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Conditions that define the spectral location of bandgaps in the quasi-transverse magnetic surface plasmon polariton
modal dispersion for 2D/quasi-2D materials with a tensor response function, embedded in a simple isotropic medium
are obtained. In the isotropic case, transverse magnetic surface plasmon polariton modes propagate if the surface con-
ductivity is inductive. However, in the anisotropic case considered here, we find that quasi-transverse magnetic modes
are supported by surfaces with an inductive effective conductivity seen by the wave along the direction of propaga-
tion (written as a weighted sum of the diagonal elements). Examples of natural anisotropic 2D/quasi-2D materials are
presented to demonstrate the effectiveness of the method.

I. INTRODUCTION

Surface Plasmon Polaritons (SPPs) guided by a single inter-
face between dielectric and metal are extremely important in
the field of optics as they can overcome the diffraction limit1.
Since the discovery of graphene2,3 and other two-dimensional
materials such as the transition metal dichalchogenides
(TMDs)4, transition metal oxides (TMOs)5–7, boron nitride
(BN)8–10, black phosphorous (BP)11–15, borophene16, and α-
MoO3

17, research in this area has continued to grow as many
of these materials have useful conductive properties, making
it possible for them to support robust SPPs with large confine-
ment and propagation length. In addition, the study of quasi-
2D van der Waals heterostructures consisting of two or more
of these materials in parallel, is of growing popularity18–24. In
contrast to artificial metasurfaces25–28, where design parame-
ters such as the unit cell and periodicity govern behavior, in-
teractions at the atomic level are the driving factor behind the
unique optical and electronic properties of natural 2D/quasi-
2D materials.

For both artificial and natural materials, a tensor response
function can arise. Of particular interest are materials and
metasurfaces with anisotropic qualities due to asymmetry
(i.e., time-reversal and/or translational) which are especially
attractive in applications sensitive to polarization and/or the
propagation direction. Translational asymmetry is found nat-
urally in the crystal lattice of black phosphorous and in pat-
terned isotropic materials29–31. Time reversal symmetry is
broken in gapped dirac materials pumped with an AC plane
wave32 and in materials biased with an external magnetic
field33–36.

The novel properties of SPPs guided at the surface of two-
dimensional materials are heavily dependent on the conduc-
tivity. In addition to low loss, a strong SPP response is ob-
tained when the diagonal elements of the conductivity ten-
sor are an order of magnitude greater than the conductance
quantum37 G0 = 2e2/h where e,h denote the fundamental
charge unit and Planck’s constant respectively. In the isotropic
case, the capacitive/inductive nature of the conductivity, de-
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FIG. 1. Anisotropic two-dimensional material characterized by
surface conductivity tensor σ̄2D embedded in a simple, isotropic
medium characterized by permittivity ε and permeability µ . Quasi-
TM SPP modes supported by the structure have a dominant magnetic
field component along ẑ× q̂ and propagate at the surface in the q̂ di-
rection. The angle q̂ makes with x̂ is denoted φ .

termined very simply by the sign of the imaginary part, gov-
erns the propagation of transverse-electric/magnetic (TE/TM)
SPP modes38,39 where transverse is defined with respect to the
propagation direction. In the time convention exp(−iωt), as-
sumed throughout this work, a capacitive/inductive local, dis-
persive conductivity has Im{σ (ω)}≶ 0 and Re{σ (ω)}> 0
with the real part accounting for loss. This makes character-
izing the conductivity and predicting TE/TM SPP mode prop-
agation with respect to operational frequency rather straight-
forward. In the anisotropic case, the SPP modes are hybrid,
generally having some combination of TE and TM polar-
izations. These hybrid modes are commonly referred to as
quasi-TE/TM (QTE/QTM) depending on which polarization
is dominant. Moreover, it is not clear a priori what condi-
tions on the response tensor define a capacitive/inductive sur-
face, or even if that concept is relevant for the propagation of
QTE/QTM modes. As such, it is not known where bandgaps
will arise.

The goal of this manuscript is to present a simple and re-
liable analytical method to determine when QTM modes are
allowed to propagate, and the spectral location (i.e., tempo-
ral and spacial) of bandgaps in the QTM SPP dispersion as-
sociated with local, dispersive, anisotropic two-dimensional
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Photonic Bandgaps in Two-Dimensional Materials 2

materials. Here, we show that a surface with an inductive ef-
fective conductivity (defined below) supports the propagation
of QTM modes. We characterize the material response by
considering the effective conductivity seen by the wave along
the propagation direction, written as a weighted sum of the
diagonal elements; the sign of which determines whether the
material is inductive. We provide mathematical and physical
arguments in section II to justify the validity of the method,
and provide two examples in section III.

II. FORMULATION

In the following, we consider a local, dispersive,
anisotropic two-dimensional material embedded in a simple,
isotropic medium characterized by permittivity ε and perme-
ability µ , depicted in Fig. 1. The surface conductivity, repre-
sented generally in the standard (Cartesian) basis, is

σ̄s (ω) =

(
σx̂x̂ (ω) σx̂ŷ (ω)
σŷx̂ (ω) σŷŷ (ω)

)
, (1)

with the condition σx̂ŷ (ω) =−σŷx̂ (ω). For convenience, we
work in a coordinate system spanned by the set of orthonor-
mal basis vectors {q̂, ẑ, ẑ× q̂} where q denotes the in-plane
momentum. The representation of the surface conductivity in
this frame is

σ̄ (ω,φ) = U−1 (φ) · σ̄s (ω) ·U(φ) , (2)

where

U(φ) =

(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
, (3)

with φ denoting the angle of propagation (i.e., the angle q
makes with x̂). Expanding the transformation in (2) results in

σ̄ (ω,φ) =

(
σq̂q̂ (ω,φ) σq̂(ẑ×q̂) (ω,φ)

σ(ẑ×q̂)q̂ (ω,φ) σ(ẑ×q̂)(ẑ×q̂) (ω,φ)

)
(4)

where

σq̂q̂ = σx̂x̂ (ω)cos2 (φ)+σŷŷ (ω)sin2 (φ) , (5)
σq̂(ẑ×q̂) = σx̂ŷ (ω)+δσs (ω)cos(φ)sin(φ) , (6)

σ(ẑ×q̂)q̂ =−σx̂ŷ (ω)+δσs (ω)cos(φ)sin(φ) , (7)

σ(ẑ×q̂)(ẑ×q̂) = σx̂x̂ (ω)sin2 (φ)+σŷŷ (ω)cos2 (φ) , (8)

and δσs = σŷŷ−σx̂x̂.
The boundary conditions on the electric and magnetic fields

E,H at the interface (z = 0) in the spacial transform domain
with respect to x,y are

ẑ×
[
E
(
q,0+

)
−E

(
q,0−

)]
= 0, (9)

ẑ×
[
H
(
q,0+

)
−H

(
q,0−

)]
= σ̄ ·E

(
q,0+

)
, (10)

and lead to the recovery of the SPP dispersion relation

det
(
2Ȳ− σ̄

)
= 0 (11)

where q is preserved across the interface and Ȳ is defined in
the appendix. Explicit solutions to (11) for the SPP wavenum-
ber in terms of the propagation angle exist and can be written
in the form

q± = k
√

R±+ iI±, (12)

where k = ω
√

εµ , R± and I± denote the real and imaginary
parts of the argument of the square root respectively, and the
± distinguishes between the two solutions corresponding to
QTE and QTM SPP modes. The usual branch of the square
root is assumed in which Re(q±) > 0. It is important to note
that sgn(Im{q±}) is equal to that of I±. It can be shown that

R± = 1+
2 |∆±|

η2
∣∣σq̂q̂

∣∣2 cos
(
2θ + γ

±) , (13)

I± =
2 |∆±|

η2
∣∣σq̂q̂

∣∣2 sin
(
2θ + γ

±) , (14)

where

∆
± = s4−2s2

d∓ s2
√

s4−4s2
d , (15)

with s2 = 1 + η2det(σ̄)/4, s2
d = η2σq̂q̂σ(ẑ×q̂)(ẑ×q̂)/4, and

η2 = µ/ε . The angles θ ,γ± ∈ [−π,π] are defined as

θ = sgn
(
Im
{

σq̂q̂
})

tan−1

(
Re
{

σq̂q̂
}∣∣Im{σq̂q̂
}∣∣
)
, (16)

γ
± = tan−1

(
Im{∆±}
Re{∆±}

)
. (17)

Assuming low loss, the conductivity elements in the stan-
dard basis are of the form σαα = iIm{σαα} + εαα and
σαβ = Re

{
σαβ

}
+ iεαβ for α,β ∈ {x̂, ŷ} (α 6= β ) such that

|Im(σαα)| � |εαα | and
∣∣Re
(
σαβ

)∣∣� ∣∣εαβ

∣∣. Both εαα and
εαβ are real valued with εαα > 0 while the sign of εαβ is deter-
mined with respect to an arbitrary axis along which time rever-
sal symmetry is broken. In this case, we find 0 < Re

{
σq̂q̂
}
�∣∣Im{σq̂q̂

}∣∣, and therefore, the sign of Im
{

σq̂q̂
}

ultimately de-
termines whether θ is in the first [0,π/2] or fourth [−π/2,0]
quadrants of the complex plane.

In most cases, QTE SPP modes are fast propagating with
small wavenumber (i.e., q+ ' k). As a result, these modes
tend to leak rapidly into the surrounding environment and are
loosely confined to the interface. Therefore, these modes are
of little importance and are not considered in the following
analysis. In contrast, QTM modes tend to be slow propagating
with large wavenumber (i.e., q− & k) and tightly confined to
the interface39 which is ideal. It is straightforward to show, in
the isotropic case, that∣∣∣∣ Im{∆−}Re{∆−}

∣∣∣∣<
∣∣∣∣∣Re

{
σq̂q̂
}

Im
{

σq̂q̂
}∣∣∣∣∣ , (18)

and although difficult to formally prove, it is reasonable to
assume (18) also holds in the anisotropic case, as numerical
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Photonic Bandgaps in Two-Dimensional Materials 3

tests have confirmed. We then find

∣∣γ−∣∣= tan−1
∣∣∣∣ Im{∆−}Re{∆−}

∣∣∣∣< tan−1

∣∣∣∣∣Re
{

σq̂q̂
}

Im
{

σq̂q̂
}∣∣∣∣∣= |θ | , (19)

indicating that 2θ + γ− and 2θ share the same quadrant. As a
result, one is justified in writing (14) in the form

I− = sgn
(
Im
{

σq̂q̂
})[ 2 |∆−|

η2
∣∣σq̂q̂

∣∣2 sin
∣∣2θ + γ

−∣∣] , (20)

where the term in brackets [·] is positive, making it clear
that sgn

(
Im
{

σq̂q̂
})

controls the sign of I− and ultimately
Im{q−}.

Outward propagating QTM SPP modes along a particular
direction in the plane of the interface are required to have
Im{q} > 0 in order to satisfy the Sommerfeld radiation con-
dition. This condition is satisfied when I− > 0 and therefore,
Im
{

σq̂q̂
}
> 0. We characterize the conductivity as induc-

tive according to Im
{

σq̂q̂
}
> 0, which remains valid in the

isotropic limit.
To summarize, we find that local dispersive, anisotropic

two-dimensional materials, support QTM SPP modes when
the effective conductivity seen by the wave along the propa-
gation direction σq̂q̂ (ω,φ) defined in (5) is inductive, with a
positive imaginary part. In the limiting cases φ = 2nπ and
φ = nπ +π/2 for n ∈ {0,1,2, . . .}, we find σq̂q̂ = σx̂x̂,σŷŷ re-
spectively; the other diagonal element is effectively immate-
rial in these limits. As a result, predicting the spectral location
of bandgaps in the QTM SPP dispersion is straightforward.

Lastly, we note that in most cases, natural 2d/quasi-2D ma-
terials are supported by a substrate of some kind. In this case,
the closed form solutions to the dispersion relation (11) ob-
tained and the above analysis no-longer rigorously applies as
the material properties above and below the material would
differ. However, as long as the substrate plays a negligible
role in guiding the SPP, the above analysis is still useful.

III. RESULTS AND DISCUSSION

Here, we present two examples to validate the presented
formulation. We consider excitation frequencies up into the
infrared region of the spectrum, and take the surrounding
medium to be vacuum.

A. Gyrotropic Graphene

In this example, we consider graphene biased with a per-
pendicular external magnetic field B = ẑB0 [T]. The conduc-
tivity tensor in the standard basis is of the form (1) with σx̂x̂ =
σŷŷ = σd and σx̂ŷ = −σŷx̂ = σo where σd,o = σ intra

d,o +σ inter
d,o ,

with intra- and inter- band contributions written as a discrete

summation over Landau levels40

σ
inter/intra
d =

h̄ω̃

i
e2E2

1
2π h̄

∞

∑
n=0

1
M±n

N−n+1±N−n
M±n M±n − h̄2

ω̃2
, (21)

σ
inter/intra
o = sgn(B0)

e2E2
1

2π h̄

∞

∑
n=0

N+
n+1−N+

n

M±n M±n − h̄2
ω̃2

, (22)

where N±n = nF (−En) ± nF (En) and M±n = En+1 ± En

with ω̃ = ω + 2iΓ, En = vF
√

2h̄n |eB0|, and nF (E) =

{exp [(E−µc)/kBT ] + 1}−1 is the Fermi-Dirac distribution
function. The parameters {ω,Γ,µc,vF ,e,T, h̄,kB} denote
the excitation frequency, scattering rate, chemical potential,
Fermi velocity ' 106m/s, fundamental charge, temperature,
Planck’s reduced constant, and Boltzmann constant respec-
tively. One additional parameter worth introducing is the mag-
netic length lB =

√
h̄/ |eB0|. This quantity places a bound

on q in the sense that for q & 1/lB a non-local model for the
conductivity is required33. It should also be noted that for
relatively large magnetic field values (B0 & 0.1T ), the infinite
sums in (21)-(22) converge rather quickly, making it sufficient
to include only a few terms. This yields the correct result for
frequencies up to the first few landau levels, however, addi-
tional terms are necessary at higher frequencies to obtain the
correct resonance behavior.

The QTM dispersion and associated equi-frequency disper-
sion contours are shown in Figs. 2a and 2b respectively, while
the imaginary part of σq̂q̂ is shown in Fig. 2c. Isotropy in
the diagonal elements results in isotropic equi-frequency con-
tours as the dependence on φ drops out of σq̂q̂. Bandgaps in
the exact dispersion (12) clearly correspond to Im{σq̂q̂} < 0,
indicated by the blue shaded regions.

B. Hyperbolic, Black Phosphorous

Next, we consider an approximate model for the conduc-
tivity of multilayer black phosphorous thin films11,12 where
anisotropy arises as a consequence of the in-plane crystallo-
graphic directions having different symmetries. In the hyper-
bolic regime, the imaginary parts of σx̂x̂ and σŷŷ are of oppo-
site sign, in which case the the sign of the imaginary part of
σq̂q̂ may vary depending on propagation angle and excitation
frequency. In what follows, we restrict our consideration to
bandgap dependence on propagation angle.

At sufficiently low frequency, intraband transitions domi-
nate the material response and lead to a Drude type contri-
bution to the conductivity of the form σ intra

αα = iΩαα/ω̃ for
α ∈ {x̂, ŷ}, where ω̃ = ω + 2iΓ and Ωαα = e2 |n|/m∗α de-
notes the drude weight. The parameters {ω,Γ,n,m∗α ,e} de-
note the excitation frequency, scattering rate, charge carrier
density, fundamental charge, and effective mass respectively.
At higher frequencies, inter-band transitions dominate. How-
ever, in the case of multilayer black phosphorous, the in-
terband transitions are negligible along one of the crystallo-
graphic directions which we conveniently take to be ŷ. Thus,
σŷŷ has only an intraband contribution while σx̂x̂ has both
intra- and inter-band contributions. We introduce the inter-
band contribution phonologically by modeling the absorption
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Photonic Bandgaps in Two-Dimensional Materials 4

FIG. 2. (a) QTM SPP dispersion (red lines) with bandgaps
shaded purple and (b) isotropic equi-frequency dispersion
contours increasing in radius for the respective energies
{0.12eV,0.14eV,0.16eV,0.18eV}. (c) Behavior of Im{σq̂q̂}
shows how spectral regions in which the sign is negative correspond
to the bandgap regions in (a). Material parameters used in the
conductivity model are h̄Γ = 0.005eV, µc = 0.3E1 ' 0.03eV,
B0 = 10T, and T = 40K.

(real part) as a unit step and obtain the imaginary part from
the Kramers-Kronig relations. In total, we have41

σ
inter
x̂x̂ = σx̂

[
Θ(ω−ωx̂)+

i
π

ln
∣∣∣∣ω−ωx̂
ω +ωx̂

∣∣∣∣] , (23)

where ωx̂ denotes the onset frequency of inter-band transitions
and σx̂ is an amplitude coefficient.

Figure 3a shows how the imaginary parts of the conduc-
tivity elements in the standard basis vary with respect to fre-
quency. The solid black vertical line separates the elliptic
and hyperbolic regimes. Parameters used in the conductivity
model correspond to a 20nm thick Black Phosphorus film12,
doped with a 0.2eV chemical potential defined as the energy
difference between Fermi level and first conduction subband.
For h̄ω = 0.6eV, the equi-frequency dispersion contour (EFC)
is shown in Fig. 3b, and the imaginary part of σq̂q̂ as propa-
gation angle varies is shown in Fig. 3c. Bandgaps in the EFC
are shaded blue and agree with Im{σq̂q̂}< 0.

IV. CONCLUSION

In this work, we used the conductivity of local, disper-
sive, anisotropic two-dimensional materials to predict the
spectral location of bandgaps in the QTM SPP dispersion.
These bandgaps are found to occur in regions of the spec-

FIG. 3. (a) Conductivity tensor elements represented in the stan-
dard basis for a Black Phosphorous film. The hyperbolic regime in
which Im{σx̂x̂}Im{σŷŷ} < 0 is located to the right of the vertical
black line. (b) The hyperbolic equi-frequency dispersion contour for
h̄ω = 0.2eV. Bandgaps in the equi-frequency contours (shaded blue)
are determined by Im{σq̂q̂} < 0 shown in (c). Material parameters
used in the conductivity model are h̄Γ = 0.005eV, n = 5e13cm−2,
m∗x̂ = 0.15m0, m∗ŷ = 1.2m0, h̄ωx̂ = 0.7eV, and σx̂ = 3.5σ0 where m0

denotes the free electron rest mass and σ0 = e2/4h̄.

trum where the imaginary part of the conductivity along the
direction of propagation is negative (i.e., Im{σq̂q̂}< 0) which
remains valid in the isotropic limit. Conversely, we found that
QTM SPP mode propagation is supported by inductive sur-
faces, which we characterized according to Im{σq̂q̂} > 0. To
demonstrate our proposed formalism, we provided two nu-
merical examples of natural materials. We believe these re-
sults to be extremely helpful in the characterization of natural
2D/quasi-2D materials, and in artificial metasurface design.
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Photonic Bandgaps in Two-Dimensional Materials 5

Appendix A: SPP Dispersion Relation

In the following, we obtain the natural modes of the
2D/quasi-2D structure shown in Fig. 1. These modes are
defined as a field configuration that exists in the absence of
sources and satisfies the appropriate boundary conditions.

Above and below the interface, in the isotropic dielectric
regions, Maxwell’s equations in the absence of sources com-
bine to form the wave equation for the electric and magnetic
fields (i.e., the vector Helmholtz equation)

∇
2Ψ+ω

2
µεΨ = ∇∇ ·Ψ (A1)

for Ψ ∈ {E,H} where ∇ ·Ψ = 0. The general solutions
to (A1) in spacial transform domain with respect to x,y are
Ψm (q,z) = Ψm

0 (q)exp
(
ikm

z z
)
, where q = x̂qx + ŷqy is the

in-plane wavevector preserved across the interface, Ψm
0 ∈{

Em
0 ,H

m
0
}

is the polarization, and km
z = m

√
k2−q2 with k2 =

ω2µε and m ∈ {±} used to indicate forward/backward prop-
agation with respect to the z-direction.

Expanding Em
0 in a coordinate system spanned by the unit

vectors {ẑ, q̂, ẑ× q̂}, we have

Em
0 = Em

q̂ q̂+Em
ẑ ẑ+Em

ẑ×q̂ (ẑ× q̂) , (A2)

and choosing the tangential components Em
q̂ and Em

ẑ×q̂, it fol-
lows that Em

ẑ =−qEm
q̂ /km

z . The associated magnetic field po-
larization is obtained from Faraday’s law as

ωµHm
0 =−km

z Em
ẑ×q̂q̂+

k2

km
z

Em
q̂ (ẑ× q̂)+qEm

ẑ×q̂ẑ. (A3)

From (A2) and (A3), it is straightforward to recover the re-
lation ẑ×Hm

0‖ = mȲ ·Em
0‖, where Em

0‖,H
m
0‖ are the tangential

components of the polarization and

Ȳ =
−1

ωµ
√

k2−q2

(
k2 0
0 k2−q2

)
. (A4)

Applying the typical outgoing wave conditions in the un-
bounded regions (i.e., z→ ±∞) and enforcing the boundary
conditions at the interface (9)-(10) leads to(

2Ȳ− σ̄
)
·E+

0‖ = 0, (A5)

for which non-trivial solutions are obtained when

det
(
2Ȳ− σ̄

)
= 0. (A6)

Valid solutions to (A6) take the form of ω,q pairs which de-
scribe the natural, propagating SPP modes supported by the
structure.
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