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Analysis of Large Planar Arrays of
Single-Wall Carbon Nanotubes

George W. Hanson, Fellow, IEEE, Steffen McKernan, and Dawei Wang

Abstract—Electromagnetic properties of finite planar arrays
of infinite-length single-wall carbon nanotubes are determined.
A modal capacitance and inductance is identified and the nan-
otube-to-ground-plane total capacitance is obtained using two
methods, one based on the total capacitance matrix and the
other on a dynamic modal method. Both methods incorporate
the quantum capacitance in a natural manner. The formulation
proceeds from Boltzmann’s equation and Maxwell’s equations
and does not require as an initial assumption an equivalent
transmission line model. Good agreement is shown with measured
results.

Index Terms—Carbon nanotubes, multiconductor transmission
lines, nanotechnology.

I. INTRODUCTION

M ASSIVELY parallel planar arrays of single-wall carbon
nanotubes (SWCNTs) consisting of thousands of in-

dividual tubes are of interest as interconnects and in devices.
In many applications, one would like to replace a single bulk
conductor with a carbon nanotube because of the highly desir-
able mechanical and electrical properties of carbon nanotubes
[1] (high mechanical strength and stiffness, high thermal con-
ductivity, tolerance of extreme heating and large current car-
rying capability, resistance to electromigration, tunability, etc.).
In fact, SWCNTs can support current densities up to 10 A/cm
without melting [2], significantly larger than traditional metals,
which typically have maximum current densities on the order of
10 10 A/cm . The impressive characteristics of SWCNTs
are partly due to intrinsic material properties associated with the
carbon–carbon bond, but also due to the fact that carbon nan-
otubes can be fabricated as 1-D conductors with very few de-
fects. In comparison, typical nanowires suffer from surface and
grain-boundary scattering, electromigration [3], and for some
materials such as copper, oxidation [4].

However, in comparison with larger radius metal nanowires,
an individual carbon nanotube has a large contact resistance,
and beyond the ballistic transport regime, an ohmic resistance
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that is too large to be practical in many applications, although
the scaled nanotube contact and channel resistances are ex-
tremely low in comparison to bulk semiconductors. The actual
current on a nanotube is limited to approximately 25 A by
its extremely small cross section and many applications (e.g.,
RF amplifiers) require much larger currents. Therefore, a large
collection of carbon nanotubes in a bundle or array configura-
tion (effectively acting in parallel) are attractive to satisfy low
impedance and/or sufficiently large current requirements, while
still exhibiting many of the unique properties of the nanotubes
themselves.

In this study, finite, but large planar arrays of infinite-length
SWCNTs over a perfect ground plane are considered; the
same analysis applies to a two-row structure without a ground
plane carrying a propagation mode having odd vertical sym-
metry (i.e., the usual transmission line mode). The effects
of ground-plane finite conductivity are not considered and
would necessitate a Sommerfeld treatment or other analysis
[5]; in particular, a finitely conducting ground plane can af-
fect inductance calculation, but will have a minimal effect
on capacitance determination, which is a major aspect of this
study. The case when all nanotubes are held at a common
potential (by, say, depositing an electrode across each end of
all tubes in the array) is of particular interest for applications
that essentially replace a single conductor with an array of
nanotubes. We are then interested in the total capacitance seen
from the nanotube array to the ground plane, which we call

and the inductance of the array, . In particular,
is important in carbon-nanotube transistor design. Two

formulations of are provided, one based on the total
capacitance matrix and the other on modal dynamics, with
good agreement between the two methods. Related capacitance
calculations for an infinite array appear in [6] and for a finite
array in [7]. The electrodynamic formulation presented here,
based on Boltzmann/Maxwell’s equations, is quite different
from previous work and naturally accommodates the quantum
capacitance without the need for a transmission line model or
energy considerations. The analysis proceeds from the general
formulation presented in [8].

In the following, we consider infinitely long tubes and de-
termine per-unit-length capacitance and inductance quantities.
The results apply to finite-length nanotubes that are sufficiently
long so that the basic physical processes governing transport are
length independent. That is, the tubes should be longer than the
electronic length scales , the Fermi wavelength, and ,
the mean-free path. The former would lead to quantization in
the axial direction, which would occur for extremely short tubes
(approximately less than 10 nm in length). The latter governs
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Fig. 1. Array of � SWCNTs above a ground plane, modeled using image
theory as an array of �� tubes in a homogeneous space. Current on the �th
tube is indicated as � .

the change over from ballistic transport to diffusive transport as
nanotube length becomes greater than . In this work, for
resistance calculations, we consider tubes in the diffuse trans-
port regime, although for capacitance and inductance calcula-
tions, the results are independent of the mean-free path and are
valid in the ballistic transport regime as well. Throughout the
paper, SI units are used and the (suppressed) time dependence
is .

II. ANALYSIS OF A PLANAR ARRAY OF SWCNTs

Our interest is in obtaining the modal properties and total
array resistance, capacitance and inductance for a planar array
of SWCNTs over a ground plane, as depicted in Fig. 1, where
the -axis is into the page. For the th tube, the radius is , the
conductivity is , is the distance between rows of tubes (i.e.,

is the distance to the ground plane), and the center-to-center
horizontal spacing between tubes is .

One method of analysis would be to extend the multi-
conductor transmission line model, which is well known for
macroradius conductors [9], to nanoradius conductors. The
extension would need to incorporate the kinetic inductance and
quantum capacitance of nanoradius conductors, similar to what
was done for the two-conductor carbon-nanotube transmission
line in [10]. Rather than follow this approach, which would
require as a starting point an assumed transmission line circuit
model, here we start with a Maxwell equation/Boltzmann equa-
tion model and derive all modal properties and capacitance and
inductance values from rigorous coupled integral equations.

We consider the case of nanotubes above a ground plane
(i.e., nanotubes and image tubes), but the same analysis
holds for a two-row structure having nanotubes without a
ground plane carrying a propagation mode having odd vertical
symmetry. The analysis starts with the integral equation for a
single carbon nanotube [8, eq. (7)]

(1)

where is the current on the nanotube,
is the kernel, is the

wavenumber in the homogeneous dielectric, is nanotube
radius, is an impressed electric field, and

(2)

(3)

are the conductivity and spatial dispersion parameter, respec-
tively, for the metallic nanotube, with being the electron
Fermi velocity and being the momentum relaxation con-
stant. The spatial dispersion parameter (3) was derived in [8]
and differs slightly from the quantity presented in [11]; this
new expression arises from a number-conserving solution
of Boltzmann’s equation and provides the correct expres-
sion for quantum capacitance and leads to

, where is the kinetic inductance,
as discussed in [8, Appendix]. The conductivity (2) is valid for
small radius metallic tubes consisting of two electron chan-
nels. For larger radius tubes with more than two conducting
channels, (2) is multiplied by , where is the number of
conducting channels [12]. In the following, we use , but
the subsequent results can easily be modified by including the
factor in (5) below. Semiconducting tubes can be accommo-
dated by replacing (2)–(3) with the values for a semiconducting
tube, which need to be found numerically [11].

Starting from (1), the system of equations describing an array
of nanotubes, as depicted in Fig. 1, is [8, eq. (63)]

(4)

for , where is the center-to-center dis-
tance between nanotubes and and where

(5)

contains all information about the nanotube’s material proper-
ties with being the resistance of the th
carbon nanotube ( depends on tube chirality; if we ap-
proximate as being constant, then is independent
of nanotube number), and are the kinetic inductance
and quantum capacitance introduced previously, is the cur-
rent on the th tube, and is the axial wavenumber such that

.
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In matrix form, (4) can be written as

(6)

where , , and are matrices ( is a diagonal ma-
trix with entries ), is an column of unknown
current amplitudes, and is an excitation column. Propa-
gation constants can be determined from (see [8,
eq. (67)] for the two-nanotube case), leading to the th
propagation mode. The matrix is independent of , frequency,
and material parameters and only depends on the geometry of
the array.

At this point, we could solve the forced problem, determine
the induced transform domain currents , and
invert the current on each nanotube into the space domain via

(7)

However, here we are interested in the modal propagation con-
stants and so we solve the unforced problem (setting ,

). The propagation constants are determined as the com-
plex values that force . The null space of
the matrix evaluated where leads to the modal cur-
rents (equivalently, we can determine the eigenvectors
of associated with a zero eigenvalue). We can write the
resulting null space amplitudes as ,
leading to different current values for every mode .

Since is a diagonal matrix, if for all (i.e., iden-
tical nanotubes or ignoring the chirality dependence of ), we
can write

(8)

where is the scalar function (5) and is the identity ma-
trix. Although the root that forces depends
on (and, hence, on the resistance, kinetic inductance, and
quantum capacitance of the nanotubes), by a well-known the-
orem in linear algebra, the eigenvectors of are the same
as the eigenvectors of for any given , in which case the
modal current amplitudes values (eigenvectors) are independent
of the (identical) nanotube’s material properties and frequency
and only depend on the array geometry (i.e., on and ) for a
given mode.

As an explicit example, for and relabeling the con-
ductors, as shown in Fig. 2, we have

(9)

Fig. 2. � � � nanotube case with currents labeled from the center outwards.

where , which, with , leads to
the inductance matrix in [9, Sec. 3.2.3.2] and . This
results in a capacitance matrix consistent with the system

(10)

where is the ratio of charge on nanotube due to voltage
on nanotube with all other voltages set to zero.

As shown in [8, eq. (71)], (6) can be written as

(11)
where , , and are diagonal matrices with ,

, and the ohmic resistance diagonal matrix
has entries (all matrices are per-unit-length quantities).
This result is for two rows of nanotubes having currents with
odd symmetry in the vertical direction and so the factors of 2
reflect the presence of two conductors. In the Appendix, the ca-
pacitance result is derived via a Thomas–Fermi model as an al-
ternative method. For conductors above a perfect ground plane,
we would divide (11) by 2 to account for the presence of the
ground plane (in which case the return row of conductors (i.e.,
images) does not exhibit , , and and the geometric ca-
pacitance and inductance is modified by the ground plane (see
the discussion in [8, eq. (72)]).

III. TOTAL ARRAY-TO-GROUND CAPACITANCE

AND ARRAY INDUCTANCE

In applications where a carbon-nanotube array is used as a
replacement for a single conductor (or channel in a device), we
are interested in the situation where we hold all nanotubes at a
common potential by using an electrode at each end of the array,
as depicted in Fig. 3 (we assume that the electrode is thin, and
other than holding the nanotubes at the same potential, plays no
role). We are then interested in the total capacitance seen from
the nanotube array to the ground plane and the induc-
tance of the array . In this case, we view the nanotube
array as a conducting system along which one or more trans-
mission line modes can propagate. In the following, we will de-
velop two different forms for , which we will call
and .
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Fig. 3. Carbon-nanotube array used as a replacement for a single conductor
or as a channel in a device. The array is over a ground plane and the tubes are
connected at each end by electrodes (positioned above the ground plane).

One typical method to determine the capacitance of a two-
conductor system is to apply a static (dc) voltage due to a
voltage source across the conductors and determine the resulting
charge using some method, the ratio being the ca-
pacitance. Another method is to assume a static charge
on the conductors and determine the static voltage produced
by this charge, the ratio being the capacitance. However, nei-
ther method would incorporate the quantum capacitance of the
elements comprising the structure. The quantum capacitance re-
sults from the carbon nanotube’s finite density of states and the
total capacitance does not arise from the electrostatic potential,
but from the electrochemical potential. The electrochemical po-
tential energy is [13]

(12)

where is the chemical potential energy. The total array capac-
itance is

(13)

A. : Static Array Capacitance and Inductance

One method to obtain is to identify the total capaci-
tance from (11) as

(14)

Rather than (10), , the correct charge-electrochemical
potential matrix relationship is

(15)

where is the electrochemical potential (not electrochemical
potential energy) matrix. If we define the capacitance
as the ratio of the sum of all charge on all nanotubes

to the common electrochemical potential
on all nanotubes, then

(16)

That is, is the sum of all matrix entries in the total ca-
pacitance matrix. For an array of tubes over a ground plane, we
multiply each capacitance entry by 2. The units of capacitance
are Farads/meter.

By taking to implement the infinite density of states
result, we obtain the usual electrostatic capacitance as
the ratio of the sum of all charge on all nanotubes to the common
electrostatic potential, which, from , leads to

(17)

The magnetostatic array inductance can be obtained as
and the total array inductance

(including kinetic inductance) as .
The expression (16) and that for are independent of

and thus apply to both the diffusive and ballistic transport
regimes.

B. : Modal Array Capacitance and Inductance

As another method of determining capacitance, for each nan-
otube we can define a dynamic modal capacitance as
being equal to times the ratio of the change in charge
on the nanotube for a given propagation mode (i.e., at a value
of propagation constant such that , leading to the
current amplitude null space vector ) to the change in electro-
chemical potential associated with introducing that charge,

(18)

The superscript indicates that the value of capacitance de-
pends on the mode in question. Since we have a parallel col-
lection of nanotubes, the total capacitance of the array is

F/m (19)

To determine this capacitance, we start with the space-domain
modal current on the th nanotube in the array,

(20)

where amplitudes are determined from the null space of
(6) [equivalently, (11)]. The determination of the modal linear
charge density (C/m) on nanotube is now straightforward,

(21)

We assume thermal equilibrium and quasi-static variation so
that the electrochemical potential on each tube must be constant,

(22)

where is the chemical potential. Now consider the difference
between the tubes carrying a modal charge and the charge-free
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tubes. For the charge-free tubes, each nanotube is neutral,
and are constant, and . Upon inducing a

modal charge configuration on the tubes, we have an electron
charge per unit length on each tube, which will induce a uni-
form shift in the electrochemical potential from the former
value . In general, we will have a nonuniform charge distribu-
tion and thus we expect both the chemical potential and electro-
static potential to be nonuniform, and ,
but with the same axial dependence. Let
and . The electrochemical potential is con-
stant at and we have

(23)

We will assume that the chemical potential depends only on
the local number density of free carriers. In a linear ap-
proximation,

(24)

where is the shift in electron number density.
The local electron surface charge density C/m is

(25)

where we can define

(26)

as the screening length (meters), leading to the screening
wavenumber . For a carbon nanotube [14],

(27)

The voltage between the nanotube at and the ground
plane is 1/2 the voltage from the tube to its image at ,

(28)

where is the total radial electric field due to current on all
nanotubes. The radial electric field due to current on nanotube

is

(29)

The voltage from nanotube to ground is then

(30)

and therefore, the dynamic capacitance from nanotube to
ground (yet in the presence of the other nanotubes) is

(31)

(32)

Since is independent of , for a given mode , the ca-
pacitance of each nanotube to ground is the same. Finally, we
obtain from (19).

Note that (32) is the same result as would be obtained by
combining the infinite density of states result (setting ,
or )

(33)
in series with .

We refer to as the modal capacitance. The corresponding
inductance can be obtained as ,

(34)

For , , and

(35)

(36)

the usual formulas for a wire above a ground plane, as expected.
The array inductance is

H/m (37)
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Similarly, for array resistance

m (38)

which is mode independent. For a finite-length array of carbon
nanotubes, we need to include the contact resistance .
Assuming nanotube length , this leads to

(39)

Experiments in [15] show that for a massively parallel array,
can be achieved. For example, consider a situ-

ation similar to the experimental setup of [15] with tube length
m, nanotubes and nanotube density of

10 NT m. In the experiment, there was no ground plane, thus
we can ignore the capacitance. Then ,

pH, and thus the array impedance at 10 GHz is
. This is consistent with measurements that showed

that the real part varied from a few ohms to several tens of
ohms for different samples and that the imaginary part was 0
10 (the correspondence with and was dis-
cussed in [15]).

C. Interpretation of and : Modal Patterns and
Excitation of Modes

We now have array capacitance computed using two different
methods, leading to and . There re-
mains a question as to in what way will these quantities predict
the actual quantities measured for a given structure (e.g., ex-
tracted from -parameter data for an electrode connected array).
To answer this question, we need to consider the possible modes
of the structure and the size of the array.

We can obtain all possible modes by setting the forcing term
in (6) to zero and performing a root search for complex values
such that . For two nanotubes , we obtain
the usual even and odd modes, where currents are in the same
and opposite directions, respectively, on the nanotubes. In this
case, we obtain

(40)

for the even and odd mode, respectively, which is the usual result
and we find that and (i.e., the
two methods, static and dynamic, yield identical results) for the
even mode; the static values are based on summing all charges,
and thus this only yields a nonzero result for the even mode).
However, for , there is no similar mode having equal
magnitude currents (e.g., where for all ).

As an example, for one nanotube in air over a ground plane,
with nm, GHz, and nm (which
corresponds to a nanotube), the propagation value is
found to be . For , identical
nanotubes above a ground plane having nm, using the
two eigenvalues of the 2 2 matrix and [8, eq. (66)],
we obtain for the even mode and

for the odd mode with the normal-
ized eigenvectors being

(41)

The values are dependent on frequency, geometric, and
material properties of the array, but only depend on the
array geometry (i.e., , , , and ).

For , we obtain three fundamental propagation modes
associated with the three eigenvalues of ,

, , and
. The modal current distributions/eigenvectors of are

(42)

(again, these only depend on , , and ). There is no mode with
all currents having the same magnitude and this is generally true
for all .

To obtain a feeling for how the values behave, consider
the limit . Setting the current amplitude on the center
nanotube to unity, it is found that the values of decrease
from unity slowly as increases. For example, for m,

nm, and nanotubes, more than half of
the nanotubes have and even the outermost nanotube
has . More generally, for a given mode, the co-
efficients will decrease moving away from the center tube, with
the rate of decrease depending on the geometry. For the funda-
mental mode, all have the same sign. In numerical experi-
ments, it is found that often the simple approximation
for all works fairly well, resulting in

(43)

(44)

(some numerical comparisons are shown in Section IV). For
large arrays, the advantage of (43) and (44) when used in (37)
and (19), respectively, is that the inverse of a large matrix does
not need to be computed, , as in (17), nor do
we need to determine the eigenvectors of a large matrix . The
capacitance (44) is identical to the result in [6] in the limit that

, in which case,

(45)

(46)

In a typical experimental situation, one would apply a
common electrode to the nanotubes. For , should
provide the correct capacitance. However, one often works at
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Fig. 4. Basic carbon-nanotube–ground-plane configuration.

and measures parameters of the device. In this case, we
can not have a single mode propagating with all currents equal
(because no mode exists such that for all , except
for the case of two nanotubes). In general, the electrode would
excite several modes on the array. Given that the lowest order
mode generally carries most of the energy, the capacitance

with corresponding to the dominant mode should be
the most accurate dynamic capacitance, in comparison with
values extracted form -parameter measurements. As described
below, and provide similar values.

D. Electrically Short Arrays

Finally, note that from the results above we have
at low gigahertz frequencies, in which case all modes

suffer high loss. As shown in [16], one obtains
at several hundred gigahertz, leading to fairly low-loss propa-
gation. Moreover, for the array case, we are often interested in
arrays whose total width (horizontal direction in Fig. 1) is
much larger than the length of the nanotubes, (see, e.g., [15],
where m and m), and for active devices,
where the nanotubes are electrically exceedingly short (e.g., at

GHz and m, ). Thus, we are
often interested arrays consisting of a large number of electri-
cally short nanotubes. For electrically short nanotubes, mode
propagation aspects will be unimportant and the array would
act like a lumped element having resistance (39), which can be
quite small for large . In this case, both capacitances
and should provide values in reasonable agreement with
measurement.

IV. RESULTS

The basic geometry for the following results is shown
in Fig. 4, where we will now consider the number of
nanotubes above the ground plane to be so that

.
Since capacitance analysis is important in the design of

carbon-nanotube field-effect transistors, we will first consider
a typical transistor, a portion of which is shown in Fig. 5.
The transistor consists of interdigitated source–drain fingers
between which SWCNTs are grown, with gate fingers (the
brighter narrower strips) above a portion of the tubes. Details
of device performance have been presented elsewhere [17],
[18]. We validate the presented analysis by comparison to
measurements made on two structures similar to the one shown
(for propriety reasons, we cannot show the exact structure). For
these interdigitated structures, the sum of the length of the gate
fingers (the sum of the vertical extensions of the narrow gate
fingers shown in Fig. 5) corresponds to in Fig. 4, which was

Fig. 5. Electron microscope image of a typical interdigitated transistor geom-
etry. Source and drain fingers form the slightly wider, interdigitated pattern and
narrower gate fingers lie above the source–drain plane. Carbon nanotubes run
horizontally between the source and drain fingers.

TABLE I
MEASURED CAPACITANCES AND THEORETICAL MODEL

400 m for our devices. Gate-tube separation was 27.5 nm, and
thus nm and permittivity of the space between the gate
and the nanotubes was . Device 1 consisted of 2200
nanotubes nm and Device 2 had 4000 nanotubes

nm . Each tube had diameter 1.8 nm 0.3 nm as
measured by AFM, consisting of a mix of 2/3 semiconducting
and 1/3 metallic tubes.

Gate capacitance was measured at a gate bias voltage of
2.5 V (approximately the maximum current bias point for the
device), leading to fF and fF for Devices
1 and 2, respectively. From these values, we subtracted the cor-
responding values for the transistor metal structure without the
presence of nanotubes; the pad/metallization capacitance was
approximately 134 and 125 fF for Devices 1 and 2, respec-
tively. This resulted in fF and fF for Devices
1 and 2, respectively. We then accounted for fringing capaci-
tance (this is included in the model for the finite width , but
the model assumes infinite length nanotubes and thus does not
include fringing effects in the axial direction due to the presence
of finite length nanotubes), which was found to be [19],
where and for Devices 1 and 2, respectively.
This leads to the measured values in Table I. At the maximum
bias, where most nanotubes should be turned on, we can model
the tubes as metallic nanotubes nm .
Table I also shows the computed values, where

were evaluated using (19) and (32) with the approxima-
tion for all (this approximation is discussed below).
Values computed using are in Farads/meter values
and so these have been multiplied by the gate length, i.e., the
length that electrons travel under the gate. This is nominally

m and m for Devices 1 and 2, re-
spectively; however, the nanotubes are not completely straight
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and aligned perpendicular to the gate. Using a typical value
of misalignment of 30 effectively lengthens the gate by about
15%, resulting in effective gate lengths of m and

m for Devices 1 and 2, respectively. This also
modifies the effective nanotube spacing to be the spacing mul-
tiplied by .

Given the differences in the actual interdigitated geometry
and the model, the agreement between measurement and theory
in Table I is quite reasonable. The last column of Table I pro-
vides the ratio of measured to simulated capacitance. The sim-
ilarity between the two ratios indicates that the model well ac-
counts for the geometry of the structure (i.e., number of tubes,
tube spacing, etc.); the factor of 1.5 (ideally, this would be 1.0)
is most likely due to the difference between measured and mod-
eled geometry. Note that the assumption of the nanotube-gate
geometry as a simple parallel-plate capacitor results in

fF for Device 1 and for Device
2, which differs considerably from the measurement (in com-
puting , we use the gate area ; if one used , then
width is effectively decreased such that the gate area remains
the same). Aside from the role of the quantum capacitance,
the simple parallel-plate assumption fails because the tube den-
sity is fairly low (i.e., tube spacing is relatively large com-
pared with the spacing ), highlighting the need for a more rig-
orous theory. Furthermore, if we ignore the quantum capaci-
tance, fF and fF for Devices 1 and 2,
respectively, so that the quantum capacitance of the tubes plays
an important role in determining the value of . The theory
result is somewhat closer to the measured result if we ignore
the quantum capacitance; we feel that this is a coincidence due
to the difference between the actual and modeled structure, al-
though we have no other measurements to compare with. Good
agreement of our theoretical results with the result in [6] is de-
scribed below.

As another check on the analysis, we look at the limit as the
nanotube spacing becomes small. We consider nan-
otubes with nm and let the total width of the array
be fixed at nm. As the number of nanotubes in-
creases, decreases (the nanotube density increases) and when

, nm, which is the densest array possible.
We first ignore the quantum capacitance ( and com-
pare a dense array to the common parallel-plate capacitor re-
sult. In Fig. 6, the capacitance of the array is shown for an air
dielectric as a function of spacing . The level is the re-
sult from a simple parallel-plate model,
(the plate-ground plane separation is ). Obviously, this value
does not include fringing fields. The level is from a mod-
ified parallel-plate form , where

is a correction factor to account for a wire
grid model of each ground plate [20, (88)]. In that derivation,
noninteracting infinite wire arrays form infinite plates; the cor-
rection factor is approximate, but helps to account for the fact
that the plates are not solid conductors (although fringing is not
accounted for). In Fig. 6, we only show the value of for

slightly larger than one since, although is a func-
tion of , it is not expected to be accurate for large tube spacing.
The result is evaluated from using (19) and
(33) with the approximation for all [i.e., using (44)].

Fig. 6. Capacitance of an array of ���� ��� nanotubes with � � �� nm and
fixed array width � � ��� nm, ignoring quantum capacitance. Nanotube
spacing is � � �� �� � ��, where � is the number of nanotubes. � are
the parallel-plate capacitor results described in the text.

TABLE II
COMPARISON OF CAPACITANCE RESULTS (IN NANOFARADS) FOR � � �� nm

AND ARRAY WIDTH 1000 nm, WITHOUT INCLUDING

THE QUANTUM CAPACITANCE

The result is the same as , but evaluated using
(33) with the values from the lowest order mode (and so this
value should be more accurate than ). Also shown is
the value (16) with [i.e., (17)]. It can be seen
that the three sets of results are in fairly good agreement (all
values are with 10% of each other with and dif-
fering by 5%).

We now present some further simulations showing the com-
parison between and the effect of quantum capacitance
on array capacitance. Using the same carbon nanotubes
and nm, we fix the width of the array to be 1000 nm.
Table II shows the capacitance values in nanofarads obtained
from the various approaches for different nanotube spacing
, when the quantum capacitance is ignored. As discussed,

is much easier to evaluate than since the
latter requires determining the eigenvectors of a large matrix
system, whereas the former is a simple closed-form expression.
We also show the result of [6]; these values are for an infinite
array and do not include fringing capacitance, and thus result
in slightly lower values of capacitance.

Table III shows the same capacitance values as in Table II,
when the calculation includes the quantum capacitance . The
difference with and without quantum capacitance is less than
10%. Since the electrostatic capacitance is in series with the
quantum capacitance, for very small electrostatic capacitance
values (say, moderately large spacing ), the quantum capaci-
tance makes no difference, but for very small spacing between
the nanotubes and the ground plane, the quantum capacitance
can provide a very important contribution.

For the same structure as in the Tables II and III, in Fig. 7
we plot for two different values of relative permit-
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TABLE III
COMPARISON OF CAPACITANCE RESULTS (IN NANOFARADS) FOR � � �� nm

AND ARRAY WIDTH 1000 nm, INCLUDING QUANTUM CAPACITANCE �

Fig. 7. � �� for two different values of relative permittivity, � , for an
array having � � ���� nm.

Fig. 8. Same as Fig. 7, except for � � ���� �m.

tivity, . As before, is (19) with the approximation
for all [i.e., using (44)] and is evaluated using

(33) with the values from the lowest order mode. The differ-
ence in the results from each method is indistinguishable on the
scale of the plots. The values of are not shown, but they
are essentially the same as the results of or .
It is clear from the figure that for a dense array with a moder-
ately large dielectric is achievable, which is
important in achieving linearity of carbon-nanotube field-effect
transistors [21].

Now, for a much wider array having m and
nm, Fig. 8 shows versus the tube spacing. Large

values of can be achieved with a sufficiently dense
array.

V. CONCLUSIONS

Electromagnetic properties of finite planar arrays of in-
finite-length SWCNTs have been studied using a Boltz-
mann’s/Maxwell’s equation formulation, which does not
require as an initial assumption an equivalent transmission line
model. Special emphasis has been placed on defining and ob-
taining the array capacitance and inductance. The formulation
has been checked against measured results and results have
been presented for dense arrays of nanotubes showing that it
is possible to achieve , which is important in
achieving linearity of carbon-nanotube field-effect transistors.

APPENDIX

TOTAL STATIC CAPACITANCE MATRIX FROM

THOMAS–FERMI EQUATION

In this appendix, using a Thomas–Fermi model [22], we
show that the total capacitance matrix in the static case is

, where is the classic electrostatic
capacitance matrix. This is an alternative method that provides
a check on the capacitance part of (11).

For a charge density in a free space, the electrostatic potential
is

(47)

where is the support of the charge. For charge on a carbon
nanotube, so that

(48)

assuming , where is C/m and is
C/m . Then

(49)

where

(50)

(51)

The number density of electrons is

(52)

where is the Fermi distribution and the factor of 4
comes from the spin and valley degeneracy. At absolute
zero, the number density of electrons is ,
and thus the Fermi wavenumber is
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[23]. The equilibrium electron charge density is then
and the Fermi momentum is
. The chemical potential is

such that for metallic tubes

(53)

The electrochemical potential must be constant along the nan-
otube at equilibrium,

(54)

which leads to

(55)

The generalization to two nanotubes is

(56)

(57)

for all , , where

(58)

Invoking the translational invariance of the structure,

(59)

we have

(60)

(61)

where

where and are the usual modified cylindrical Bessel func-
tions. Note that contains all information about the nanotube’s
material properties.

The generalization to two parallel rows of nanotubes with
each row consisting of nanotubes is clear; we obtain

(62)

, where is the center-to-center distance
between nanotubes and and imposing odd symmetry in
the vertical direction due to the ground plane and renumbering
currents leads to

(63)

for . The small argument approximation
leads to

(64)

for nanotubes above a ground plane, .
In matrix form, this can be written as

(65)

where is an matrix and and are column
vectors.

Defining , we then have

(66)

where . This can be written as

(67)

In this static formulation, we obtain the quantum capacitance
matrix , in agreement with the dynamic result (11).
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