) z′ = z =

λ0/10.

the total field. The vertical dashed-dotted line represents a rea-
sonable condition for the validity of homogenization, p/λ0 =
0.1. Comparison with the ASM shows that indeed excellent
results are found in this case (to the left of the vertical dashed-
dotted line). The vertical dotted line represents the condition
z = p (since we set z′ = z ∝ λ0, z is decreasing as frequency
increases); to the left of this line z > p, which we found to be
a reasonable condition for approximate validity of the homog-
enized Green’s functions in the near field [25]. For Fig. 4(a),
this is simply shown for reference, since it lies to the right of
the dashed-dotted vertical line, and thus lies in a region where
the homogenization condition is already violated. For Fig. 4(b),
the dashed-dotted and dotted vertical lines overlap.

Fig. 5 shows the normalized z-component of electric field
excited by a VED source above a square PEC patch array. Since
no surface wave is excited, we only show the total normalized
field (equal to unity plus the branch-cut contribution). Good
agreement with the ASM results is again found in the validity
regime (left of the solid dashed-dotted vertical line). The region
to the right of the dashed-dotted vertical line is included merely
to demonstrate the breakdown of homogenization.

Fig. 6 shows the z- and y-components of the far fields cal-
culated from the homogenization model (with the method of
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Fig. 6. Far field above a square patch array (solid lines: homogenization model;
dashed lines: ASM-MoM). Structural parameters: l = 1.8 mm, g = 0.2 mm,
x′ = y′ = 0, r = 100λ0, z = rcosθ, f = 15 GHz. (a) Ez in the xOz plane
excited by a VED source, z′ = 3p, x = rsinθ, y = 0. (b) Ey in the yOz plane
excited by a HED source, z′ = p, x = 0, y = rsinθ.

stationary phase as shown in Appendix B) and from the full-
wave ASM-MoM method. Good agreement between these two
methods is obtained for both VED and HED dipole excitations.

B. Wire-Mesh Grid

The wire-mesh grid is the complementary configuration of
the PEC patch array, as shown in Fig. 2(b). The surface-
impedance parameters can be calculated as [20]

ZTE
g = j

η

2
α (46)

ZTM
g = j

η

2
α

(
1− k2T

2k2

)
(47)

where α = kp
π ln

[
csc

(
πw
2p

)]
. Unlike the patch array, in the

wire mesh grid, the VED source excitation can always support
surface-wave propagation (as can the HED source). The pole of
rpp supporting surface wave is

kz,pp = j
k
(
1−√

1 + α2
)

α
. (48)

Fig. 7 shows the normalized field Ey excited by a HED source
above a wire-mesh grid. Again, good agreement is found with
the ASM results when homogenization is valid (left of the solid
line).

C. Jerusalem-Cross Array

For the Jerusalem-Cross (JC) array [shown in Fig. 2(c)], it
seems there is no susceptibility model in the literature, although

Fig. 7. Normalized Ey excited by a HED source above a wire-mesh
grid. Structural parameters: p = 2 mm, w = 0.2 mm, x′ = y′ = 0, x = y =
ρ/

√
2. (a) z′ = z = λ0/5 and (b) z′ = z = λ0/10.

the surface impedances for the TE and TM modes, i.e., ZTE
g and

ZTM
g , can be found in [25] and references therein. The poles of

rpp lead to

kz,pp = j
2ε0 − kαCg

Cg
(49)

with the JC capacitance Cg given in [25]. To have a surface
wave, one needs Im(kz) < 0, i.e., frequency f > fc, where fc
depends on the geometrical parameters. The analytical solu-
tions for the poles of rtt are quite complicated (involving the
solution of a cubic equation) and are not discussed here.

For the JC array, Fig. 8 shows the electric field as a function
of x for HED and VED excitation. Good agreement between
the two methods is observed.

Fig. 9 shows the normalized total, residue, and branch-cut
Ez fields versus frequency for the VED source excitation, and
Fig. 10 shows the normalized Ey fields excited by the HED
source. Agreement with the ASM results is again found to be
good in the homogenization regime. Fig. 11 shows the far field
due to a source over a JC array, where it is seen that the presence
of the array significantly affects the far field.

Regarding computation time, it should be noted that for the
near fields, the homogenized Green’s function computations
require the computation of 1-D Sommerfeld integrals, which
can be done in seconds, whereas the ASM method takes, on a
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Fig. 8. Electric field excited by a 1-Amp HED (upper plot) or VED (lower
plot) source above a JC array at f = 10GHz, for p = 4.3 mm, g = 0.1 mm,
d = 2.8 mm, w = t = 0.2 mm, x′ = 0, y′ = 0, z′ = 10 mm, and y = 0.

similar computer, several minutes or hours per frequency point,
depending on the mesh of the PEC objects and if symmetry
considerations can be applied [28].

D. Strip Grid Array

The strip array configuration shown in Fig. 2(d), if made of
graphene, allows controlled excitation of surface waves in the
THz regime, as will be shown in this section. Note that the
previous three examples were isotropic, wherein the Green’s
function could be computed using the integrals provided in
Section III. The graphene strip array is an anisotropic surface,
and hence, the Green’s function must be computed as a 2-D
integral. The in-plane effective conductivity tensor of the pro-
posed structure can be analytically obtained using an effective
medium theory [36]. The dispersion topology of the proposed
structure may range from elliptical to hyperbolic as a function
of its geometrical and electrical parameters. The homogenized
conductivity is σe = x̂x̂σxx + ŷŷσyy , where

σyy = σ
w

px
and σxx =

pxσσc

wσc + gσ
(50)

where px and w are the periodicity and width of the
strips, respectively, g = px − w is the separation between

Fig. 9. Normalized total, residue, and bc Ez excited by VED source above
a JC array. Structural parameters: p = 4.3 mm, g = 0.1 mm, d = 2.8 mm,
w = t = 0.2 mm, x′ = y′ = 0, x = y = λ0/

√
2. (a) z′ = z = λ0/5 and

(b) z′ = z = λ0/10.

two consecutive strips, σ is the 2-D conductivity, and σc =
j ωε0px

π ln(csc πg
2px

) is an equivalent conductivity associated with
the near-field coupling between adjacent strips.

Fig. 12 shows the normalized scattered electric field for
the VED source excitation at f = 10 GHz versus angle φ for
ρ = 0.2λ for PEC strips having width w = 3 mm, period px =
3.5 mm (px/λ = 0.117), and height z = z′ = λ/5 (z/px =
z′/px = 1.713). In this case, σyy → ∞ and σxx � px

g σc =
j6.51 mS). The field near the surface is almost isotropic, due
to the large value of strip conductivities. In fact, 2D conduc-
tivity values larger in magnitude than approximately 0.1 yield
essentially PEC behavior (consider, e.g., that a good metal at
low GHz frequencies can typically be considered a PEC, and
that the equivalent 2D conductivity is σ2D = σ3Dt, where t is
metal thickness. Given σ3D ≈ 107 S/m, and, say, t = 10 nm,
then σ2D ≈ 0.1 nmS). There is some disagreement in mag-
nitude between homogenized and ASM results, but the field
pattern is the same.

To obtain a directional response, the strip conductivity needs
to be reduced in an appropriate manner. For this application,
graphene represents a useful material since its relaxation time is
of the order of ps, so that the desired conductivity response can
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Fig. 10. Normalized Ey excited by HED source above a JC array. Structural
parameters: p = 4.3 mm, g = 0.1 mm, d = 2.8 mm, w = t = 0.2 mm, x′ =
y′ = 0, x = y = ρ/

√
2. (a) z′ = z = λ0/5 and (b) z′ = z = λ0/10.

Fig. 11. Far field above a JC array (solid lines: homogenization model;
dashed lines: ASM-MoM). Structural parameters: p = 4.3 mm, g = 0.1 mm,
d = 2.8 mm, w = t = 0.2 mm, x′ = y′ = 0, r = 100λ0, z = rcosθ, f =
7 GHz. (a) Ez in the xOz plane excited by a VED source, z′ = 2p, x = rsinθ,
y = 0. (b) Ey in the yOz plane excited by a HED source, z′ = 3p, x = 0,
y = rsinθ.

Fig. 12. Normalized scattered electric field excited by a VED source at f =
10 GHz versus angle φ for ρ = 0.2λ for PEC strips having width w = 3 mm,
period px = 3.5 mm (px/λ = 0.117) and height z = z′ = λ/5 (z/px =
z′/px = 1.713). Solid blue line shows homogenized results and dashed red
line shows ASM results.

be obtained in the THz range (for metals, the desired response
would be in the visible). Moreover, graphene is tunable via
an external bias, such that the strip-array effective conductiv-
ity is tunable [36]. Fig. 13 shows the reflected/scattered electric
field for the VED source excitation as a function of angle for
ρ = 0.2λ when the strips consist of seven-layer thick graphene
at room temperature, with width w = 196 nm, period px =
200 nm, and f = 10 THz (px/λ = 0.0067). Graphene relax-
ation time is 0.35 ps (for graphene conductivity, see [37]), and
z = z′ = λ/50 (z/px = z′/px = 3). The graphene is biased
using two values of chemical potential μc, and it can be
seen that this hyperbolic surface provides tunable and highly
directional surface-wave propagation.

V. CONCLUSION

A homogenized electric-dipole-source Green’s function
model for anisotropic metasurface structures has been pre-
sented. The method is very efficient compared to full-wave
solvers, and leads to physical insight into the wave dynam-
ics. The calculated results are compared to a full-wave method,
and good agreement is obtained when homogenization is valid,
except when field points are too close to the metasurface
(z < p). As a final remark, although the method has been
presented for uniform metasurfaces, it should be mentioned
that homogenized representations of nonuniform metasurfaces
(such as those used in [9], [12], [13], [38]) are also possible,
under the adiabatic assumption that the length scale of variation
of the involved susceptibilities or surface impedances is large
with respect to the local microscopic periodicity. In particular,
the resulting nonuniform impedance boundary condition can be
used to formulate a boundary integral equation that can then
be discretized numerically with the method of moments. The
main difficulty in this case would arise from the dependence
of the local surface impedance on the wavenumbers (i.e., from
its spatially dispersive nature). A general solution to this issue
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Fig. 13. Normalized scattered electric field excited by a VED source for
graphene strip array with w = 196 nm, px = 200 nm, and f = 10 THz.
Two bias values are considered, μc = 0.8 eV, leading to σxx = 0.8637 +
j14.2337 mS and σyy = 0.4666− j10.2604 mS, and μc = 1.2 eV, σxx =
0.2766 + j9.8801 mS and σyy = 0.6999− j15.3907 mS.

is not yet available, as far as we know; however, approximate
approaches have been proposed in the literature, based on, e.g.,
evaluating the surface impedance at a fixed wavenumber (that of
a locally dominant surface or leaky wave [39]) or introducing
a rational approximation of the surface impedance that trans-
lates into an integro-differential boundary condition amenable
to discretization [40].

APPENDIX A
RELATION BETWEEN SUSCEPTIBILITY AND

POLARIZABILITY

The relations between the electric/magnetic susceptibilities
and polarizabilities are [14]

χtt
ES =

N 〈αE,tt〉
1−N 〈αE,tt〉 / (4r) (51)

χzz
ES =

N 〈αE,zz〉
1 +N 〈αE,zz〉 / (2r) (52)

χtt
MS =

−N 〈αM,tt〉
1 +N 〈αM,tt〉 / (4r) (53)

χzz
MS =

−N 〈αM,zz〉
1−N 〈αM,zz〉 / (2r) (54)

where tt in (51) and (53) represents xx or yy, αE and αM are
the electric and magnetic polarizabilities of an individual ele-
ment, N is the number of elements per unit area (N = 1/p2 for
square array with period of p), the symbol <> represents an
average over the elements, and r is a constant depending on the
array structure (r = 0.6956p for square array).

APPENDIX B
FAR FIELD BY METHOD OF STATIONARY PHASE

For the far fields, the Sommerfeld integrals can be calcu-
lated totally analytically with the method of stationary phase
as follows:

Gr,zz =
1

8π

∫ ∞

−∞

rppk
3
T

k2
√

k2T −k2
H

(2)
0 (kT ρ)e

−
√

k2
T−k2(z+z′)dkT

≈ rppe
−jkrsin2θ
4πr

(55)

Gr,yy =
−j

8π

∫ ∞

−∞

(
rtthtt

kz
− rppkzhpp

k2

)
kT e

−jkz(z+z′)dkT

≈ 1

4πr
cosθe−jkr

(
rtth

′
tt

cosθ
− rpph

′
ppcosθ

)
(56)

where h′
tt =

j(sin2φ−cos2φ)
krsin2θ + cos2φ, h′

pp = j(cos2φ−sin2φ)
krsin2θ +

sin2φ, z + z′ = rcosθ, ρ = rsinθ, and H
(2)
0 (kT ρ) ≈√

2
πkT ρe

−j(kT ρ−π/4) are applied.
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