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Abstract
An infinite sheet of graphene lying above a perturbed ground plane is studied. The perturbation
is a two-dimensional ridge, and a bias voltage is applied between the graphene and the ground
plane, resulting in a graphene nanoribbon-like structure with a soft boundary (SB). The spatial
distribution of the graphene conductivity forming the SB is studied as a function of the ridge
parameters and the bias voltage. The current distribution of the fundamental transverse
magnetic surface plasmon polariton (SPP) is considered. The effect of the ridge parameters
and shape of the SB on the current distributions are investigated, and the conditions are
studied under which the mode remains confined to the vicinity of the ridge region.
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1. Introduction

Graphene is a two-dimensional material having unique
electronic, mechanical, and optical properties [1–6]. A
variety of applications have been considered, including
optical sensors [7], transparent electrodes, nanoelectrome-
chanical applications (NEMs) [8], and optoelectronic appli-
cations [9–12]. Graphene’s interesting properties are partly
due to its conical conduction and valance bands joined by
two points at the Fermi level [13]. Graphene, doped with
excess carriers, can also guide surface plasmon oscillations
at terahertz frequencies, similar to those in noble metals
at infrared frequencies [14, 15]. In this regard, at THz
frequencies graphene has attractive plasmonic properties,
exhibiting long-lived excitations and SPP tunability. The
tunability of transverse magnetic (TM) surface plasmons
is due to their ability to vary the carrier density, which

can be easily achieved by gate biasing or chemical doping.
Graphene can also support transverse electric (TE) surface
plasmons which are loosely confined to its surface; we do
not consider them further in this paper. Electron energy-loss
spectroscopy (EELS) was first used to prove the existence
of the plasmonic effect in graphene experimentally [16, 17].
Later, surface plasmons were excited via optical means
and the interaction of optical phenomena with graphene
plasmons was studied experimentally [18, 19]. Considering
only TM surface plasmons, an infinite suspended sheet of
graphene supports one surface mode. However, a graphene
strip supports an infinite number of 2D-bulk modes and two
almost degenerate symmetrical and anti-symmetrical edge
modes. Therefore, graphene strips are of obvious interest for
waveguiding and related applications due to the variety of pos-
sible modes that may propagate. Also, plasmons in graphene
with a magnetic field present have been studied [20, 21]
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Figure 1. Electrostatically biased graphene sheet over a ground
plane with a two-dimensional ridge.

and shown to have interesting properties. For example, a
magnetically biased graphene strip supports edge and bulk
magnetoplasmons with nonreciprocal properties.

Electrically, graphene can be modeled by surface
conductivity which is considered in several works [22–30].
Here we use the local conductivity resulting from the Kubo
formula [31]
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where−e is the charge of an electron, h̄ is the reduced Plank’s

constant, fd (ε, x) = (exp
(
ε−µc(x)

kBT

)
+1)−1 is the Fermi–Dirac

distribution, kB is the Boltzmann’s constant, µc(x) is the
inhomogeneous chemical potential created by the bias, and
0 = 1013 s−1 is the phenomenological scattering rate.

The first term in (1) is due to intraband contributions
and the second term is due to interband contributions. The
sign of Im(σ ) is negative and positive for the intraband and
interband contributions, respectively. Therefore, depending on
the parameters in (1), such as frequency and temperature, one
of the two contributions dominates and determines the sign of
Im(σ ).

It can be shown that TM surface waves can propagate
only if Im(σ ) < 0 [24, 28]. This phenomenon is exploited
in [32], where it is suggested that a graphene sheet and
an inhomogeneous biasing scheme, such as that resulting
from a ground plane ridge (figure 1), can be used to
electronically form a conductivity profile capable of confining
SPP propagation. That is, in [32] the ridge is assumed
to achieve a piece-wise constant conductivity profile with

Figure 2. The x–y view of the geometry in figure 1.

Im(σ ) < 0 in the desired channel region |x| <W and Im(σ ) >
0 outside of the channel, |x| > W, forming, essentially, a
hard-boundary (HB) graphene nanoribbon (GNR). In this
paper, we investigate this structure (figure 1) without the
piece-wise constant conductivity assumption—the biased
ridge/ground plane results in an electrostatic (bias) charge
distribution ρ (x) determined from Laplace’s equation, which,
in turn, results in the inhomogeneous chemical potentialµc(x)
such that σ = σ(x). This geometry permits the ability to tune
Im(σ ) to be negative in a limited area (in the vicinity of the
ridge), forming a channel for SPP guiding, albeit forming a
soft boundary (SB). In particular, it is impossible to form
the HB case using the ridged ground plane, but one can
approximate the HB case with a sufficiently sharp SB, as
shown below.

The time convention is ejωt and the temperature in (1)
is set to be T = 3 K, consistent with [32], since at lower
temperature the interband contribution can dominate the
intraband contribution down to lower frequencies than at room
temperature. For example, at f = 45 THz and µc = 0.05 eV,
the intraband and interband contributions at T = 3 K are
σintra = 1.4 − j41 µS and σinter = 8.9 + j62 µS while at
T = 300 K they are σintra = 1.4 − j42 µS and σinter = 27 +
j39 µS.

In the following, properties of the resulting channel are
studied as a function of the parameters shown in figure 1.
Then, the current distribution for the fundamental mode of
the geometry is considered and the conditions are explored
under which the mode will remain confined to the vicinity of
the step region. One interesting result is that currents can still
be concentrated to the vicinity of the ridge even when Im(σ )
is negative everywhere. This requires some special conditions
which are discussed toward the end of this work.

2. Methodology and formulations

Figure 2 shows the x–y view of the geometry in figure 1. A
perfect magnetic conductor (PMC) sheet is placed at x = 0
since the geometry is symmetrical with respect to x = 0.
By solving Laplace’s equation and applying the appropriate
boundary conditions, it is easy to show that the bias voltage
distribution between the graphene and the ground plane is
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Figure 3. Imaginary (left) and real (right) parts of the conductivity distribution on the graphene sheet as a function of a, b,V0, and
frequency.
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Figure 4. Longitudinal and transverse currents for the soft-boundary (blue) and the hard-boundary (red) cases, and Im(σ ) profile (green).
Parameters are f = 30 THz,W = 25 nm, a = 25 nm, b = 1 µm, and V0 = 20 V.

Figure 5. The dispersion curves of the fundamental mode for the
soft-boundary and the hard-boundary cases. Parameters are
W = 25 nm, a = 25 nm, b = 1 µm, and V0 = 20 V.

where

Cn = −
2b
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In obtaining (2), a zeroth-order approximation has been used
to assume an x-independent potential in the region above the
step (|x| < W). Otherwise, the problem needs to be solved
numerically (e.g., by expanding the potentials as series for
both |x| > W and |x| < W regions). The zeroth-order solution
is a good approximation for W � b and/or a� b in figure 1.
Therefore, the electrostatic surface charge density on the
graphene sheet is
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which can be used to find the chemical potential on the
graphene sheet as

µc(x) =
h̄

e
vF

√
πρ (x)

e
(5)

where vF = 9.546×105 m s−1 is the Fermi velocity. Equation
(1) then gives the conductivity distribution σ(x) on the
graphene sheet.

In order to find the dynamic modal current distributions
on the graphene (eigencurrents of the structure), Ohm’s law
can be used in the one-dimensional Fourier transform domain
z↔ βz as

J (x, βz) = σ(x)E (x, b, βz) , (6)

where the Fourier transform pair is defined as
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Figure 6. Real part of the longitudinal current for different values of V0. Other parameters are f = 40 THz, b = 1 µm,W = 25 nm, and
a = 1.25V0 nm.

where

∇βz =
d
dx

x̂+
d
dy

ŷ+ jβzx̂. (10)

The Green’s function in (9) is [33]
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√
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)
, (11)

where K0 (x) is the zero order modified Bessel function of the
first kind. Since we are considering modes tightly bound to
the graphene surface, once the ridged ground plane is used to
obtain the electrostatic bias charge density we assume that the
ground plane does not interact with the tightly confined modal
fields, which we verified to be true.

In summary, we assume the graphene sheet forms
a conductive surface, we find the electrostatic potential
distribution V (x, y) via Laplace’s equation, leading to
an electrostatic charge distribution and resulting chemical
potential, resulting in the conductivity σ(x). Equations (6)
and (9) form an integral equation whose null space gives the

modes of the structure (i.e., different βz and their associated
currents).

The pulse function collocation method is used to solve
the integral equation, with point matching at the center of the
pulses. The conductivity distribution based on the electrostatic
charge distribution in (6) is assumed to be only slightly
perturbed by the modal fields, i.e., ∇ · J/jω � ρ where ρ
is the static charge density (4) and J is the dynamic modal
current density (6). To see that this inequality is satisfied,
assume a typical frequency of f = 30 THz and a strip width
W = 25 nm. If the modal current is as large as I = |J| 2W =
1 mA, then the left side of the inequality is 10−10 C m−2.
Using (4) with typical values a = 25 nm and V0 = 20 V leads
to ρ = 7 mC m−2 (consistent with typical doping densities of
4× 1012 cm−2), and the inequality is strongly satisfied.

3. Results and discussions

Figure 3 shows the conductivity distribution for the structure
of figure 1 as a function of the ridge parameters (a and b), bias
voltage, and frequency. The dashed lines in the plots for Im(σ )
specify lines where Im(σ ) = 0, and so the distance between
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Figure 7. Imaginary part of the longitudinal current for different values of b. Other parameters are f = 55 THz,V0 = 20 V,W = 25 nm,
and a = 25 nm.

the dashed lines specifies the effective width of the channel
created above the ridge with negative Im(σ ). As can be seen
in figure 3, the width of the channel increases by increasing
the bias voltage, by decreasing a or b, or by decreasing the
frequency (assuming that the other parameters are fixed in
each case). The width of the channel is also more sensitive
to the applied bias voltage than the other parameters. The
parameter a along with the bias voltage determine the value of
the conductivity in the |x| < W region. The parameter b along
with the bias voltage determine the value of the conductivity
far away from the ridge |x| � W. However, the softness or the
sharpness of the boundary is a function of all the parameters
somewhat equally.

Figure 4 shows the current distribution associated with
the fundamental SPP mode in figure 1. The conductivity
and the current marked as SB in figure 4 correspond to
the geometry in figure 1 for f = 30 THz,W = 25 nm, a =
25 nm, b = 1 µm, and V0 = 20 V. The current which is noted
as the HB current corresponds to a GNR having a width of
50 nm and the same conductivity as the SB case for |x| < W,
and with σ = 0 for |x| > W. The dispersion curves associated
with these currents are shown in figure 5. The currents in
figure 4 are normalized so that the 2-norm of the eigencurrent
vector (consisting of transverse and longitudinal components)
is unity,

∫ (
|Jx (x)|2 + |Jz (x)|2

)
dx = 1. Nonetheless, only

the relative current component values are important for our
purposes.

As figure 4 suggests, the current distribution for |x| <
W is similar for both SB and HB cases (although Re (Jx)

and Im (Jz) are much larger in the SB case) and they
both vanish as Im(σ ) becomes positive. However, the SB
current has some oscillations near the two boundaries. These
oscillations resemble the field oscillations in the cladding

of an optical fiber with graded index cladding [34]. One of
the consequences of this current spreading is that the mode
becomes more lossy since parts of the current flows in the
region with lower conductivity (SBs). As an example, the
propagation constants for the SB and HB cases of figure 4 are
βz/k0 = 43.8− j12.3 and βz/k0 = 60.7− j2.8, respectively.

Figure 6 shows the effect of the boundary softness on the
current distribution (Re (Jz)) for the fundamental mode, where
f = 40 THz,W = 25 nm, b = 1 µm, and V0 takes different
values. The parameter a is set to be a = 1.25V0 nm so that the
conductivity values remain the same for |x| < W. As figure 6
shows, the boundary becomes softer as V0 increases and the
current oscillations increase (both in magnitude and number).

In figures 4 and 6 the currents vanish as Im(σ ) becomes
positive, which raises the question: is it necessary for Im(σ ) to
be positive away from the ridge to have a confined mode? To
address this question, figure 7 shows Im (Jz) and conductivity
distributions for different values of b; the other parameters
are f = 55 THz,W = 25 nm, a = 25 nm, and V0 = 20 V.
As figure 7 shows, Im(σ ) changes sign for b = 80 nm, but
it remains negative everywhere for b = 70, 60, and 40 nm.
The currents remain confined to the vicinity of the ridge
region even for values of b where Im(σ ) remains negative
everywhere. However, as b decreases the current spreads out
further and the mode becomes less confined. As a result, the
important factor to consider to achieve good lateral mode
confinement is that the ratio of (or the difference between)
Im(σ ) above and away from the ridge should be large.

4. Conclusion

The conductivity and the current distributions were studied
for an infinite graphene sheet over a ridge-perturbed ground
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plane. It was shown analytically that a channel with soft
boundaries will be formed above the ridge to guide SPPs
provided that the parameters are adjusted properly. It was
also shown that the width of the channel is more sensitive to
the bias voltage than the geometric ridge parameters. It was
observed that the SPP can be kept confined to the vicinity
of the ridge even if the formed channel does not have a
finite width (i.e., that Im(σ ) is negative everywhere) provided
that the channel boundaries have sharp enough slopes. Since
the width of the formed channel can be controlled by both
frequency and the bias voltage, the spatial location of the
current concentration (and its associated field) for a surface
mode can be controlled. This can be useful in switching or
frequency demultiplexing applications.
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Correction to: E. Forati and G.W. Hanson, Soft-boundary graphene nanoribbon formed by
a graphene sheet above a perturbed ground plane: conductivity pro�le and SPP modal current
distribution, J. Opt. 15, 114006 (2013).

The paper [1] had several incorrect values of graphene conductivity. The second paragraph of the
second page (column 2) should read "For example, at f = 45 THz and �c = 0:05 eV, the intraband
and interband contributions at T = 3 K are �inter = 60:2 + j23:3 �S and �intra = 0:73� j20:7 �S,
while at T = 300 K they are �inter = 50:6 + j27:5 �S and �intra = 0:84� j23:7 �S.

[1] E. Forati and G.W. Hanson, Soft-boundary graphene nanoribbon formed by a graphene sheet
above a perturbed ground plane: conductivity pro�le and SPP modal current distribution, J. Opt.
15, 114006 (2013).
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