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Excitation of the discrete (surface-wave/plasmon propagation mode) and continuous (radiation

modes) spectrum by a point current source in the vicinity of graphene is examined. The graphene is

represented by an infinitesimally thin, local, and isotropic two-sided conductivity surface. The

dynamic electric field due to the point source is obtained by complex-plane analysis of Sommerfeld

integrals, and is decomposed into physically relevant contributions. Frequencies considered are in the

GHz through mid-THz range. As expected, the TM discrete surface wave (surface plasmon) can

dominate the response along the graphene layer, although this depends on the source and observation

point location and frequency. In particular, the TM discrete mode can provide the strongest

contribution to the total electric field in the upper GHz and low THz range, where the surface

conductivity is dominated by its imaginary part and the graphene acts as a reactive (inductive) sheet.
VC 2011 American Institute of Physics. [doi:10.1063/1.3662883]

I. INTRODUCTION

Graphene is a promising material for a range of electronic

and electromagnetic applications.1–3 Recently, graphene sam-

ples with large lateral dimensions have been fabricated,4,5

allowing for plasmonic applications in the far through near

infrared range of frequencies. Plasmonic and waveguiding

properties of graphene have been considered in a number of

previous studies; some basic plasmonic properties of graphene

have been presented in Refs. 6–11, and graphene applications

as THz plasmon oscillators,12 tunable waveguiding intercon-

nects,13 surface plasmon modulators,14 pn junctions,15 and

basic waveguiding structures and interconnects16–20 have been

examined.

In this work, the interaction of a point source and an in-

finite graphene sheet is considered. The electromagnetic

fields are governed by classical Maxwell’s equations, and

the graphene is represented by a conductivity surface arising

from a semiclassical (intraband) and quantum-dynamical

(interband) model. For the given impedance surface model,

the electromagnetic solution is exact. The electric field is

expressed in terms of three contributions: the direct field

radiated by the source in the absence of the graphene surface

(i.e., the “line-of-sight” contribution), the discrete (residue)

surface-wave mode, and the continuous (branch cut) radia-

tion mode spectrum. For applications, the discrete mode is

of primary importance, and here emphasis is placed on

exciting the discrete mode using a vertical point source. It is

shown that the discrete plasmon mode can be strongly

excited and confined near the graphene surface in the low

THz range. In the following all units are in the SI system,

and the time variation (suppressed) is ejxt, where j is the

imaginary unit.

II. FORMULATION OF THE MODEL

A. Graphene as a two-sided impedance surface

Figure 1 depicts laterally infinite graphene having con-

ductivity r (S) lying in the x-z plane at the interface between

two different mediums characterized by l1, e1 for y> 0 and

l2, e2 for y< 0, where all material parameters may be com-

plex valued.

The graphene is modeled as an infinitesimally thin,

local, two-sided surface characterized by a surface conduc-

tivity r x; lc;C; Tð Þ, where x is radian frequency, lc is

chemical potential, C is a phenomenological scattering rate

that is assumed to be independent of energy e, and T is tem-

perature. For the conductivity of graphene we use the expres-

sion resulting from the Kubo formula,21

r x; lc;C; Tð Þ ¼ je2 x� jCð Þ
p�h2

� 1

x� jCð Þ2
ð1

0

e
@fd eð Þ
@e
� @fd �eð Þ

@e

� �
de

"

�
ð1

0

fd �eð Þ � fd eð Þ
x� jCð Þ2�4 e=�hð Þ2

de

#
; (1)

where e is the charge of an electron, �h ¼ h=2p is the reduced

Planck’s constant, fd eð Þ ¼ e e�lcð Þ=kBT þ 1
� ��1

is the Fermi-

Dirac distribution, and kB is Boltzmann’s constant. We assume

that no external magnetic field is present, and so the local con-

ductivity is isotropic (i.e., there is no Hall conductivity).

The first term in Eq. (1) is due to intraband contribu-

tions, and the second term to interband contributions. The

intraband term in Eq. (1) can be evaluated as
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rintra x;lc;C;Tð Þ ¼ �j
e2kBT

p�h2 x� jCð Þ
lc

kBT
þ 2 ln e

�lc
kBT þ 1

� �� �
:

(2)

With r ¼ r0 þ jr00, it can be seen that r0intra � 0 and

r00intra <0. The sign of r00 is particularly important, because

for r00 < 0 (inductive surface reactance) a TM surface wave

can propagate, and for r00 > 0 (capacitive surface reactance)

a TE surface wave can propagate.7,8 The interband conduc-

tivity can be approximated analytically for low tempera-

ture,22 although here we are interested in room temperature

operation and we evaluate this contribution numerically.

B. Point source response of a graphene sheet

The Green’s functions for a surface conductivity model

of a graphene sheet at the interface between two dielectrics

are given in Ref. 8. The electric and magnetic fields in region

n of the geometry depicted in Fig. 1 are

E nð Þ rð Þ ¼ k2
n þ $$�

� �
p nð Þ rð Þ; (3)

H nð Þ rð Þ ¼ jxen$� p nð Þ rð Þ; (4)

where kn ¼ x
ffiffiffiffiffiffiffiffiffi
lnen
p

and p(n) (r) are the wavenumber and

electric Hertzian potential in region n, respectively. Assum-

ing that the current source J is in region 1, then

p 1ð Þ rð Þ ¼ p
p
1 rð Þ þ ps

1 rð Þ

¼
ð

X
gp

1
r; r0ð Þ þ gs

1
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n o
� J
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dX0; (5)
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X
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2
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1ð Þ r0ð Þ
jxe1
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where the underscore indicates a dyadic quantity, and X is

the support of the current, and where

gp

1
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@z

� �
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I is the unit dyadic, and kq is a radial wavenumber. The Som-

merfeld integrals are

gs
b r; r0ð Þ ¼ 1

2p

ð1
�1

Rb
H

2ð Þ
0 kqq
� �

e�p1 yþy0ð Þ

4p1

kqdkq; (9)

where b ¼ t; n; c, with

Rt ¼
M2p1 � p2 � jrxl2

M2p1 þ p2 þ jrxl2

¼
NTE kq;x

� �
ZTE kq;x
� � ; (10)

Rn ¼
N2p1 � p2 þ

rp1p2

jxe1

N2p1 þ p2 þ
rp1p2

jxe1

¼
NTM kq;x

� �
ZTM kq;x

� � ; (11)

Rc ¼
2p1 N2M2 � 1ð Þ þ rp2M2

jxe1

	 

ZTEZTM

; (12)

where N2¼ e2/e1, M2¼l2/l1, p2
n ¼ k2

q � k2
n, q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2þ z� z0ð Þ2
q

, and R ¼ r� r0j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y0ð Þ2þq2

q
.

In general, we can write Rb¼Nb/Zb.

The Green’s dyadic for region 2, gs
2

r; r0ð Þ, has the same

form as for region 1, although in Eq. (9) the replacement

Rbe�p1 yþy0ð Þ ! Tbep2ye�p1y0 (13)

must be made, where

Tt ¼
1þ Rtð Þ
N2M2

¼ 2p1

N2ZTE
; (14)

Tn ¼
p1 1� Rnð Þ

p2

¼ 2p1

ZTM
; (15)

Tc ¼
2p1 N2M2 � 1ð Þ þ rp1

jxe1

	 

N2ZTEZTM

: (16)

In general, we can write Tb¼Nb/Zb.

Both wave parameters pn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
q � k2

n

q
, n¼ 1, 2, lead to

branch points at kq¼6kn, and thus the kq-plane is a four-

sheeted Riemann surface. The standard hyperbolic branch

cuts23 that separate the one proper sheet (where Re(pn)> 0,

such that the radiation condition as yj j ! 1 is satisfied) and

the three improper sheets are the same as in the absence of

surface conductivity r. The zeros of the denominators, ZTM/TE

(kq, x)¼ 0, implicate pole singularities in the spectral plane

associated with surface-wave phenomena. The four-sheeted

Riemann surface for the dielectric interface case collapses to

a two-sheeted Riemann surface if k1¼ k2 (i.e., for a homoge-

neous space).

FIG. 1. Graphene characterized by surface conductivity r at the interface

between two dielectrics.
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Using complex-plane analysis as depicted in Fig. 2, the

scattered Green’s function in region 1 can be written as a dis-

crete pole (surface wave) contribution plus a branch cut inte-

gral over the continuum or radiation modes,

gs
b r; r0ð Þ ¼ Rres

b r; r0ð Þ

þ 1

2p

ð
Cbc1þCbc2

Rb
H

2ð Þ
0 kqq
� �

e�p1 yþy0ð Þ

4p1

kqdkq;

(17)

where

Rres
b r; r0ð Þ ¼ jR0b;0

H
2ð Þ

0 kq;0q
� �

e�p1;0 yþy0ð Þ

4p1;0
kq;0; (18)

where Rres
b is the residue, kq,0 is the wavenumber value at the

pole, R0b;0 ¼ Nb= @Zb=@kq
� ���

kq;0
, and p1,0¼ p1(kq,0). Note that

unlike the case of a general multilayered medium, only one

surface wave can propagate on graphene in a homogeneous

medium.

Here we consider a vertical point source, which excites

only TM modes. The surface-wave field can be obtained

from the residue contribution of the Sommerfeld integrals.

For a Hertzian dipole current J rð Þ ¼ ŷA0d xð Þd yð Þd zð Þ the

surface wave (residue) electric field in region 1 is

E 1ð Þ y;q;/ð Þ¼
A0k2

qR0n;0
4xe1

e�p1y

� q̂ /ð ÞH 2ð Þ0
0 kqq
� �

� ŷ
kqffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
q� k2

1

q H
2ð Þ

0 kqq
� �

8><
>:

9>=
>;;

(19)

where R0n;0 ¼ NTM kq;0
� �

= @ZTM kq;0
� �

=@kq;0
� �

, H
2ð Þ0

0 að Þ
¼ @H

2ð Þ
0 að Þ=@a, q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2
p

, and q̂ /ð Þ ¼ x̂ cos / þ ẑ sin /.

The term e�p1y leads to exponential decay away from the

graphene surface on the proper sheet (Re (pn)> 0, n¼ 1, 2).

In the following, for simplicity we consider the vertical

component of field, which is /-symmetric, the horizontal

components having explicit dependence on /. At high

frequency where kq

�� ��� k1;2

�� ��, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
q � k2

1

q
! kq, and for large

lateral distances ( kqq
�� ��� 1), because H

2ð Þ0
0 zð Þ ¼ �jH

2ð Þ
0 zð Þ,

E
1ð Þ
kqqj j�1

y; q;/ð Þ ¼ �
A0k2

qR0n;0
4xe1

H
2ð Þ

0 kq;0q
� �

e�p1y jq̂ /ð Þ þ ŷf g;

(20)

and so the horizontal components have the same magnitude

as the vertical component, although with a dependence on /.

The total y-component of electric field in region 1 is

E 1ð Þ y; qð Þ ¼ Eh þ Eres þ Ebc1þbc2 (21)

¼ 1

jxe1

k2
1 þ

@2

@y2

� �
e�jk1R

4pR
þ Rres

n r; r0ð Þ
 

þ 1

2p

ð
Cbc1þCbc2

Rn

H
2ð Þ

0 kqq
� �

e�p1 yþy0ð Þ

4p1

kqdkq

!
;

where the first term is the direct source-excited field in free

space (in the absence of the graphene surface), and the next

two terms are the surface wave and radiation spectra,

respectively. The total y-component of electric field in

region 2 is

E 2ð Þ y; qð Þ ¼ Eres þ Ebc1þbc2

¼ 1

jxe1

k2
2 þ

@2

@y2

� � 
Tres

n r; r0ð Þ

þ 1

2p

ð
Cbc1þCbc2

Tn

H
2ð Þ

0 kqq
� �

e�p1 yþy0ð Þ

4p1

kqdkq

!
;

(22)

FIG. 2. Complex plane for evaluation of

Sommerfeld integrals. The branch cuts

are denoted by the solid hyperbolic lines,

and the poles by þ.
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where Tres
n is the residue contribution associated with the

transmission coefficient. Coefficients Rn and Tn are given by

Eqs. (11) and (15), respectively.

At this point some comments concerning the meaning of

the continuous spectrum are appropriate. When source and

observation points are in the same layer, the direct (line-of-

sight) contribution Eh can be incorporated into the continu-

ous spectrum using the integral representation (7). However,

it is better to separate out this contribution, as done here, to

clarify the propagation physics. To gain some understanding

of the nature of the continuous spectrum in this representa-

tion, we can consider several special cases. First, assume no

graphene sheet and no dielectric interface (k1¼ k2). In this

case there are no surface waves, and no residue contribu-

tions, Rn¼ 0, and Tn¼ 1. In the upper region E(1)¼Eh (there

is no continuous spectral contribution), and E(2) has only a

continuous spectrum, arising from the integral in Eq. (22).

Because Tn¼ 1, this integral is merely the direct (line-of-

sight) radiation into the “lower” layer (e.g., compare with

Eq. (7)). Thus, in this case the continuous spectrum plays no

role in the upper layer, and provides the total field, which is

merely the direct field, in the lower layer. If Eh were not

separated out in the upper region, the continuous spectrum

would provide the line-of-sight contribution in both regions.

Another case to consider is when the graphene is again

removed, the lower region becomes a perfect conductor, and

the upper region is lossless. In this case, the total field above

the ground plane is the direct (line-of sight) term and the

radiation from an image dipole (surface waves cannot propa-

gate along a perfectly-conducting half-plane below a lossless

dielectric). In this case, the continuous spectrum represents

the image contribution. In short, as far as contributions to the

field are concerned, when source and observation points are

in the same layer, the continuous spectrum provides every-

thing that is neither the direct term nor the surface wave, and

when source and observation points are in different layers

the continuous spectrum provides everything except surface

waves. The continuous spectrum represents the so-called

radiation modes of the structure.24

Finally, note that we are performing a purely proper

spectral analysis in this work. In this case, complex-plane

analysis on the top Riemann sheet gives the exact evaluation

of the governing integrals for determining the field in terms

of above-cutoff, propagating, proper surface waves and the

continuous spectrum. There are no approximations made,

and the integration contour never deforms onto an improper

Riemann sheet. Thus, leaky modes are never implicated. In a

leaky mode analysis, often done in the steepest descent (SD)

plane upon which both proper and improper modes exist,

one first exactly represents the integral as an integral along

the SD path, plus residues associated with proper surface

waves and any leaky waves captured in performing the con-

tour deformation. Equating the two representations (from the

complex wavenumber and the SD plane), the proper residues

cancel and one discovers that the continuous spectrum in the

wavenumber plane is equal to the integration along the SD

path plus any captured leaky waves. Leaky waves approxi-

mate the continuous spectrum in a mathematically compact

form in certain physical regions of space, but they are never

implicated in a purely spectral wavenumber plane represen-

tation as done here. However, leaky modes can be useful as

an alternative representation, and can be used to explain cer-

tain interference effects. In this regard, it can be mentioned

that, as discussed below, for TM modes excited on graphene

in a homogeneous medium, if r00 < 0 the mode is on the

proper sheet, whereas if r00 > 0 the mode is on the improper

sheet. Thus, in the former case the improper sheet is devoid

of poles, and so there can be no leaky waves. The situation

becomes more complex when the two dielectrics are not the

same, and especially when a dielectric slab is involved, in

which case the presence of the graphene will perturb the

well-known proper, improper, and leaky modes of the slab.

This is beyond the scope of the present work.

C. Surface waves guided by graphene

Surface waves supported by a graphene surface are dis-

cussed in Refs. 7 and 8. The dispersion equation for surface

waves that are transverse-electric (TE) to the propagation

direction q is

ZTE kq;x
� �

¼ M2p1 þ p2 þ jrxl2 ¼ 0; (23)

whereas for transverse-magnetic (TM) waves,

ZTM kq;x
� �

¼ N2p1 þ p2 þ
rp1p2

jxe1

¼ 0: (24)

Letting lr
n and er

n denote the relative material parameters of

the upper and lower mediums (i.e., ln¼ lr
nl0 and en¼ er

ne0)

and k2
0 ¼x2l0e0 the free-space wavenumber, then if M¼ 1

(lr
1¼lr

2¼lr) the TE dispersion equation (23) can be solved

for the radial surface-wave propagation constant, yielding

kTE
q ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lre

r
1 �

er
1 � er

2

� �
lr þ r2g2

0l
2
r

2rg0lr

� �2
s

: (25)

If, furthermore, N¼ 1 (er
1¼ er

2¼ er), then Eq. (25) reduces to

kTE
q ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rg

2

� �2
r

; (26)

where k ¼ k0
ffiffiffiffiffiffiffiffi
lrer
p

and g ¼
ffiffiffiffiffiffiffi
l=e

p
. As discussed in Refs. 7

and 8, if r00 < 0 (intraband conductivity dominates) the TE

mode is on the improper sheet, whereas if r00 > 0 (interband

conductivity dominates) a TE surface wave on the proper

sheet is obtained.

In order to obtain an analytical expression for TM waves

we assume M¼N¼ 1, such that

kTM
q ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

rg

� �2
s

: (27)

If r00 < 0 the TM mode is a surface wave on the proper

sheet, whereas if r00 > 0 the TM mode is on the improper

sheet.

The degree of confinement of the surface wave to the

graphene layer can be gauged by defining a vertical attenua-

tion length f, at which point the wave decays to 1/e of its
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value on the surface. For graphene embedded in a homoge-

neous medium characterized by e and l, f�1¼Re (p), lead-

ing to fTE ¼ 2=r00xl (r00 > 0) and fTM ¼ � rj j2=2xer00

(r00 < 0). In most of the considered frequency range we have

r00 < 0, and so only the TM mode is excited.

III. RESULTS

In this section, the vertical electric field due to a vertical

point source is shown in the far- and mid-infrared regimes.

In all cases C ¼ 1=s ¼ 1:32 meV (s¼ 0.5 ps, corresponding

to a mean free path of several hundred nanometers), and

T¼ 300 K. The value of the scattering rate is similar to that

measured in Ref. 25 (1.1 ps), Ref. 26 (0.35 ps), and Ref. 27

(0.33 ps), where a Drude conductivity was verified in the far-

infrared. In all cases the source is placed on the graphene

surface y¼ 0, and the magnitude of the electric field E
normalized by the vertical component of the direct field Eh

(i.e., the field that would be present in the absence of the gra-

phene surface and assuming a homogeneous dielectric) is

shown.

In Fig. 3 the normalized electric field in region 1 is shown

as frequency varies for chemical potential lc¼ 0.2 eV and a

vacuum background (er¼ lr¼ 1). In the considered frequency

range the intraband conductivity is dominant over the inter-

band contribution, and so r00 < 0, such that only a TM surface

wave can exist. However, above approximately 10 THz the

interband term makes a non-negligible contribution to the

conductivity, and must be included in the calculation. The

conductivity normalized by the visible regime minimum con-

ductivity, rmin¼ pe2/2 h¼ 6.085� 10�5 S is also shown, and

corresponds to the typical Drude behavior (2). In Fig. 3 the

normalized total field Etotal/Eh is shown, as well as the normal-

ized residue field Eres/Eh and the branch cut/continuous spec-

trum field Ebc/Eh (Ebc¼Ebc1þbc2 and Etotal¼EhþEres

þEbc1þbc2). Figure 4 shows the fields for lc¼ 0.5 eV, where

in both plots the fields are evaluated just above the graphene

surface at y¼ k/100 and radial distance q/k¼ 1. Figure 5

shows the normalized wavenumbers kq/k and vertical confine-

ment factors f/k, where k is the wavelength in the medium (in

this case k¼ k0, the free-space wavelength).

As can be seen from Fig. 5, at low frequencies the TM

surface wave is poorly confined to the graphene surface

(f=k� 1), and it is lightly damped and relatively fast (i.e.,

kq=k0 ’ 1). For lc¼ 0.2 eV (lc¼ 0.5 eV) the total field is

smaller (larger) than the individual residue and branch cut con-

tributions due to destructive (constructive) interference

between these terms. This is also the cause of the dip near

1 THz in Fig. 3. As frequency increases into the mid-infrared,

the surface wave becomes more tightly confined to the gra-

phene layer, but becomes slower as energy is concentrated on

the graphene surface. Despite this field concentration, losses

do not continue to increase because the graphene surface tran-

sitions from a predominately resistive surface to a predomi-

nately reactive (inductive) surface. This is reflected in the field

plots (Figs. 3 and 4); at low frequency the residue and branch

FIG. 3. (Color online) Normalized total field Etotal/Eh, residue field Eres/Eh,

and branch cut/continuous spectrum field Ebc/Eh vs frequency for

lc¼ 0.2 eV. The fields are evaluated just above the graphene surface at

y¼ k/100 and at radial distance q/k¼ 1.

FIG. 4. (Color online) Normalized total field Etotal/Eh, residue field Eres/Eh,

and branch cut/continuous spectrum field Ebc/Eh vs frequency for

lc¼ 0.5 eV. The fields are evaluated just above the graphene surface at

y¼ k/100 and at radial distance q/k¼ 1.

FIG. 5. (Color online) Normalized wavenumbers kq/k and confinement fac-

tors f/k associated with the fields in Figs. 3 and 4. Solid lines are for 0.5 eV

and dashed lines are for 0.2 eV.
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cut contributions are of similar magnitude but above 1 THz the

branch cut contribution strongly diminishes and the total field

is given approximately by the residue contribution. The strong

residue component is due to the surface conductivity becoming

dominated by the imaginary part, such that the TM discrete

mode is weakly attenuated. For lc¼ 0.2 eV, above approxi-

mately 40 THz the residue contribution decreases sharply as

the graphene surface conductivity drops and mode attenuation

increases (see Fig. 5), and Etotal ’ Eh. Above approximately

80 THz the interband conductivity begins to dominate, r00 > 0,

and a TM mode is no longer excited. Because the given source

does not excite a TE mode, the total field is simply the branch

cut contribution (which is very small except for q� k) and

the direct field Eh. The same situation occurs for lc¼ 0.5 eV,

except that the transitions occur at higher frequencies.

Figure 6 shows the power attenuation along the radial

direction, a¼ 8.686 Im (kq), in dB/lm, and also the vertical

confinement factor f/k (repeated from Fig. 5) for lc¼ 0.2 eV

and lc¼ 0.5 eV. It can be seen that in the low THz regime

the mode is well-confined to the graphene surface, propagates

with moderately low loss, and, from Fig. 5, is a slow wave. In

contrast, if one assumes a vacuum-gold interface, then

kgold
q ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffi
er

1þ er

r
; (28)

where er is the complex permittivity of the metal. As an exam-

ple, at 40 THz kgold
q /k0¼ 1� j8.4� 10�5, such that the surface

plasmon is very low-loss, agold¼ 2.4� 10�4 dB/lm (com-

pared to kgraphene
q /k0¼ 23.32� j0.2 and agraphene

¼ 1.38 dB/lm for lc¼ 0.5 eV). However, the metal surface

plasmon mode is very loosely- confined to the interface, fgold/

k¼ 7.22, as opposed to fgraphene/k¼ 0.007 for graphene. The

results for fgold/k and agold for a gold-vacuum interface and

for a 9 nm thickness gold film are also shown in Fig. 6. The

conductivity was taken from measured data in Ref. 28 for the

thin films, and Ref. 29 for the gold interface. The curves are

not continuous because the measured data was only available

in the indicated frequency ranges. It can be seen that although

the attenuation is lower in the gold films and gold interface,

the vertical mode confinement is much worse over the entire

frequency range. It can be remarked that if one compares sur-

face waves on graphene at 40 THz to plasmons on a gold

interface in the near infrared, the graphene surface waves ex-

hibit more loss, but better confinement. For example, at

k¼ 1550 nm, kgold
q /k0¼ 1� j4.2� 10�4, such that the surface

plasmon has agold¼ 0.015 dB/lm and fgold/k¼ 1.7.

Figures 7 and 8 show the effect of changing the back-

ground permittivity to er¼ 4. For this larger permittivity the

field becomes more confined to the graphene sheet, and is

slightly more dispersive and lossy.

Figure 9 shows the various field components versus ra-

dial distance from the source q, at several different frequen-

cies. In the mid-THz range the residue field is dominant until

FIG. 6. (Color online) Power attenuation along the radial direction (a, dB/

lm) and vertical confinement factor f/k for graphene for two values of

chemical potential. Also shown are results for a gold-vacuum interface and a

9 nm thickness gold film.

FIG. 7. (Color online) Normalized total field Etotal/Eh, residue field Eres/Eh,

and branch-cut/continuous spectrum field Ebc/Eh versus frequency for

lc¼ 0.2 eV and er¼ 4. The fields are evaluated just above the graphene sur-

face at y¼ k/100 and at radial distance q/k¼ 1.

FIG. 8. (Color online) Effect on surface wavenumber kq/k and mode con-

finement factor of background permittivity. Solid lines are for er¼ 1 and

dashed lines are for er¼ 4.
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approximately q/k¼ 10, after which point the direct field is

dominant.

Figure 10 shows the various field components versus

radial distance from the source q, at 40 THz for er¼ 1 and

er¼ 4. Larger permittivity tends to decrease the total field

due to enhanced mode attenuation.

Figure 11 shows the transmitted field in region 2 (for

e1¼ e2) just under the graphene surface, at y¼�k/100, as a

function of radial distance from the source q. Comparing

with Fig. 10, the residue and total field at y¼�k/100 are the

same as at y¼ k/100 (although not entirely relevant, it is

worth noting that at normal incidence the plane wave trans-

mission coefficient is T¼ 1/(1þ rg/2)¼ 0.9987), but the

branch cut contribution in region 2 is much larger than in

region 1. This is because of the forms (5) and (6); in region 1

there is a direct field contribution associated with g1
p,

whereas this term is absent in region 2, and must be synthe-

sized by the branch cut contribution.

Finally, to examine the effect of having two different

permittivities, Fig. 12 shows the field in region 1 along the

graphene surface as a function of radial distance from the

source, q, for er
1¼ 4 and er

2¼ 1. The fields are normalized by

the vertical component of the direct field Eh that would be

present in the absence of the graphene surface and for a

homogeneous dielectric having er¼ 4. The normalized total

field is now less than one because the image source (synthe-

sized by the continuous spectrum, which is large compared

to the case of er
1¼ er

2) produces a field that tends to cancel

the original source field. This is easily shown for a simple

dielectric interface in the static case using image theory.

FIG. 10. (Color online) Field components at 40 THz for two different back-

ground permittivities.

FIG. 11. (Color online) Transmitted field in region 2 (for e1¼ e2) just under

the graphene surface, at y¼�k/100, as a function of radial distance from

the source q.

FIG. 12. (Color online) Field in region 1 along the graphene surface as a

function of radial distance from the source, q, for e1
r¼ 4 and e2

r¼ 1. The

fields are normalized by the vertical component of the direct field Eh that

would be present in the absence of the graphene surface and for a homoge-

neous dielectric having er¼ 4.

FIG. 9. (Color online) Electric field components vs radial distance along

graphene sheet at three frequencies.
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IV. CONCLUSIONS

An exact solution has been obtained for the electromag-

netic field due to an electric current point source near a sur-

face conductivity model of graphene. The field was

decomposed into discrete and continuous spectral compo-

nents. It has been shown that the TM discrete surface wave

(surface plasmon) can dominate the response along the gra-

phene layer in the upper GHz and low THz range, where the

surface conductivity is dominated by its imaginary part. The

TM surface wave propagates as a slow wave with good con-

finement and relatively low loss, and, in the mid-THz range,

has superior propagation characteristics compared to a gold-

vacuum interface.
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