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Infrared and Optical Properties of Carbon
Nanotube Dipole Antennas
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Abstract—The characteristics of armchair carbon nanotube
dipole antennas are investigated in the infrared and optical regime.
The analysis is based on a classical electromagnetic Hallén’s-type
integral equation, and an axial quantum mechanical conductance
function for the tube. It is found that, within a certain frequency
span in the GHz-THz range, finite-length carbon nanotube dipoles
resonate at approximately integer multiples of one-half of a plasma
wavelength. Outside of this range, current resonances are strongly
damped. In the optical regime, antenna properties are strongly
modulated by interband transitions. General antenna charac-
teristics of finite-length carbon nanotube dipoles are presented,
such as input impedance, current profile, gain, and efficiency, and
radiation patterns are discussed.

Index Terms—Carbon nanotube antenna, electromagnetic
theory, nanotechnology, optical antenna.

I. INTRODUCTION

SINCE THE discovery of carbon nanotubes [1], there has
been a lot of research into their fundamental properties,

and much excitement concerning possible applications. Multi-
wall carbon nanotubes (MWNTs), single-wall carbon nanotubes
(SWNTs), carbon nanotube ropes, and other structures exist, al-
though here attention is focused on SWNTs. These tubes typi-
cally have radius values on the order of nanometers, and their
lengths can range from the nanometer scale up to, currently,
centimeters [2].

SWNTs can be envisioned as a rolled-up graphene sheet,
which, at an atomic level, has the honeycomb structure shown
in Fig. 1. The small circles denote the location of carbon
atoms, and the lines depict carbon–carbon bonds [3]. Lattice
basis vectors are and as shown, and the relative position
vector is , where and are integers. If the
nanotube axis is the or axis in Fig. 1, the resulting structure
is called a zigzag or armchair tube, respectively. If the carbon
nanotube (CN) axis is neither the nor the axis as shown,
the resulting nanotube is called a chiral CN. Therefore, carbon
nanotubes can be characterized by the dual index , where

for zigzag CNs, for armchair CNs, and ,
, for chiral nanotubes.

Electrically, carbon nanotubes can be either metallic or semi-
conducting, depending on their geometry (i.e., on ) [3],
[4]. Armchair CNs are always metallic (they exhibit no energy
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Fig. 1. Graphene sheet showing coordinate system.

bandgap), as are zigzag CNs with , where is an integer
(although zigzag tubes can have a small bandgap due to curva-
ture effects, one can usually consider them as metallic from an
applications perspective). The resulting cross-sectional radius
of a carbon nanotube is given by [3]

(1)

where nm is the interatomic distance in graphene.
Much of the excitement concerning carbon nanotubes has

centered around their possible use as transistors [5], [6], as field
emission devices [7], as sensors [8], and in other electronic ap-
plications. In this work we investigate the possible application
of a carbon nanotube as an antenna element. Although there
has been little activity in this area, some work has been done
to gauge the suitability of CNs for antenna applications. In [9],
carbon nanotube antennas were studied using a transmission-
line model, where several effects were noted: in particular, since
the wave velocity on a carbon nanotube transmission line is on
the order of the Fermi velocity , rather than the speed of light
, and since , wavelengths are therefore much shorter

on a carbon nanotube compared to on a typical macroscopic
metallic tube or cylinder. In [10], finite-length dipole antennas
formed by carbon nanotubes were investigated using a Hallén’s-
type integral equation (IE), where the input impedance, current
profile, and efficiency were presented. In [11], an infinite-length
carbon nanotube dipole antenna was studied using Fourier trans-
form techniques.

Both [10] and [11] concerned carbon nanotube antennas in
the GHz and low THz regime. In [12] the Leontovich–Levin in-
tegrodifferential equation was developed for CNs and applied in
the optical range. In that work, both approximate analytical and
numerical solutions were provided for optical scattering from
finite-length tubes. Finally, measurements on a parallel array of
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Fig. 2. Profile of armchair nanotube dipole antenna.

MWNTs nanotubes showed polarization sensitivity and wave-
length-dependent resonant effects in the optical band [13], and
optical Rayleigh scattering measurements on various SWNTs
were presented in [14].

In this work, as in [10], metallic carbon nanotube dipole
antennas are studied using a Hallén’s-type integral equation.
However, here we use a quantum mechanical CN conductance
function (analogous to the dielectric function), appropriate for
optical frequencies, whereas in [10] a semiclassical, low-fre-
quency CN conductance was used. In this respect the underlying
model is the same as that used in [12]. This can be considered
to be a semiclassical model, since the classical Maxwell’s
equations are used in conjunction with a quantum conductance.
Antenna properties such as the input impedance, current profile,
gain and efficiency are presented in the THz, infrared (IR),
and optical bands for a common canonical antenna source, the
delta-gap voltage source. All units are in the SI system, and the
time variation (suppressed) is .

II. FORMULATION

An armchair carbon nanotube having radius , and oriented
along the axis, is depicted in Fig. 2. The tube is considered
to be sufficiently thin ( , where is the free-space wave
number) such that circumferentially directed currents can be ne-
glected, as can the azimuthal dependence of the longitudinal
current. Therefore, current on the carbon nanotube is , and,
as shown in [10], satisfies Pocklington’s equation [15]

(2)

for , where

(3)

is the tube’s impedance per unit length, is the conductance
of the carbon nanotube, is the component of the

incident (source) field, is the radian frequency, is the per-
mittivity of the surrounding medium ( is assumed here),

, where the is the wavelength of light in empty
space at frequency , and where the kernel is

(4)

Pocklington’s equation (2) does not account for the hemi-
spherical end caps shown in Fig. 2, which are ignored in this
analysis. As discussed in [10], (2) is identical in form to the
Pocklington equation for an imperfectly conducting metal wire
antenna (solid or tubular) [16], with the only difference being

that in the case of an ordinary antenna, (3) for the CN would be
replaced by the surface impedance per unit length of the metal.
In this work, as in [10], the Pocklington form is converted to the
Hallén form [15], since it was found that the Hallén form pro-
vides more stable numerical results using a simple pulse func-
tion discretization. The Hallén’s form IE is [10]

(5)

for , where and are constants to be determined
from the condition , and where

(6)

Integral equation (5) is evaluated using a pulse function ex-
pansion, point matching method-of-moments solution [10]. The
current is expanded as

(7)

where are unknown current amplitudes, and if
, and otherwise,

where , with being the pulse width,
. Testing at points , , leads

to an system of equations, from which the pulse am-
plitudes can be obtained (in all computations presented here,

pulses were used, which was found to lead to con-
vergent and stable solutions). Integration techniques described
in [17] were employed to evaluate the double integrals associ-
ated with the kernel. For the consideration of the transmitting
antenna case, the excitation is a delta-gap voltage source [15],

, where is used here.
Once the antenna current has been obtained, input impedance,

gain, efficiency, radiation pattern, and other antenna parameters
can easily be determined using well-known methods [15]. In
particular, input impedance is computed as

(8)

where and are the voltage and current at the feed point.
Efficiency is determined from

(9)

where

(10)



768 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 2006

is the power input to the antenna, and

(11)

is the radiated power. Assuming the nanotube is oriented along
the axis and located in free space [15]

(12)

where

(13)

and . Finally, antenna gain is given by

(14)

It remains to specify the carbon nanotube conductance ap-
pearing in (3). Assuming a spatially local response, the -elec-
tron tight-binding quantum conductance is given by [18], [19]

(15)

where is the charge of an electron, is the phenomeno-
logical relaxation frequency ( being the relaxation time), is
the reduced Planck’s constant, and

(16)

is the equilibrium Fermi distribution function, in which is the
temperature in Kelvin, is Boltzmann’s constant, and
is the chemical potential in graphite. In (15), the electron disper-
sion relation for armchair CNs is as shown in (17) at the bottom
of the page, where eV is the approximate range
of the overlap integral, , is the quasi-momentum in
the direction, and where the upper and lower signs refer to the
conduction and valence bands, respectively. In the azimuthal di-
rection momentum is quantized due to the finite circumference
of the tube, and the summation in (15) is taken over these quan-
tized momentum states. Finally, in (15)

(18)

Fig. 3. Real and imaginary parts of � for an armchair nanotube with a =
2:712 nm (m = n = 40), computed using  = 3:03 eV and � = 0:01 ps.

is the matrix element for armchair CNs. The integral in (15)
is performed over the first Brillouin zone (BZ), e.g., from

to .
In the low-frequency regime, below optical interband transi-

tions , (15) reduces to the simple expression [18],
[20]

(19)

where is the Fermi velocity for a CN (for the range of
given above, ). Carbon nanotube
antenna results based on (19) in the GHz and low THz regime
are discussed in [10] and [11].

In Fig. 3, the real and imaginary parts of for an
nm armchair nanotube , computed using

eV and ps (these value will be discussed
later), are shown in the THz, IR, and optical bands. In Fig. 4,
the corresponding results are shown for an nm tube

.
It can be seen that interband transitions cause spikes in the

conductivity in the optical range, associated with van Hove sin-
gularities in the density of states [20]. These features lead to
similar behavior in the antenna’s properties, as discussed below.

III. DISCUSSION OF THE MODEL

The presented model has several aspects that warrant
discussion.

(17)
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Fig. 4. Real and imaginary parts of � for an armchair nanotube with a =
0:678 nm (m = n = 10), computed using  = 3:03 eV and � = 0:01 ps.

A. Integral Equation and Its Numerical Solution

The starting point for deriving the IE (5) is the semiclas-
sical Ohm’s law, , where the electromagnetic fields
are treated classically and the charge carriers are treated
quantum-mechanically (via , to be described below). The
integral equation follows straightforwardly from Ohm’s law,
and should be valid whenever Ohm’s law is valid, subject to
being able to neglect circumferentially directed currents and
the azimuthal dependence of the longitudinal current on the
tube. These restrictions can be lifted by routine electromagnetic
analysis, leading to a more complicated set of coupled IEs for
the circumferential and longitudinal currents, although this
topic is not pursued here since .

The second aspect to consider is the numerical solution of
the integral equation. This has been carefully verified by using
the surface impedance of an ordinary metal conductor in place
of (3), and comparing results with those for imperfectly con-
ducting metallic dipoles [16], [21], [22] (this is further discussed
in [10]). Having thus verified the IE and its solution for the metal
dipole, one can consider that results for the SWNT should be
accurate if provides an appropriate model for the surface
impedance of the carbon nanotube.

B. Quantum Conductance Function

The quantum conductance function (15) was developed in
[18]–[20], and is based on a -electron tight binding (TB)
model, which has been widely used (see, e.g., [3] and [23])
and includes optical interband transitions. In this model there
are two parameters to choose; is the phenomeno-
logical relaxation frequency, and is the overlap integral. In
a tight-binding model of the CN, the location of Van Hove
singularities for metallic tubes is given by [20], [24]

(20)

where is the tube diameter and . The en-
ergy of optical transitions (dipole-allowed transitions between
Van Hove singularities) is , and so plays an important
role in predicting the location of scattering or absorptance peaks.

Fig. 5. Comparison between Rayleigh scattering measurements [14] and sim-
ulation [computed using (5)] for an a = 0:678 nm carbon nanotube (m =
n = 10). The simulation used � = 0:0098 ps and  = 3:03 eV. Note that
1:7 eV ' 411 THz, and 2:6 eV ' 628:7 THz.

Reported values of cover the range 2.5–3.1 eV, with values at
the lower end of the range associated with low-frequency mea-
surements [25], [26], and those at the upper end of the range
associated with optical experiments [27], [28]. In this work we
use eV for low (GHz and lower THz) frequencies [25],
and eV for optical frequencies. The optical value is
associated with two-dimensional graphite [3, p. 32], and agrees
with the optical value reported in [28], and with a Rayleigh scat-
tering measurement described below.

The second model parameter to choose is the relaxation
frequency . A wide range of values have been re-
ported in the literature, and it seems that the correct value
depends on the energy (frequency) range of interest, and on the
tube radius. For example, at dc and low frequencies, ballistic
transport has been observed for tubes as long as micrometer
lengths; often-quoted mean-free path lengths are in the range
1.3–1.7 m. Assuming m/s, this would imply
a relaxation time of 1.44–1.88 ps, or relaxation energies in
the range of 0.22–0.29 meV. A theoretical estimate resulting
from electron interaction with longitudinal acoustic phonons
gives ps [29], in good agreement with measurements.
Furthermore, measurements on high-quality tubes show that ac
and dc transport is approximately the same (within a factor of
two) up to at least 10 GHz [30], and so through the millimeter
wavelength range values of on the order of a few picoseconds
seem well justified. In [10] ps was used, and this value is
used here in the lower THz range.

In the optical range the situation is expected to change from
the low-frequency case. Interactions with optical phonons lead
to much shorter relaxation times. This is also encountered at low
frequencies for high-bias CN transport [31], where high-bias
mean-free paths were found to be on the order of 30 nm, leading
to a relaxation time of 0.031 ps (20 meV). In the literature
different values have been used for optical CNs. For example,
in [32] (a density-functional method) results are broadened
with a Gaussian having full-width half-maximum (FWHM)
of 83 meV ps for band-structure calculations,
and 333 meV ps for optical simulations. In [33]
(an ab initio many-electron Green’s function/Bethe–Salpeter
approach), spectra were broadened with a Gaussian factor of
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TABLE I
COMPARISON OF THE LOWEST OPTICAL TRANSITION ENERGY E BETWEEN THE �-ELECTRON TIGHT-BINDING MODEL (�-TB) AND SEVERALAB INITIO

THEORIES, AND EXPERIMENT (EXP)

Note that [32] is not a true ab initio method, since an independent electron approximation is assumed in the optical range, which may account for the
discrepancies between the results of [32] and [33].

12.5 meV ps , and in [34], 150 meV ps
Lorentzian broadening was used. For semiconducting tubes,
photoluminescence measurements showed the influence of tube
radius on linewidth (where linewidth decreased with increasing
tube radius) [35], but no systematic linewidth measurements
seem to be available for metallic tubes.

Most significantly, in [14] Rayleigh scattering measurements
were reported for (10,10) tubes, showing a lineshape with a full-
width half-maximum of FWHM meV. Converting to fre-
quency and fitting to a Lorentzian lineshape ,
where FWHM , leads to ps, which is in
the range described above. This value of was fine-tuned in our
simulation code to provide a linewidth that is consistent with the
experimental result, resulting in ps. With this value
for , and eV, excellent agreement is found between
the simulation result based on (5) and experiment, as shown in
Fig. 5 ( for this tube is shown in Fig. 4). For scattering sim-
ulations over the length of the antenna to simulate
a unit-amplitude plane wave normally incident on the CN. The
good agreement between simulation and experiment leads con-
fidence in the presented model, to within the adjustable param-
eters and .

To summarize the tight-binding modal parameter choices, for
lower THz frequencies the values eV and ps
will be used, and for the optical range, eV and

ps. However, it should be kept in mind that the best choice
for these parameters will depend on the energy range of interest,
and on nanotube structure (e.g., tube radius).

Some further comments should also be made concerning
the -electron tight-binding model. As discussed in [36], the
simplest -electron tight-binding model has been shown to
lead to significant errors in optical properties for very small
diameter tubes. This fact is not unexpected, since curvature and
many-body effects are not accounted for. This is borne out by
a comparison between -TB results, ab initio methods, and
experimental results. Table I provides a comparison among the
different methods and experimental values for the lowest-order
optical transition in several single-wall tubes (for the

-TB results, (20) was used with eV). It can be seen
that, as expected, ab initio methods generally agree well with
experiment, and that predictions of the -TB model are in error
for small tube diameters. However, for larger-diameter tubes
the -TB prediction for is in close agreement with ab initio
results and measurement, as would be expected. In [36] it was
stated that for tubes with nm the difference in

between the -TB model and better estimates is less than 0.2
eV, which is borne out by the table.

C. Low-Frequency Conduction

Some confidence can be gained in the low-frequency con-
ductance (19) by comparison with another treatment. Assuming

and defining the mean-free path as , then
the tube resistance from the conductance (19) is

(21)

where is the tube length and . Alternately, treating a
carbon nanotube as a two-channel quantum wire, low bias trans-
port theory (Landauer treatment) indicates that for sufficiently
long tube lengths, i.e., tube lengths beyond the ballistic trans-
port regime, CN resistance is given by

(22)

where is a parameter on the order of the mean-free path (see
[43, pp. 57–64]). For long tubes where , (21) and (22)
agree assuming . Although the Landauer formula
generally applies to dc transport, the correspondence between
dc conductance and ac conductance through the GHz range dis-
cussed in [30] suggests that (22) may be approximately valid
for CNs through the GHz range, where (19) and (21) are ap-
plicable, and thus the results of the two different theories may
be compared. The correspondence between the results leads to
confidence in the presented model, especially since the low fre-
quency part of (15) comes from a semiclassical Boltzmann’s
equation, and the Landauer formula comes from a transmission
probability model of quantum transport near the Fermi energy.
Note that since ballistic transport is not contained in (19), the
presented IE model should not be used for submicrometer length
tubes at extremely low frequencies, where ballistic transport is
expected to dominate electron conduction.

D. Delta-Gap Source Model

Finally, a comment on the delta-gap source model is appro-
priate. This simple source model is extremely common in the
antenna field, and leads to predictions that agree well with mea-
surements on ordinary metal antennas for the radiation pattern,
input impedance, efficiency, and for other antenna properties of
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interest. Usually a two-wire transmission line (carrying the de-
sired signal, or going to a receiver) is connected to the dipole,
one wire to each arm of the dipole, possibly through a balun, or
for monopole antennas the center conductor of a coaxial cable is
extended through a hole in a ground plane and a virtual dipole is
formed by image theory. For a CN dipole the same idea would
apply, where perhaps another CN, or pair of CNs, would form
the incoming transmission line. At this point, the practical issue
of how to make the connection to the CN dipole is an open
question. However, as the ability to manipulate carbon nan-
otubes and other nanoscale objects continues to develop rapidly,
one can envision that making such connections can be accom-
plished. Moreover, the predictions based on the delta-gap model
should, at least qualitatively, hold for other methods of exciting
the dipole. For instance, the presence or absence of resonances,
and the effect of interband transitions should be relatively in-
sensitive to the method used to connect the source to the CN.
Also, as seen in Fig. 5, the same model works very well for the
simulation of CN scattering, although space limitations prevent
a thorough presentation of scattering results.

IV. RESULTS

Results are given primarily for a dipole antenna having a half-
length of nm, although dipoles having half-lengths of
50, 500, and 1000 nm are also discussed. The dipole radius is
either nm, corresponding to in (1),
or nm, corresponding to . For the
lengths considered the condition is satisfied, justi-
fying ignoring circumferential currents (and using a symmetric
source allows the neglection of the azimuthal variation of longi-
tudinal currents). Quantum confinement effects in the longitu-
dinal direction can also be ignored, since the Fermi wavelength
of electrons in a CN is on the order of a nanometer, and so

. The main conclusions of the paper are that for the
finite-length carbon nanotube dipoles studied, the antenna ex-
hibits relatively sharp current resonances (due to the finite length
of the tube) in the lower THz band according to the velocity
factor , where is the phase velocity of
the electromagnetic wave on the carbon nanotube and is the
light velocity in free space. Resonances occur approximately in
the frequency range

(23)

which corresponds to THz using
ps and nm. For the (10,10) tube,

THz. In this range, resonance-like input impedances are
found, similar to an ordinary metallic dipole antenna. Outside
of this frequency range current is strongly attenuated, such that
length-dependent resonances do not form. In the range of op-
tical interband transitions, van Hove singularities in the quantum
conductance lead to spikes in the input impedance, and in other
computed results. Furthermore, due to their small radius, CN
antennas have very low efficiencies compared to macroscale
antennas.

In Fig. 6 the normalized input impedance of a CN dipole
having half-length nm and nm is shown
(in this paper all input impedance results are normalized by

Fig. 6. Input impedance in the THz band for an L = 150 nm, a = 2:712 nm
armchair carbon nanotube antenna, computed using � = 3 ps,  = 2:7 eV.

the resistance quantum k , and in all plots having
two vertical axes, the left and right axis correspond to the real
and imaginary part, respectively, of the corresponding quantity).
Since a unit amplitude delta-gap source is assumed, is the
reciprocal of the current at the center of the antenna. The first
resonance occurs at THz, at which, as shown in [10],
the current forms approximately a half-wave distribution (reso-
nance is determined by finding the frequency where

). Setting , where is a plasmon wavelength, leads
to nm, such that . The
input impedance at first resonance is 297.97 . The first an-
tiresonance (full-wave resonance) is at THz, leading
to , and further (higher order) resonances occur,
leading to diminishing ; for example, the 12th resonance oc-
curs at 41.72 THz, leading to .

Other antennas with half-lengths and nm
and nm were also investigated, and similar behavior
was noted. For example, for an -nm dipole, the first
resonance and antiresonance occur at THz and

THz, respectively. For a 500-nm antenna, the first
resonance and antiresonance are at THz and

THz, respectively, and for a -nm antenna, the
corresponding values are THz and THz.
This leads to phase velocities ranging from to .

As discussed in [10], current resonances are suppressed for
frequencies below the relaxation frequency ( ;

assuming ps). This is also consistent with
measurements in [30], where no resonance behavior was ob-
served (although measurements were only taken up to 10 GHz).
The frequency range considered in [10] did not extend beyond
a few THz, and so no upper limit on current resonance behavior
was observed. In this work it is found that current resonances
are also strongly damped above THz
(for nm), which is in the vicinity of where
crosses the real axis in Fig. 3, and the absolute value of is
at its minimum point. Therefore, for , length-de-
pendent current resonances occur, and outside of this range the
current is strongly damped.

In order to understand the nature of current resonance
damping, it is useful to examine the dispersion curve of the
dominant electromagnetic surface-wave mode of an infinite
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Fig. 7. Dispersion curve for the dominant surface wave on an infinite carbon
nanotube having a = 2:712 nm (computed using  = 2:7 eV and � = 3 ps).
s = v =c = k=� is the normalized phase velocity, and Re (� ) =Im (� )
indicates the relative loss. The arrows indicate the positions of �=2� (left-most
arrow) and v =2�.

carbon nanotube. In [11] it was shown that the azimuthally
independent surface-wave propagation constant of an infinite
carbon nanotube satisfies , where

(24)

and are modified Bessel functions, and where is the
propagation constant (a more general dispersion relation is pro-
vided in [18]–[20]). In the usual modal theory, the current ex-
cited by a source on an infinite cylinder would be expressed
as a sum of discrete modes associated with propagation con-
stants , and a continuous summation (integration) of radia-
tion modes [38] (alternately, in a Fourier transform solution, the
current would be expressed as a sum of residues and a branch cut
contribution [39]). As discussed in [40] and [11], in most situa-
tions of interest the dominant contribution to the current comes
from the dominant discrete mode. The current on a finite-length
tube is also expected to be related to excitation of the dominant
discrete mode, which undergoes reflections at the tube ends to
form a resonance. In Fig. 7, the dispersion curve for the dom-
inant surface wave ( ) on an infinite carbon nanotube
having nm is shown, where is
the normalized phase velocity, and indicates
the relative loss. It can be seen that the tube is low-loss over the
range , which corresponds to

THz (indicated by the arrows) for the tube considered here.
Note that this observation was first made in [18]–[20] (see, e.g.,
[20, Fig. 6.8]).

In Fig. 8, input impedance values are provided for an
nm, nm antenna in the IR and optical regimes.

As described above, at these frequencies the CN dipole does not
exhibit length-dependent resonances, since current damping is
strong. However, the fairly regular set of interband transitions
in , as shown in Fig. 3, leads to oscillating behavior in the
corresponding values.

Fig. 9 shows the current distribution on the nm,
nm antenna in the optical regime, at 500 THz. As dis-

cussed above, the current is strongly damped, and thus shows no
resonance effects (similar current profiles are obtained starting

Fig. 8. Input impedance in the IR and optical band for an L = 150 nm, a =
2:712 nm armchair carbon nanotube antenna (computed using  = 3:30 eV
and � = 0:01 ps).

Fig. 9. Current distribution due to a delta-gap source on an armchair carbon
nanotube antenna having 2L = 300 nm and a = 2:712 nm, in the optical
band, computed using  = 3:03 eV and � = 0:01 ps.

at ). Fig. 10 is the same as Fig. 9, except for the
-nm tube.

Although not shown, the radiation pattern for all carbon nan-
otube antennas considered here is essentially that of a very short
dipole (i.e., ). This can be understood physi-
cally, since the antenna is very short compared to the free-space
wavelength, which is the wavelength of radiation. Radiation
into space essentially occurs from an electrically small region
around the source concentrated at the origin, and, hence, the
pattern is that of a short dipole. Therefore, the directivity of the
carbon nanotube antenna is approximately [15], al-
though the gain will be small due to the small value of effi-
ciency .

Fig. 11 shows gain (14) and efficiency (9) for an nm,
nm nanotube antenna in the THz band.

The gain and efficiency for different length nanotube an-
tennas are similar to that shown in Fig. 11, with the tendency
of having more compressed peaks in the gain, and lower peak
values, when the antenna length is longer. For instance, for

and -nm dipoles, in the frequency
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Fig. 10. Current distribution due to a delta-gap source on an armchair carbon
nanotube antenna having 2L = 300 nm and a = 0:678 nm, in the optical band,
computed using  = 3:03 eV and � = 0:01 ps.

Fig. 11. Gain and efficiency for an L = 150 nm, a = 2:712 nm nanotube
antenna in the THz band, computed using  = 2:7 eV and � = 3 ps.

range up to 40 THz, there are 2, 5, 16, and 32 peaks in the plot of
gain or efficiency versus frequency, while the amplitudes of the
first efficiency peak are approximately 13 10 , 9.5 10 ,
4.7 10 , and 2.8 10 , respectively. From these results
it can be concluded that, unlike classical macroscopic radius
metal dipole antennas, the gain and efficiency of carbon nan-
otube dipoles are very low, due to their extremely small radius.

Fig. 12 shows the gain and efficiency for the same an-
tenna as in Fig. 11, but in the IR and optical regimes. For
other length nanotube antennas in this frequency band, e.g.,

and nm, the gain and efficiency behavior
are similar, in that they exhibit almost the same numbers of
peaks, and peak values, since these are due to interband transi-
tions in , rather than current resonances.

V. SUMMARY OF RESULTS PREDICTED BY THE MODEL, AND

FUTURE WORK

In light of the simulation results reported in this paper, some
comments on the presented model and its predictions are in
order.

Fig. 12. Gain and efficiency for an L = 150 nm, a = 2:712 nm nanotube
antenna in the IR and optical band, computed using  = 3:03 eV and � =

0:01 ps.

A. Low Frequencies

Using the conductance (19) at low frequencies, in the GHz
and low THz range, the presented IE model makes several pre-
dictions. First is the absence of current resonances on finite-
length tubes below , where is the relaxation
frequency. Using ps as discussed previously, we pre-
dict the absence of current resonances for GHz. This is
consistent with measurements in [30], where no resonance be-
havior was observed, although in that work measurements were
only taken up to 10 GHz. It remains to verify experimentally
that resonances do indeed occur above 53 GHz (more gener-
ally, for frequencies above perhaps several tens to several hun-
dreds of GHz, since this value depends on ). Second, the model
predicts that wave velocities along the tube will be approxi-
mately , so that wavelengths on the tube are ap-
proximately a factor of one hundred times smaller than on a
perfectly conducting wire. A completely different semiclassical
transmission line model for metallic carbon nanotubes (using
a quantum capacitance and kinetic inductance) predicts wave-
lengths on this same order [9], [41], [42], leading to confidence
in the model, although, as yet, there are no experimental results
to verify this phenomena.

B. IR and Optical Frequencies

In the IR and optical range, the model also makes several pre-
dictions. First, above approximately current res-
onances should be strongly damped. This value corresponds to
56 THz for nm, and 225 THz for nm.
Scanning near-field optical microscopy (SNOM) may be able to
verify or refute this prediction. Second, the model predicts that
interband transitions will dominate the antenna properties of in-
dividual carbon nanotubes in the optical regime. The Rayleigh
scattering results of [14] seem to support this prediction (see
Figs. 4 and 5), although additional measurements should be per-
formed on a wide range of tubes. Furthermore, absolute scat-
tering amplitudes can be predicted by our model, and these
could be compared to measurements, which could verify not
only the number and position of scattering peaks, but also their
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amplitudes. Finally, the model presented here shows the same
polarization sensitivity (scattered field versus angle of electric
field polarization) as was experimentally measured in [14].

Some recent experiments on dense arrays of multiwall
carbon nanotubes showed antenna effects (length-dependent
resonances, and polarization sensitivity) at optical wavelengths
[13]. In that work, resonances were observed corresponding
to carbon nanotube lengths , where is the free-space
wavelength. This is the usual case for macroscopic radius metal
antennas, although this differs from the results presented here,
where resonances are suppressed in the optical regime. We
conjecture that the observed dependent resonances in
[13] must be either due to the multiwall nature of the tubes
themselves (leading to greatly larger radius values than for
SWNTs, and to enhanced conductivity), or to an array effect
forming, essentially, an artificial conductive material having
thickness . This problem requires further study.

Finally, we mention that optical transitions in carbon nan-
otubes may be strongly associated with excitons (bound
electron–hole pairs), in both semiconducting and metallic
tubes [33], [44], [45]. This would be expected in one-dimen-
sional systems [46], and is not accounted for in the -electron
tight-binding model. Excitonic effects serve to shift the po-
sitions of scattering and absorbance peaks, and change the
amplitudes of the peaks. In [33], excitonic effects produced
an approximately 0.1 eV shift in absorption spectra for a (3,3)
tube (predicted using ab initio methods), whereas a (5,0) tube
exhibited no such shift, and only a minor change in the absorp-
tance peak amplitude. Since here we concentrate on relatively
large-radius metallic tubes, excitonic effects may not be very
significant, although this is still an open question. Certainly, as
demonstrated in Table I, for very small radius tubes (15) should
be replaced with an ab initio calculation that can account for
curvature and many-body effects.

VI. CONCLUSION

Fundamental properties of dipole antennas formed by fi-
nite-length carbon nanotubes have been investigated in the
THz, IR, and optical bands via a Hallén’s-type integral equa-
tion utilizing an axial quantum mechanical conductance. Input
impedance, current distribution, gain and efficiency, and radi-
ation patterns have been discussed. Comparisons with other
results have been provided, and possible future experimental
work has been suggested. The principle conclusions of this
study are that carbon nanotube antennas exhibit longitudinal
current resonances within a certain frequency range (encom-
passing GHz and lower THz frequencies), and are strongly
damped outside of this range. CN dipoles have high input
impedances, which may be beneficial for connecting to nano-
electronic circuits, and exhibit very low efficiencies due to their
extremely small radius.
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