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Modal propagation and interaction in the smooth transition from a metal
mushroom structure to a bed-of-nails-type wire medium
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Natural propagation modes of a metamaterial mushroom structure are studied as the patch material

transitions from being a perfect conductor to being transparent, in which case the structure

becomes a bed-of-nails medium. It is shown that the modes of the perfectly conducting structure

smoothly continue to those of the bed-of-nails structure in the complex wavenumber plane, except

for some modal interaction regions and degeneracy points associated with complex-frequency

branch points migrating across the real frequency axis. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3699036]

I. INTRODUCTION

Artificial electromagnetic materials such as mushroom

and bed-of-nails structures can exhibit interesting anomalous

phenomena, such as negative refraction1 and sub-wavelength

imaging,2 and they also have applications as electrically thin

absorbers3 and high-impedance surfaces for low-profile

antenna applications.4,5 As is now well known, wire media

(e.g., bed-of-nails) exhibit strong spatial dispersion at micro-

wave frequencies,6 such that nonlocal homogenization meth-

ods with additional boundary conditions (ABCs) are

essential in analyzing these structures.7–10 It is also known

that mushroom structures composed of metallic patches11

suppress or significantly reduce spatial dispersion in wire

media.12–15 The presence of metallic patches at the wire ends

diminishes charge buildup in such a way that upon homoge-

nization, the mushroom structure can be treated as a uniaxial

continuous epsilon-negative local material loaded with a

capacitive grid of patches. However, when the patches are

thin resistive materials, such as extremely thin metals or gra-

phene, charge accumulation and diffusion at the wire-to-

patch interface becomes important and spatial dispersion

effects have to be considered, necessitating an additional

boundary condition at this interface.16 Upon homogeniza-

tion, these charge effects are reflected in the nonlocal slab

permittivity.

In general, in a mushroom structure the patches can vary

from perfect electrical conductors (PECs) to transparent

(bed-of-nails medium). This can be examined in a unified

model if one considers the patch as a two-dimensional mate-

rial represented by a surface conductivity r2d (S). The limit

r2d !1 represents the PEC case, and r2d ! 0 represents

the transparent case. Moreover, graphene or other extremely

thin materials exhibit complex-valued Drude surface conduc-

tivities, typically in the mS range17 (for graphene at low

GHz frequencies, the real part of r2d is much larger than the

imaginary part), and are of interest because in the case of

graphene, r2d is tunable by means of electrostatic or magne-

tostatic bias. In this work, we consider a mushroom structure

with a general patch conductivity r2d and examine the

natural propagation modes of the structure as the patch con-

ductivity varies between the two limits r2d !1 and

r2d ! 0. It is shown that the modes of the PEC patch struc-

ture smoothly continue to those of the bed-of-nails structure

in the complex wavenumber plane, except for some modal

interaction regions and degeneracy points associated with

complex-frequency branch points migrating across the real

frequency axis. Physically important leaky modes in each

limit become complex modes for intervening values of r2d.

An understanding of these propagating modes is important

for structures having patches consisting of thin metals or gra-

phene. The modal spatial dependence in the propagation

direction is e�jkzz, such that physical proper complex poles

are located in the first and third quadrants of the kz-plane and

physical improper complex poles are in the second and

fourth quadrants of the kz-plane. In this regard, the proper

solutions (complex or real above cutoff) are defined on the

proper Riemann sheet of the kz-plane, with the field decaying

in the air region in the vertical direction away from the patch

interface, and the improper solutions (complex or real below

cutoff) are defined on the improper Riemann sheet of the kz-

plane, with the field growing in the vertical direction. Physi-

cal and non-physical complex solutions are determined by

their behavior at infinity in the propagating direction along

the interface and by the fast or slow regimes of operation,

respectively. However, a rigorous definition of physical and

non-physical complex solutions comes from an excitation

problem (in the sense that physical complex poles contribute

to the radiation field). Further details on modal terminology

and a description of leaky waves can be found in Refs.

18–22. Throughout this paper, we use the International sys-

tem of units, and the (suppressed) time dependence is ejxt.

II. NONLOCAL HOMOGENIZATION MODEL FOR
MUSHROOM SURFACES WITH THIN METAL/
GRAPHENE PATCHES

Figure 1 depicts a mushroom medium in which the

patches are assumed to be a thin imperfectly conducting ma-

terial. With k0
ffiffiffiffi
er
p

a� p and a=L > 1, in which k0 is the
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free-space wavenumber, L is the thickness of the slab, and a
is the period of the two-dimensional lattice of square patches

(a is the wire period if the patches are absent), the wire me-

dium can be replaced with a homogenized, spatially disper-

sive uniaxial material slab having a thickness L and tensor

permittivity eðq;xÞ, where q ¼ x̂q is a vertical wavenum-

ber.6,13,16,23 The presence of spatial dispersion necessitates

an additional boundary condition at each material interface

(i.e., at each wire termination).

Although the structure will support both transverse-

magnetic (TMz, having Ex, Ez, and Hy field components) and

transverse-electric (TEz, having Hx, Hz, and Ey field compo-

nents) modes, we restrict our attention to TMz modes,

because TEz modes will not interact with the wires, and the

resulting homogenized slab is local. In what follows, the

term “microscopic” refers to currents and fields in the micro-

structure of the medium, i.e., on the wires and patches of the

actual physical structure. The term “macroscopic” refers to

averaged (homogenized) fields, i.e., the fields in the equiva-

lent homogenized medium.

In Ref. 16, an ABC was presented for the termination of

a wire at an imperfect conductor sufficiently thin so that the

field penetrates through the material. The material is mod-

eled by a two-dimensional complex surface conductivity r2d

(S). This model is appropriate for two-dimensional materials

such as graphene or for sufficiently thin three-dimensional

materials. In the latter case, r2d¼ r3dt, in which r3d (S/m) is

the usual complex conductivity and t� d is the material

thickness, with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=xl0r3d

p
being the skin depth. On

the two-dimensional material, which is assumed to be local

and isotropic, the microscopic current and field are related as

Js(x, z)¼ r2dEs(x, z), where Js is the surface current density

(A/m) and Es is the tangential electric field. The current den-

sity on the wire is Jc(x), and enforcing the continuity of cur-

rent between the wire and patch, Jc(x0)¼ Js, results in the

generalized ABC (GABC) (Ref. 16)

Jcðx0Þ þ
r2d

jxe0er

dJcðxÞ
dx
jx0
¼ 0: (1)

In terms of macroscopic fields,

1þ r2d

jxe0er

d

dx

� �
ðk0erEx � kzg0HyÞjx0

¼ 0; (2)

in which kz is the propagation constant. If r2d ! 0, the

boundary condition recovers the case of an open-ended wire

(not terminated by a ground plane or patch),8

Jcðx0Þ ¼ 0; (3)

and if r2d !1; the ABC for termination in a perfect con-

ductor is obtained.8,13,14

dJcðxÞ
dx

���
x0

¼ 0: (4)

Upon homogenization, the material slab has tensor

permittivity,23

eeffðqÞ ¼ e0erðexxðqÞx̂x̂þ ŷŷþ ẑẑÞ; (5)

in which exxðqÞ ¼ 1� b2
p=ðk2 � q2Þ, k ¼ k0

ffiffiffiffi
er
p

, and

b2
p ¼ ð2p=a2Þ=ðlnða=2pr0Þ þ 0:5275Þ, with bp being the

plasma wavenumber. The TMz plane wave incidence prob-

lem is solved in Ref. 16, and here we obtain the dispersion

equation for natural modes. Assuming that the material

patches are replaced by a continuous surface impedance Zg,

we enforce the macroscopic two-sided (or sheet) impedance

boundary condition Ez(x¼ L�)¼Ez(x¼Lþ)¼�Zg(Hy

(x¼Lþ) � Hy(x¼L�)). The GABC (2) is enforced at

x¼L�, and, assuming a PEC ground plane, (2) in the limit

r2d !1 is enforced at x¼ 0. The grid impedance Zg is pro-

vided as16,24,25

Zg ¼
a

ða� gÞr2d
� j

geff

2a
; (6)

where a ¼ ðkeffa=pÞlnðcscðpg=2aÞÞ, geff ¼ g0=
ffiffiffiffiffiffiffi
eeff
p

, keff

¼ k0
ffiffiffiffiffiffiffi
eeff
p

, eeff ¼ ðer þ 1Þ=2, and g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
. The result-

ing dispersion equation is

ZðkzÞ ¼ KcothðcTMLÞcotðkLÞ þ 1

c0

� j
g0

Zgk0

� �
¼ 0; (7)

where K¼N/D,

N ¼ 1

eTM
xx

� 1

� �
r2dcTM

jxe0er
tanhðcTMLÞ þ 1

� �

þ 1� r2dk

jxe0er
tanðkLÞ

� �
; (8)

D ¼ � k

er

1

eTM
xx

� 1

� �
r2dcTM

jxe0er
þ cothðcTMLÞ

� �

þ cTM

er
cotðkLÞ � r2dk

jxe0er

� �
; (9)

FIG. 1. Wire medium consisting of mushroom

surfaces with thin material patches.
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c2
0 ¼ k2

z � k2
0, c2

TM ¼ b2
p þ k2

z � k2, and eTM
xx ¼ 1� b2

p

=ðk2
z þ b2

pÞ. In the limiting case of r2d ! 0; we have the

wire medium (bed-of-nails) result,23 and for r2d !1 we

have the PEC patch result.13,14 In both limits r2d ! 0 and

1, the GABC and transmission/reflection problems have

been verified14,16 using HFSS.26

III. RESULTS

The results presented in this section are based on the

numerical solution of the dispersion equation (7) as a root

search for the propagation constant kz of the natural waves

of the structure, which in general include real and complex

and proper and improper solutions. The purpose of this

study is two-fold. First, we analyze the propagation proper-

ties of bound and leaky waves during the transition of a

mushroom structure with PEC patches to a bed-of-nails

wire-medium slab, i.e., as r2d varies from infinity to zero.

The transition and resulting modal behavior shed light on

the role of patch conductivity in mode propagation. Second,

we demonstrate that for some values of surface conductiv-

ity, mode interaction results in mode transformation, and

this occurs for very small variations in the value of the sur-

face conductivity.

We begin with the known case of a mushroom structure

with PEC patches studied in Ref. 14. The dispersion behav-

ior of the modal spectrum is demonstrated in Fig. 2 (see Fig.

19 in Ref. 14, obtained for the same structural parameters, in

which a detailed description of modal behavior is provided),

which serves as a starting point for the analysis to follow.

Note that the structure is lossless, and so proper and

improper real modes and complex leaky modes exist. Here,

we briefly summarize the dispersion behavior for different

modes. In Fig. 2, at low frequencies there is a highly disper-

sive surface wave (proper real bound mode) that propagates

in the backward direction due to the negative slope of the

dispersion curve. At approximately 9.1 GHz, modal propaga-

tion stops (corresponding to the left-hand edge of the stop

band region for surface waves), and the mode becomes a

proper complex (leaky wave) solution that enters a fast-wave

region at approximately 10 GHz (0 < Re(kz/k0) < 1),

wherein it radiates in the sense of leaky-wave radiation in

the backward direction in the spatial quadrant with x > 0, z
> 0. At a plasma frequency of 12.14 GHz, the pole of the

proper complex solution crosses the Sommerfeld branch cut

in the complex kz-plane and becomes an improper complex

(leaky wave) mode radiating in the forward direction in the

spatial quadrant x > 0, z < 0 within the fast-wave region

(�1 < Re (kz/k0) < 0). With an increase in frequency it even-

tually becomes one of the improper real solutions. Also, at

low frequencies there is another surface wave (proper real

bound mode) propagating in the forward direction with very

low dispersion, which becomes a nonphysical proper com-

plex solution at the leaky-wave cutoff of 9.1 GHz. This non-

physical solution is not of practical interest in the lossless

case (even though it continues to a physical surface-wave

higher-order mode at higher frequencies, as explained in

Ref. 14); however, it becomes important in the lossy case, as

is shown below. In addition, in Fig. 2 the second forward sur-

face wave is shown, with a cutoff frequency at 12.7 GHz,

which continues as an improper real solution at lower

frequencies.

With this understanding of the modal spectrum of the

structure with PEC patches, we proceed with the analysis of

modal propagation as the mushroom structure is converted to

a wire-medium slab via a gradual reduction of the surface

conductivity of the thin patch material. In all the figures to

follow, proper complex solutions are denoted with solid

lines, and improper complex solutions with dashed lines. We

first analyze the physical branch consisting of analytically

continued proper real (backward), proper complex, and

improper complex solutions shown in Fig. 2, which become

perturbed complex solutions in the presence of conduction

losses (e.g., the proper real bound modes (red curves in

Fig. 2) become complex modes in the presence of loss).

In Fig. 3, results are shown for a range of surface con-

ductivities r2d. At the largest value, r2d¼ 5.8 S, this physical

branch is only slightly perturbed from that described for the

PEC case (compare with Fig. 2). If we assume a bulk

FIG. 2. Dispersion behavior ((a) phase constant and (b) attenuation con-

stant) of the natural modes of the mushroom structure with PEC patches.

Parameters of the structure: a¼ 2 mm, g¼ 0.2 mm, L¼ 1 mm, r0¼ 0.05 mm,

and er¼ 10.2.
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conductivity of r3d¼ 5.8� 107 S/m, the associated metal

thickness for r2d¼ 5.8 S is t¼ 100 nm, well below the skin

depth, which is in the micron range. This means that typical

conduction losses due to skin depth do not affect the modal

behavior even by significantly reducing the metal thickness

to 100 nm.

As the surface conductivity is further reduced, it is

observed that the complex waves become significantly per-

turbed and attenuate very rapidly due to the large values of

the attenuation constant (shown in Fig. 3(b)). An interesting

observation is that if the surface conductivity is decreased to

the point at which the patches become almost transparent

(r2d¼ 5.8� 10�6 S), these complex waves turn into physical

leaky waves of the wire-medium slab above 23.5 GHz, spe-

cifically, a physical proper complex mode which continues

as a physical improper complex mode at a frequency of 26.4

GHz (compare with Fig. 11 in Ref. 14 for the case of a 2 mm

period). This demonstrates that the physical leaky waves

(proper complex and improper complex) of the mushroom

structure with PEC patches smoothly transition to perturbed

complex waves (due to the presence of conduction losses),

which eventually become physical leaky waves (proper com-

plex and improper complex) of the wire-medium slab as the

surface conductivity of the patches is suitably decreased.

Next, we consider the modal dynamics of proper real

(surface waves) and improper real solutions, including the

nonphysical branch shown in Fig. 2. If we start with the PEC

case and gradually reduce the surface conductivity, the

proper and improper real solutions become significantly per-

turbed. However, what is interesting is that at some value of

surface conductivity, the modal behavior dramatically

changes. In Fig. 4, it is shown that the modal behavior is

very different for two values of surface conductivity,

r2d¼ 0.058 S and r2d¼ 0.116 S (see the frequency range

from 12 GHz to 14 GHz, wherein the modal curves inter-

change behavior). This leads to the conclusion that in

between these values of surface conductivity there is a value

at which modal degeneracy occurs.

With smooth variation of the surface conductivity

between the values of 0.058 S and 0.116 S, a detailed analy-

sis of the modal behavior shown in Fig. 4 reveals modal

interchange occurring at approximately r2d¼ 0.06257 S. In

order to understand and explain the mechanism of modal

interaction (in the sense of modal transformation), we refer

FIG. 3. Modal propagation ((a) phase constant and (b) attenuation constant)

of proper complex and improper complex modes as the mushroom structure

is transformed to a wire-medium slab with decreasing surface conductivity

of the material patches. It is observed that the physical leaky waves of the

mushroom structure smoothly transition to the physical leaky waves of the

wire-medium slab.

FIG. 4. Modal dynamics ((a) phase constant and (b) attenuation constant) of

complex waves for two values of the surface conductivity (0.058 S and

0.116 S) showing qualitatively different behavior.
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to our previous works on the analysis of similar phenomena

that occur in traditional guided-wave structures.27–30 In those

papers and references therein, we developed a mathematical

framework that concerns the dynamics of frequency-plane

branch-point singularities of the dispersion function, which

separate different branches of solutions (positive and nega-

tive, complex and complex-conjugate, and n and n þ 2 TM

(TE) modes), such that a complete rotation about branch

points in the complex frequency plane results in the smooth

interchange of solutions. Using the terminology given in

Refs. 27–30, we are particularly interested in the type 2

branch points, xð2Þn;nþ2, which connect n and n þ 2 different

modes within a given class (TM or TE). These complex

frequency-plane branch points are obtained as numerical sol-

utions of the system of nonlinear equations

Zðkz;xÞ ¼ Z0kz
ðkz;xÞ ¼ 0; (10)

Z0xðkz;xÞZ00kzkz
ðkz;xÞ 6¼ 0; (11)

where Z (kz, x) is the dispersion function given by (7) and

prime and double-prime symbols denote the first and second

derivatives of the dispersion function with respect to the sub-

scripted quantity. For a given example of a mushroom struc-

ture with thin material patches, the complex frequency-plane

branch points xð2Þn;nþ2 have been calculated for different val-

ues of the surface conductivity. Figure 5 shows the evolution

of the branch points in the complex frequency plane as a

function of surface conductivity. As discussed in Refs.

27–30, when the branch point is below and near the real fre-

quency axis in the complex frequency plane, modal interac-

tion occurs, and the modal behavior is significantly

perturbed. With further reduction of the value of the surface

conductivity, the branch point approaches the real frequency

axis, and at the value of r2d¼ 0.06257 S it crosses the real

frequency axis, at which point the modal degeneracy occurs.

As we further decrease the value of the surface conductivity,

the branch point is near and above the real frequency axis

(e.g., for r2d¼ 0.0609 S as shown in Fig. 5). This migration

through the real-frequency axis corresponds to the modal

interchange (modal transformation) in the pair of solutions.

In order to demonstrate that the modal interaction occurs

due to the presence of complex frequency-plane branch

points, in Fig. 6 we present the results for the pair of com-

plex solutions obtained at the values of surface conductivity

considered in Fig. 5. It is observed that the modal degeneracy

occurs at r2d¼ 0.06257 S, at which point the branch point

crosses the real frequency axis. Also, it can be seen that the

modal behavior for the values of r2d¼ 0.06438 S and

r2d¼ 0.0609 S is qualitatively very different, demonstrating

the modal interchange associated with branch points located

below and above the real frequency axis in the complex fre-

quency plane. Also, it should be noted that for the specific

example considered here, we observed a second modal inter-

action region with a degeneracy point, which occurs at the

surface conductivity r2d¼ 0.0389 S (the results are not

shown here for the sake of brevity).

To complete the analysis of the modal propagation of sur-

face (bound) waves in the transition from PEC patches to a

wire-medium slab, we further reduce the surface conductivity

FIG. 5. Evolution of a complex frequency-plane branch point parameterized

by surface conductivity. The branch point controls the modal interaction,

and the positions of the branch point (below, above, or on the real frequency

axis) correspond to different modal behaviors.

FIG. 6. Modal interaction and modal degeneracy ((a) phase constant and (b)

attenuation constant) for the pair of complex solutions due to the presence of

complex frequency-plane branch points.
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and consider the very small values shown in Fig. 7. It can be

seen that the perturbed forward surface-wave mode (which

becomes a complex solution) of the mushroom structure with

almost transparent patches (r2d¼ 5.8� 10�6 S) becomes the

surface-wave mode of the wire-medium slab with the charac-

teristic stop band behavior observed in wire media (the results

are in excellent agreement with those shown for the wire-

medium slab in Fig. 7 of Ref. 14). It is observed that at higher

frequencies, the surface wave of the wire-medium slab contin-

ues as a nonphysical proper complex solution that becomes a

nonphysical improper complex solution (see Fig. 3 in this pa-

per and Fig. 11 in Ref. 14 in the frequency range above 23.5

GHz, wherein physical proper complex and physical improper

complex solutions are shown).

IV. CONCLUSIONS

Natural propagation modes of a metamaterial mushroom

structure consisting of material patches having a two-

dimensional surface conductivity r2d have been studied as

the patch material transitions from a perfect conductor to

transparent, in which case the structure becomes a bed-of-

nails medium. It is shown that the propagation modes of the

perfectly conducting structure smoothly continue to those of

the bed-of-nails structure in the complex wavenumber plane,

except for some modal interaction regions and degeneracy

points associated with complex-frequency branch points

migrating across the real axis.
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