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Optical scattering from a planar array of finite-length metallic carbon nanotubes
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A model is developed for optical scattering from planar arrays of finite-length single-wall metallic carbon
nanotubes. The scattered field is predicted using a periodic Green’s function for the array, which includes all
electromagnetic interactions, and a quantum conductance function o,,(w) for the carbon nanotubes. It is found
that for both individual carbon nanotubes and nanotube arrays, the optical far scattered field is proportional to
o,,(w), so that scattering characteristics are governed by effects associated with electronic transitions. This is
in strong distinction to the case for far-infrared arrays, where mutual electromagnetic coupling effects were
previously found to be very important for a wide range of broadside nanotube spacings. Furthermore, due to
strong damping, single-wall nanotubes do not exhibit longitudinal current resonances (optical antenna effects)
associated with the finite length of the tubes, which is also quite different from the far-infrared result.
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I. INTRODUCTION

There is currently considerable interest in the optical
properties of nanoscale systems, including the exploration of
plasmonic effects for subwavelength optical devices, and the
optical response of nanowires and carbon nanotubes (CNs).
Possible applications include subwavelength focusing of
light, and the development of nanoscale optical antennas. An
important aspect of this field is the interaction of an electro-
magnetic wave with a nanostructure, and here a model is
developed for electromagnetic scattering from infinite planar
arrays of finite-length single-wall carbon nanotubes
(SWNTs), and individual nanotubes, in the optical regime.

The optical behavior of carbon nanotubes has been exam-
ined by considering their dielectric function,!~® although in
these papers the focus was on the behavior of the dielectric
function itself, rather than on optical scattering. A previous
model for optical scattering from an isolated CN was pre-
sented in Ref. 7 using the Leontovich-Levin integrodifferen-
tial equation. Numerical simulations for the scattered electro-
magnetic field were presented, as well as an iterative
analytical solution. In Ref. 8 some antenna properties of in-
dividual SWNTs in the optical range have been presented
based on the numerical solution of a Hallén’s-type integral
equation (IE), which was also applied to isolated finite-
length nanotubes at GHz and far-infrared frequencies in Ref.
9, and in Ref. 10 to planar arrays in the far-infrared. In Ref.
11 some general aspects of CN antennas at lower frequencies
were considered.

Due to the low value of the optical conductance for
SWNTs, a simple Born approximation can be used to obtain
a closed-form solution for the plane-wave induced current
and the far scattered field for isolated nanotubes and nano-
tube arrays. We show that for nanotubes separated (broad-
side) by more then a few times the tube’s radius, electromag-
netic coupling effects are insignificant, and the far scattered
field is proportional to o,(w), such that the optical response
of an array of nanotubes can be obtained by vectorially sum-
ming the contributions of individual nanotubes. This is in
strong distinction to the case for far-infrared arrays consid-
ered in Ref. 10, where mutual coupling effects (significant
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red- and blueshifts in the scattering response, and linewidth
broadening) were found to be important, and where the Born
approximation was not applicable. Furthermore, due to
strong current damping, SWNTs do not exhibit longitudinal
current resonances associated with the finite length of the
tubes, which is also quite different from the far-infrared case.
In the following all units are in the SI system, and the time
variation (suppressed) is ¢/, where j is the imaginary unit.

I1. DISCUSSION OF THE MODEL

The geometry of an infinite planar array of finite-length
carbon nanotubes is depicted in Fig. 1 (when considering a
single isolated tube, only the center element is present). As a
practical matter in performing measurements on a finite-
sized array having dimensions L, X L,, the observation point
r should be far enough from the array plane so that all eva-
nescent waves are negligible, but with |r|<L,,L, so that
edge diffraction effects can be ignored.

The electromagnetic model has been developed in Refs.
8—10 based on the fundamental work in Refs. 12—-14, and
here we briefly summarize the main points. We consider the
CN to be a finite-length, infinitesimally thin cylindrical sur-
face of radius a characterized by a local isotropic surface
conductance o, (S) [equivalently, the CN optical dielectric
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FIG. 1. Infinite planar array of finite-length carbon nanotubes.
Each tube has length 2L, radius a, and the array periods along the x
and z axes are D, and D,, respectively.
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function &,,(w) could be used]. Assuming that the axis of the
CN is the z axis, the electric current density on a CN induced
by an external electromagnetic wave is

J(p,$.2) ={2J.($,2) + T 4($,2)}8(p - a). (1)

Since we are mainly interested in achiral single-wall tubes,
and since ka<<1 at optical frequencies, where k=2m/)\ is
the free-space wave number, we can ignore the azimuthal
component of current. This is also a reasonable assumption
for chiral tubes, since the geometric chirality factor is much
larger than the ratio of azimuthal to longitudinal current'
(here we are not interested in perpendicular polarization).
Since we do not consider arrays with extremely small broad-
side tube separations we can also ignore the azimuthal varia-
tion of the longitudinal current, as well as intertube elec-
tronic coupling. With the assumption J(p, ¢,z) =2/ (z)8(p
—a), the exact solution of Maxwells equations for the CN
geometry depicted in Fig. 1 is given by the solution of the
Pocklington equation,

1(2) 1 <k2

2mac,, " jAmwe

L
+£>f K(z-2)I(z")d7'

0"Z2 L

+ENz), ze(-LL), (2)

where 1(z)=J.(z)27a, o is the radian frequency, € is the
permittivity of the material surrounding the tubes (here as-
sumed to be free space), and E’Z is the z component of the
incident electric field. The Pocklington equation is valid for
both an individual nanotube and for an infinite array of nano-
tubes, where in the former case the kernel function K(z
—z') is related to the usual scalar free-space Green’s func-
tion, and in the latter case I(z) is the current on the center
tube of the array, and the kernel is related to the periodic
Green’s function. By applying Floquet’s theorem!¢ all of the
current distributions on the other array elements are obtained
by phase shifting from the center tube. The details for both
cases are provided in Ref. 10.

An important aspect of the model is the quantum conduc-
tance o,(w). For numerical calculations we use a m-electron
tight-binding result,'>'* which includes interband transitions
but not curvature and many-body effects. Curvature effects
are particularly important in very small radius tubes,” and,
given the quasi-one-dimensional nature of SWNTs, excitonic
effects are also expected to be quite important in many situ-
ations, especially for semiconducting tubes.!”!® These effects
can be included, e.g., by using ab initio calculations;>'®!° as
a concrete example, the optical complex dielectric function
g.,(w) for (3,3), (5,0), and (4,2) nanotubes are given in Ref.
2, from which the conductance can be determined as o,
=jweole(w)—1]/Spyr, where S is the surface area of the
nanotube and py is the volume density of tubes.'> However, a
principle contribution of this work is to develop the analyti-
cal CN array far-field scattering solution based on the Born
approximation, the validity of which is independent of the
method used to obtain ¢,(w) and only requires that the op-
tical conductance be sufficiently small, as explained below.

PHYSICAL REVIEW B 75, 165416 (2007)

A. Born approximation

In Ref. 10, Pocklington’s equation (2) for an infinite pla-
nar array of carbon nanotubes was solved by converting it to
a Hallén’s-type integral equation and using a method-of-
moments pulse function expansion, point matching numeri-
cal procedure. However, in that work the formulation was
applied in the far-infrared, where the carbon nanotube con-
ductance is relatively large, |o,|~ 1072 (S). However, in the
optical range o, is several orders of magnitude smaller. For
example, for the single-wall metallic tubes considered in
Refs. 12 and 20, |o,| ~10™*~107 (i.e., on the order of e?/h)
through most of the optical range, peaking to approximately
107 at interband transition frequencies. These values are
consistent with the ab initio dielectric function calculations
in Ref. 2. Because of this low conductance, the expression on
the left side of Eq. (2) is much larger than the first term on
the right side, which, to a first-order approximation, can be
ignored. This is essentially the Born approximation
(BA),?1:22 where the small o, plays the role of a small ma-
terial contrast. Thus the Born approximation for the nanotube
current, in both the individual tube and planar array cases, is
simply

IBA(Z’ w) = Zwaacn(w)Ei(Z) . (3)

Although it may seem that the nanoscale radius a also
plays a role in the dominance of the left side of Eq. (2), it can
be shown that for an isolated tube the kernel function can be
written as®?

1
K(z=z7)=——lz-7'| +K(z=2"), 4)
a

where K| is a continuous function with a bounded derivative.
Therefore the radius a occurs in the dominate singularity of
the kernel as well, and it is therefore the small conductance
that controls the size of the left side term in Eq. (2). Impor-
tantly, the same can be shown for the periodic (infinite array)
kernel.

The question of how small the nanotube conductance
should be for the Born approximation to be accurate is dif-
ficult to answer precisely, due to the complicated nature of
the Pocklington kernel. However, dimensional analysis®?
shows that the Born approximation should be valid when

|Uc11| 2 -2
Appy=—(k"+ L)L <1. (5)
we
Predictions using Eq. (5) corollate with numerical tests com-
paring the Born approximation and the integral equation re-
sult (see Table I) and indicate that the BA is applicable in the
near-infrared and optical regimes, where |o,,|~107*-107>
(S). Although a comprehensive study across different nano-
tubes was not made, this was found to be true for a wide
range of armchair and zigzag nanotubes. Of course, some
error is expected in Eq. (3) near the nanotube ends, where the
actual current vanishes but the incident field obviously does
not. However, given that one is typically interested in tubes
such that L/a>1, the Born approximation will provide a
suitable result over most of the length of the nanotube. For
an isolated carbon nanotube a comprehensive approximate
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TABLE I. Relative error arising from the Born approximation
for an isolated nanotube. The third and fourth columns are the rela-
tive error percentages between the current at the center of the nano-
tube (z=0) and at one-quarter of the tube length from the tube ends
(z=0+£L/2), computed by the integral equation and the Born ap-
proximation. The fourth column is the L, error between the two
solutions. L=100 nm, a=1 nm, and /=500 THz (2.068 V).

% Rel. error % Rel. error

T (S) Aga 1(0) 1(0+L/2) L, error
107° 0.000754  0.0015 0.000855 0.0104
107 0.00754 0.0149 0.00855 0.0330
107 0.0754 0.1486 0.0824 0.1168
1073 0.754 1.4915 2.2749 0.6226
1072 7.54 14.25 25.50 3.5905
107! 75.4 128.9 181.3 32.53

analytical solution, based on an iterative approach involving
the propagation constant of an infinite-length nanotube, is
presented in Ref. 7.

Table I shows the relative error in the current arising from
the Born approximation for an isolated nanotube. As an ex-
ample of a typical carbon nanotube, we take L=100 nm, a
=1 nm, f=500 THz (2.068 V), and |E.|=1, and vary o,.
The third and fourth columns are the relative error percent-
ages between the current at the center of the nanotube (z
=0) and at one-quarter of the tube length from the tube ends
(z=0=%L/2), computed by the integral equation and the Born
approximation (3). The last column is the L, relative error
between the two solutions. It can be seen that the estimate
Ap, can be used to gauge the suitability of the Born approxi-
mation. For o,,< 1073, the relative error is fairly low, and
therefore the Born approximation is applicable in the near-
infrared and optical regime. In the far-infrared o, ~ 1072 (S)
or larger,'” and assuming typical parameters (5) indicates
that the Born approximation is not valid.

The Born approximation for the current is considered in
Fig. 2, where the magnitude of the current at the center (z
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FIG. 2. (Color online) Magnitude of the current at the center
(z=0) of the center nanotube in an infinite array of (10, 10) nano-
tubes, calculated from the Born approximation (3) and from the
numerical solution of the integral equation for the array case.
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=0) of the center nanotube in the array is shown as a func-
tion of energy, calculated from the Born approximation (3)
and from the numerical solution of the integral equation for
the array case (the numerical parameters used to calculate
o, will be discussed Sec. I B). The agreement is excellent,
verifying the Born approximation at least for the considered
geometry (the same level of agreement was obtained for
other nanotubes considered). Therefore the electromagnetic
mutual coupling effects that are accounted for by the infinite
array kernel K(z—z'), which are neglected in the Born ap-
proximation, are clearly of minor importance. In effect, al-
though the tubes are metallic in nature (i.e., they do not have
a band gap), in the optical regime they lead to weak pertur-
bations of the background environment.

After the currents are determined the far scattered electric
field can be found. Details are provided in Ref. 10, although
for optical frequencies (3) can be used to obtain a closed-
form solution for both individual nanotubes and nanotube
arrays. For an individual nanotube oriented along the z axis,

the far scattered field can be written as E5=A0E‘§,(r, 0), and

under the Born approximation (a factor of sin # was missing
from Ref. 10 [Eq. (8)])

e—jkr

47r

E%,BA(rv 0, w) = 27m(TL.,,(w)jw,LL0

L
X sin 0f Ei(z’)ejkz’ cos bz . (6)

-L

Assuming an incident plane wave, then along the axis of the
nanotube E'(z)=Ee/* 7, where 0< 6,< 180° is the angle
of the incident wave vector measured from the z axis. In this
case

—jkr
47r
2 sin[kL(cos ¢ + cos 6)]

‘;,BA(r’ 0» w) = 277@ O-cn(w)jw/*LOEO

X si - s 7
s k(cos & + cos 6) M
and, in particular, for = 6=90°
Eip,BA(V’ o) _ awﬂ0L|0'cn(w)| 8)
EO r '

For an infinite array the BA scattered field Ej,(w) is ob-
tained by substituting Eq. (3) in Ref. 10 [Egs. (9)—(11)] and
integrating over the Born-approximated current. A further
approximation leading to a simple result is to note that, since
D;l and D;l are on the order of 10° m™', and in the optical
range the wave number k is on the order of 10°—107 m™!,
only the zeroth-index term in the summation in Ref. 10 [Eq.
(9)] leads to propagating plane waves. For example, for a
plane-wave incidence angle of #=90° and 0< ¢'<180°,
and an observation angle of #=90° and 0< ¢ <<180°, the
magnitude of the zeroth-order array Born approximation (ZO
array BA) is
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FIG. 3. (Color online) Comparison between the IE solution and
the Born approximations Ej, and Ey, , for the far scattered field
from an infinite planar array of (10, 10) carbon nanotubes. The field
is incident from #=90° and ¢'=30°, and the scattered field is de-
termined at #=90° and ¢=150° (i.e., specular reflection), at a dis-
tance of r=1 um.

E3, (@ 2maly|o.,(w)| | 4 1
BAO( ) _ 77| ( )| COSz¢l+ —
E, D.D. sin“¢'
s
»
~ | Bl ©)
Ey

where 7=V wy/ey=377 Q. From both Egs. (7) and (9) we
conclude that the far scattered field from a carbon nanotube
and nanotube array is proportional to o,().

The nanotube length dependence can be removed from
the scattered field expression (9) for many arrays of interest,
where the longitudinal gap between adjacent nanotube ends
is small compared to the tube length. Denoting the longitu-
dinal gap spacing between adjacent tubes as J,, and noting
that D, is the center-to-center longitudinal separation be-
tween nanotubes, then D,=4,+2L. Assuming that 2L> 4,
Eq. (9) simplifies to the length-independent zeroth-order

scattered field,
TaAN|O (@ . 1
= AL )|\lcosz¢’+T. (10)
D, sin“¢

The ratio of the zeroth-order scattered field from an array
and the scattered field from an individual nanotube is

27r 2 i 1
R = cos ' + ———. (11)
D.D k sin“¢’

Given that in the optical range k~ 107 m~!, and choosing, for
example, D,=10 nm, D,=100 nm, r=1 um, and ¢'=30°,
then R,=1382r, where r is in microns. Thus for measurement
distances on the order of microns, the scattered field from an
infinite planar array will be several orders of magnitude
larger than the scattered field from an individual nanotube.
Figure 3 shows a comparison between the IE solution and
the Born approximations Ej, and Ey, , for the far scattered
field of an infinite planar array. It can be seen that the BA and

E%A,O(w)
Ey
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the simple zeroth-order array BA overestimate the peak val-
ues by approximately 11% and 21%, respectively.

B. Model verification and results

1. Comparison with measurement

For the numerical results presented here we use the tight-
binding conductance developed in Ref. 12—14. There are two
parameters to choose; v=7"', the phenomenological relax-
ation frequency, and v, the overlap integral. The location of
van Hove singularities for metallic tubes is given by’* E
=3sbyy/2a, s=1,2,3,..., and the energy of dipole-allowed
transitions between van Hove singularities is 2E, so that 7y,
plays an important role in predicting the location of scatter-
ing or absorptance peaks. Reported values of vy, cover the
range 2.5-3.1 eV, with values at the lower end of the range
associated with low-frequency measurements,?>® and those
at the upper end of the range associated with optical
experiments.?’-?® Here we use y,=3.03 eV which is associ-
ated with two-dimensional graphite (Ref. 29, p. 32), and
agrees with the CN optical value reported in Ref. 28.

The second model parameter to choose is the relaxation
frequency v=7"'. Interactions with optical phonons, which
may be expected to dominate relaxation, lead to fairly short
relaxation times, and these will depend on energy and tube
chirality. For moderate radius nanotubes such as the (10, 10)
tube, a theoretical estimate for electron-optical phonon inter-
actions is 7=0.08 ps,>® and experimental values are 7
=0.01 ps,*" and 7=0.016 ps.>? Photoemission measurements
for similar radius tubes lead to 7=0.015 ps at 2 eV.?* In the
following numerical results we consider (10, 10) tubes and
use 7=0.01 ps, which leads to very good agreement with
Rayleigh scattering measurements.>*

In subsequent numerical results the incident field is a unit-
amplitude uniform plane wave, incident on the nanotube(s)
at angles #=90° and ¢'=30°. The scattered field is then
determined at observation angles #=90° and $=150° (i.e.,
specular reflection), at a distance of r=1 um. For the array
case, this is far enough from the array to attenuate all eva-
nescent waves to yield a distance-independent scattered
field!? (for an isolated nanotube the scattered field will retain
a distance-dependent factor r~!). In the following results the
scattered electric field is E=|E*|=|E}|, and the numerical
solution of the integral equation is shown unless otherwise
specified.

In Ref. 10 very good agreement was shown between the
integral equation solution and a Rayleigh scattering measure-
ment for a (10, 10) nanotube.3* This result is repeated as Fig.
4, where we have added results for the array case and the
Born approximation (9). Since absolute amplitudes are not
available from the measurement, all curves have been nor-
malized to unity.

Comparing the array and isolated tube results, it can be
seen that the scattering peak location and line shape are es-
sentially independent of electromagnetic coupling between
the nanotubes. This is in agreement with the Born approxi-
mations (8) and (9), where only an amplitude term linear in
frequency distinguishes the far fields from an individual tube
and from an infinite array of tubes.
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FIG. 4. (Color online) Normalized scattered field intensity of an
isolated (10, 10) carbon nanotube from simulation and measure-
ment, and for an infinite array of nanotubes. The peak electric-field
values for the isolated tube and for the infinite array of tubes are
4.153X 1073 and 0.0626 V/m, respectively. The Born approxima-
tion (9) for the infinite array is also shown.

In Fig. 5 a comparison is shown between the integral
equation solution and a Rayleigh scattering measurement®*
for an isolated (11, 8) chiral metallic carbon nanotube. For
the simulation we used a tight-binding dielectric function
£.,(w) modified from Ref. 1 to approximately hold in the
chiral case. Conductance is then obtained as o,
=jweg[e,(w)—1](2a+d)*/2ma, where d=0.34 nm is the in-
tertube distance in a square lattice of tubes [in Ref. 1 inter-
tube interaction was ignored, so that &,,(w) is governed by a
single tube]. The agreement between measurement and simu-
lation is fair, although obviously less satisfactory than in the
preceding case. However, the physics of this configuration is
much more complicated since there is a splitting of elec-
tronic transitions in the metallic chiral case due to the trigo-
nal warping effect associated with band distortions.?®3> This
is clearly shown in the simulation result, although the agree-
ment with measurement is rather qualitative. Since the far

1 T T

== Computation
o Measurement

o
o]
T

o
)

©
~

Normalized Intensity

0.2

FIG. 5. (Color online) Normalized scattered field intensity of an
isolated (11, 8) carbon nanotube from simulation (with 7=2.2 fs)
and measurement.
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FIG. 6. (Color online) Scattered electric field from an array of
(10, 10) carbon nanotubes (D,=8 nm and D.=3 nm+2L). The
nanotubes have half lengths L=50, 150, and 500 nm.

scattered field is proportional to o,(w), excellent agreement
would be expected when using an ab initio dielectric func-
tion. Indeed, the use of a nonorthogonal tight-binding dielec-
tric function® shows two unequal scattering peaks, with a
peak-to-peak spacing that corresponds to the measurement
(although the higher-energy peak is larger). However, this
result is not shown in Fig. 5 since g,,(w) did not include any
broadening, and so the linewidth is very small.

2. Mutual coupling effects in optical arrays—Nanotube length
dependence and broadside spacing effects

As discussed in Refs. 7 and 8, in the near-infrared and
optical regimes o,,(w) is very small, and current is strongly
damped on the tubes. Therefore nanotube length-dependent
longitudinal current resonances do not seem to occur, and the
scattering characteristics are dominated by effects associated
with electronic transitions. This is shown in Fig. 6, where the
scattered fields are essentially identical for three different

0.08 . . et : .
007} L =150nm:; § T D =8nm -
Dz=3nm+2L : D -15
0.06} — b =tonm

‘‘‘‘‘ D =50nm

°

o

1
T
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Scattered E (V/m)
o o
o o
w B

1.25 1.4 1.6 1.8 2 2.2 2.4
Energy (eV)

FIG. 7. (Color online) The scattered electric field from several
different array configurations of (10, 10), L=150-nm carbon nano-
tubes. In all cases the end-to-end spacing (8,=D,—2L) is 3 nm, and
the broadside spacing D, is varied.
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FIG. 8. (Color online) The scattered electric field from several
arrays of (10, 10) carbon nanotubes. In all cases L=150 nm and
D,=50 nm, and D, is varied.

length carbon nanotubes in an array configuration. This is in
agreement with the Born prediction (10).

Figure 7 shows broadside coupling effects (side-to-side
spacing D, is varied) on the scattered field for an array con-
sisting of L=150-nm carbon nanotubes. It can be seen that
the only difference is in the scattered amplitude, as predicted
by the Born approximation (9), since smaller values of D,
lead to more tubes per unit area.

3. Mutual coupling effects in optical arrays—End-to-end
spacing

Figure 8 shows the effect of end-to-end spacing on the
scattering characteristics for carbon nanotube arrays consist-
ing of L=150-nm nanotubes. As would be expected from
physical considerations and the Born results (9) and (10), the
longitudinal end-to-end nanotube spacing only affects the
scattered amplitude, and relatively less variation is seen com-
pared to the effect of broadside spacing, unless the gap spac-
ing becomes similar to the tube length.

4. Optical antenna effects

Finally, some comments on the interesting optical antenna
effect reported in Refs. 36 and 37 are in order. In those
studies relatively large-radius, multiwall nanotubes were
measured. For example, the radius of the multiwall nanotube
in Ref. 36 was a=25 nm. By assuming the multiwall tube to

PHYSICAL REVIEW B 75, 165416 (2007)

be equivalent to a large radius single-wall tube, a numerical
study based on integral equation (2) shows that simply in-
creasing the tube radius to be 25 nm while maintaining the
optical conductance to be a typical value, o~ 107 (S),
does not lead to optical antenna effects, since the current is
still highly damped along the tube. However, if a=25 nm
and o,,~ 1073 (S) or larger, current resonances can begin to
form, leading to the classic antenna effect (e.g., resonant re-
sponse at odd integer multiples of a half wavelength). As a
rough approximation, a large-radius, relatively thin-walled
multiwall tube can be modeled as a single-wall tube with an
effective radius a®/=(a,+a,)/2 and effective conductance
oﬁﬁf =No,,, where a; is the radius of the inner wall, a, is the
radius of the outer wall, and N is the number of concentric
tubes.'? Assuming a7 is 25 nm implies that one must have
on the order of 100 concentric tubes to observe the antenna
effect. Although this model ignores intertube interactions,
and so provides only a rough guide, it seems likely that the
observed antenna effect in multiwall tubes is primarily the
result of a larger effective surface conductance, and to a
lesser degree to a larger effective radius. However, this war-
rants further study.

III. CONCLUSIONS

Electromagnetic scattering from finite-length single-wall
metallic carbon nanotubes, both isolated and in an infinite
planar array configuration, have been investigated using an
integral equation technique in the optical regime. A simple
Born approximation has been shown to be applicable, lead-
ing to a closed-form approximation for the nanotube current
and far-scattered field, both of which are proportional to
o,,(w). The Born results predict that the scattered far field is
governed by effects associated with electronic transitions,
and that array spacing and tube length primarily affect the
scattered field amplitude.
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