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Abstract: We investigate entanglement mediated by DC current induced nonreciprocal graphene
plasmon polaritons. Nonreciprocal systems are ideal for the enhancement, control, and preser-
vation of entanglement due to the potential for unidirectional beam-like wave propagation, i.e.,
efficiently transporting photons from one emitter to another. Using a quantum master equation
and three-dimensional Green’s function analysis, we investigate a system consisting of two
two-level emitters dominantly interacting via electric current induced nonreciprocal plasmonic
modes of a graphene waveguide. We use concurrence as a measure of entanglement. We
show that nonreciprocal graphene plasmon polaritons are a promising candidate to generate
and mediate concurrence, where it is shown that there is good enhancement and control of
entanglement over vacuum, which is beneficial for the broad applications of entanglement as a
quantum resource. We believe our findings contribute to the development of quantum devices,
enabling efficient and tunable entanglement between two-level systems, which is a central goal in
quantum technologies.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The key element of any quantum system, e.g., a two-level system, is for the quantum emitters to
interact with the environment, and exchange photons with other neighbor emitters. Tailoring
these interactions fundamentally alters the performance of quantum devices for maintaining
entanglement and quantum superposition between two separated quantum emitters. Recent
work has investigated entanglement mediated by surface plasmon polaritons (SPPs) by means of
various media and plasmonic waveguide structures, e.g., V-shaped waveguides cut in a flat metal
plane [1–3] and photonic topological insulators (PTIs) [4–8]. It was shown that entanglement
mediation could be enhanced, controlled, and even preserved in the presence of large structural
defects (by means of the PTIs) by SPPs in the various plasmonic environments. Additionally, in
a recent work [9], a theoretical analysis is provided on why nonreciprocal photon transduction
enhances inter-atomic excitation transport efficiency. Here, we investigate entanglement mediated
by DC current induced nonreciprocal graphene plasmon polaritons. Since nonreciprocal systems
have the potential for unidirectional (one-way) beam-like wave propagation, i.e., the ability to
efficiently transport photons from one emitter to another, they are ideal for the enhancement,
control, and preservation of entanglement [10]. The most traditional way to achieve this is based
on the magneto-optical effect, which requires biasing plasma-like materials, e.g., semiconductors,
with a static magnetic field. However, due to the need for a strong external magnetic bias, this
approach is impractical and typically results in a weak nonreciprocal response at the desired
THz and optical frequencies. An alternative way to achieve a nonreciprocal response is to
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bias certain conducting materials (metals, degenerately doped semiconductors, and graphene)
with a direct electric current, where a sufficiently strong nonreciprocal effect can be achieved
utilizing graphene, given its high electrical conductivity [11–18]. This results in nonreciprocal
graphene plasmon polaritons [19–25], which may be a promising candidate to further enhance
entanglement mediation.

In this paper, using a quantum master equation and Green’s function analysis, we investigate
the dynamics of two two-level systems coupled to each other via electric current induced
nonreciprocal plasmonic modes of a graphene waveguiding platform. We use concurrence as
a measure of entanglement. The theoretical model for this is provided in Sec. 2. In Sec. 3
we establish the nonreciprocal response of the DC current biased graphene, and in Sec. 4 we
compare the resulting concurrences to determine whether or not there is an improvement in
entanglement enhancement and control. This allows for the further refinement and comparison of
the environments that best mediate and maintain entanglement, which is beneficial for the broad
applications of entanglement as a quantum resource, including quantum computing [26,27] and
quantum cryptography [28].

2. Theoretical model

2.1. Two-qubit entanglement

For a system of two qubits, assuming general (reciprocal or nonreciprocal) media with an external
coherent drive (i.e., a laser pump) applied to each qubit, the master equation is (ρs(t) = ρs)
[3,5,8,29–32],
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Hs is the Hamiltonian of the decoupled qubits, where △ωi = ω0 − ωl − δi, with δi = gii being
the Lamb shift. Since the Lamb shift for optical emitters is typically on the order of a few
GHz the effect of the Lamb shift for optical frequencies is small (ωi ∼ 1012 Hz, δi ∼ 109 Hz),
therefore the Lamb shift can be ignored, or assumed to be accounted for in the definition of the
transition angular frequency ω0, i.e., △ωi = ω0 − ωl − δi becomes △ωi ≈ ω0 − ωl. VAF is the
external coherent drive (i.e., a laser pump) applied to each qubit, where △l = ω0 − ωl, which is
the detuning parameter, with ωl being the laser angular frequency, and Ωi =

(d·Ei
0)

ℏ , which is a
Rabi frequency. Here the external coherent drive field is treated as a classical number given its
large amplitude.
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Assuming ω0 = ωl and Ωi = Ω
∗
i , Eq. (1) then becomes
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where

Γαβ(ω0) =
2
ε0ℏ

Im
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, (5)
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In Eqs. (5) and (6), d is the atom (qubit) transition dipole moment, Γαα and Γαβ (α ≠ β)
are the dissipative decay rates of qubit α due to its interaction with the environment and its
interaction with qubit β through the environment, gαβ (α ≠ β) is the qubits’ transition frequency
shift induced by dipole-dipole coupling, and G(rα, rβ ,ω0) is the Green’s tensor representing the
environment. Note that Γ12 = Γ21 and g12 = g21 for the reciprocal case, and for identical emitters
(qubits), which we assume in this work, Γ11 = Γ22.

2.2. Green’s function

We solve for the Green’s tensor that satisfies [3,29–32],

∇ × ∇ × G(r, r′,ω) − k2
0µr(r,ω)εr(r,ω)G(r, r′,ω) = k2

0Iδ(r − r′), (7)

where r, r′ are the observation and source point vectors, respectively, k0 =
ω
c = ω

√
µ0ε0 is the

vacuum wavenumber, ω is the angular frequency, c is the speed of light in vacuum, µr(r,ω) is
the relative permeability, εr(r,ω) is the relative permittivity, and I is the unit 3-by-3 tensor. We
assume that we are working with non-magnetic materials so we set µr(r,ω) = 1. Additionally,
throughout this work we assume time-harmonic fields with time variations of the form e−iωt.

The model for the case of a single interface (in this case a sheet of graphene modeled as an
infinitesimally thin local two-sided surface characterized by a surface conductivityσ) between two
different materials (µ2, ε2 for z>0, µ1, ε1 for z<0) [33] is seen in Fig. 1. We assume the interface is
an infinite plane (in this case an infinite sheet of graphene), where we also assume the source point
and the observation point are both above the interface, i.e., in region 2. Additionally, we assume
that the two atoms (qubits) have a dipole moment of d =ˆ︁zd, i.e., they are polarized perpendicular
to the interface, with qubit one (QB1) at (x′, y′, z′), and qubit two (QB2) at (x, y, z), so that

R = r−r′ = (x − x′)ˆ︁x+ (y − y′)ˆ︁y+ (z − z′)ˆ︁z, where R = |R| =

√︂
(x − x′)2 + (y − y′)2 + (z − z′)2,

and with ρ =
√︂
(x − x′)2 + (y − y′)2, then, R = |R| =

√︂
ρ2 + (z − z′)2. We also assume that the

qubits are at the same height, i.e., z = z′, which leads to R = ρ, and that QB1 is always located at
the origin (x′ = 0, y′ = 0), i.e., at the center of the graphene sheet (x-y plane). We can apply a
DC voltage to the graphene sheet as shown in Fig. 1, where a drift velocity will be induced by the
DC current.
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Fig. 1. Model for the case of a single interface (in this case an infinite sheet of graphene
modeled as an infinitesimally thin local two-sided surface characterized by a surface
conductivity σ) between two different materials (µ2, ε2 for z>0, µ1, ε1 for z<0). The
graphene sheet is biased with a DC voltage, where the blue arrow represents the drift velocity
induced by the DC current.

For this geometry we can express the solution to Eq. (7) as

G(r, r′,ω) =
[︁
Ik2

2 + ∇∇·
]︁ {︂
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}︂

, (8)

where we are solving for the Green’s function in region 2, therefore we use k2 = ω
√
µ2ε2 as

the wavenumber. Here, gp(r, r′,ω) is the principle Green’s function (the solution to Eq. (7)
when εr(r,ω) = εr2(r,ω), i.e., the Green’s function for a homogeneous medium (a single region
(region 2) with no interface)), and gs(r, r′,ω) is the scattered Green’s function (the solution to
Eq. (7) accounting for the field scattered from the media (the interface and the regions)). With
d =ˆ︁zd, then d · G(r, r′) · d, which is ultimately what we will need in Eqs. (5) and (6), becomes
(using the expression for G(r, r′,ω) from Eq. (8))
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and [33]
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2. Note that we can also express
eiqρ cos(φ−θ) in Eq. (11) as eiq(cos(φ)x+sin(φ)y), where in both cases ϕ is defined as the angle in the
momentum coordinate space shown in Fig. 1. We will define a nonlocal surface conductivity σd
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in Sec. 3.1, where we will see that for a drift velocity vd = 0, σd = σ, defined in Sec. 2.3. In that
case, σd → σ, we can use a Bessel function identity for the ϕ integral for gs

zz, leading to
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zz =

1
2π
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To obtain the electric field from the Green’s function we use
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. (14)

2.3. Local surface conductivity for graphene

We define the local surface conductivity σ for graphene as (in the low-temperature limit) [34]

σ(ω) =
ie2µc

πℏ2 (ω + iΓ)
+

e2
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where Θ (x) is the Heaviside function and e is the charge of an electron.
In Eq. (15), µc is the chemical potential (Fermi energy) and Γ is the phenomenological

intraband scattering rate, where Γ = 1
τ (τ is the intraband scattering time). In this work we use

[23] µc = 0.1 eV and τ = 0.35 ps. Then, using these values, we obtain the plot inset in Fig. 2(a)
for the local surface conductivity σ(ω) for graphene. Additionally, since we are only interested
in TM surface modes we need to ensure that we are working at a frequency where the imaginary
part of σ(ω) (or the conductivity with the Doppler-shifted frequency used in the σd expression
in Sec. 3.1) is positive [34].

(a) (b)

Fig. 2. Nonlocal surface conductivity σd(vd , qx,ω) for graphene (in the low-temperature
limit), where µc = 0.1 eV, τ = 0.35 ps, and σmin =

(πe2)
(2h) (h is Planck’s constant): (a)

nonlocal conductivity for vd =
−vF

2 , with inset of local surface conductivity σ(ω), and (b)
nonlocal conductivity for vd =

−vF
2 at 15 THz (on the plane at 15 THz in (a)), where the

local conductivity at 15 THz is also included for reference. A plane is included in (a) at
σ

σmin
= 1 for reference to better see changes to σ

σmin
as qx changes.

2.4. Concurrence

We use the expression for concurrence in the general case (reciprocal or nonreciprocal) [8,35],

C(t) = max
(︁
0,
√

u1 −
√

u2 −
√

u3 −
√

u4
)︁
, (16)

as a measure of the amount of entanglement between the qubits (varies from 0 (unentangled) to 1
(completely entangled), where ui are the eigenvalues, arranged in descending order, of the matrix
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ρ(t)ρy(t), where ρy(t) = σy1 ⊗ σy2 ρ
∗(t)σy1 ⊗ σy2 is the spin-flip density matrix with σyi being the

Pauli matrix, σyi =

⎡⎢⎢⎢⎢⎣
0 −i

i 0
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,
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,
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initial state of the system is
|︁|︁Ψ(0)⟩︁ = |︁|︁e1

⟩︁|︁|︁g2
⟩︁
, i.e., only atom (qubit) one is in the excited state.

3. DC current induced nonreciprocal graphene plasmon polaritons

If we bias the graphene sheet as shown in Fig. 1, we will induce a drift current (drift velocity) on
the graphene surface. In the presence of this drift the local surface conductivity for the graphene
becomes nonlocal [23–25]. This results in nonreciprocal graphene plasmon polaritons.

3.1. Nonlocal surface conductivity for DC biased graphene

We now define the nonlocal surface conductivity σd for DC biased graphene as [23–25]

σd(vd, qx,ω) =
ω

ω − qxvd
σ(ω − qxvd) =

ω

ω − |q| cos(ϕ)vd
σ(ω − |q| cos(ϕ)vd), (17)

where vd is the drift velocity and qx is the wavenumber in the momentum space along the
x-direction on the graphene surface, where we have assumed that the velocity distribution (e.g.,
Maxwell-Boltzmann) is such that vd ≈ vx ≫ vy. The resulting nonreciprocal graphene plasmon
polaritons become more unidirectional for higher drift velocities, where, for graphene, given its
high electrical conductivity [11–18], drift velocities on the order of vF ≈ c

300 (vF being the Fermi
velocity) are possible [23].

A plot for the nonlocal surface conductivity for graphene (in the low-temperature limit) for
vd =

−vF
2 is provided in Fig. 2, where we can see that the conductivity is nonreciprocal with

respect to qx (larger conductivity in the direction of the drift velocity (−qx-direction)), e.g., see
Fig. 2(b), which is the nonlocal conductivity at 15 THz. In other words, the conductivity is
tilted along the qx-axis; smaller in the +qx-direction, becoming larger in the −qx-direction (the
direction of the drift velocity). This is commensurate with the nonreciprocal response for the
SPPs, where the smaller nonlocal Im (σ) values in the +qx-direction are not sufficient for a strong
SPP response [36].

3.2. Dispersion

The dispersion relation for the TM surface waves (the SPPs) supported by the graphene sheet is
obtained by setting the denominator, ZE, in Eq. (12) equal to zero, which results in

ZE =
ε1
ε2

p2 + p1 +
σdp2p1
−iωε2

= 0. (18)

Then to determine the dispersion we obtain the resulting solution of Eq. (18). Note that
throughout this work, when obtaining the results pertaining to the Green’s function values (and
the corresponding results) the applicable configuration is the graphene sheet embedded in SiO2,
i.e., the relative permittivity in both regions (region 1 and region 2) is εr1 = εr2 = 4.
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The dispersion for different drift velocity values is shown in Fig. 3, where we can see that for
no drift velocity the dispersion is reciprocal for all frequencies, however, for even a small amount
of drift velocity there is a nonreciprocal response. For the larger drift velocity values propagation
becomes unidirectional (in the direction of the drift velocity), where the SPPs only propagate in
one direction above certain frequencies, starting at fairly low THz frequencies for the larger drift
velocity values.

(a)

vd = 0
vd = -vF/8
vd = -vF/6
vd = -vF/4
vd = -vF/2

-0.15 0 0.15
0

5

10

15

20

25

30

35

qx (nm-1
)

f(
TH
z)

(b)

(c) (d)

Fig. 3. Dispersion for TM surface waves supported by the graphene sheet for (a) different
drift velocity values, (b) graphene reciprocal (R) (vd = 0), (c) graphene nonreciprocal (NR)
for vd =

−vF
4 , and (d) graphene NR for vd =

−vF
2 .

We can also see the effect of the source height on the SPP dispersion by looking at the
magnitude of the Green’s function integrand for the Sommerfeld integrals at an equi-frequency
contour (EFC) at 15 THz. From the plots in Fig. 4 we can see that the intensity of the SPPs
(the poles) in the Green’s function integrand varies along the EFC as the source height changes;
different parts of the EFC become dominant and contribute more as the source height changes.

Throughout this work the qubit separation distances and source (observation) heights are
normalized to wavelength. Given the disparity between the wavelengths (at 15 THz the vacuum
wavelength is approx. 117 times larger than the SPP wavelengths), we normalize to each respective
wavelength, i.e., the qubit separation distances and source (observation) heights are with respect
to the ’electrical lengths.’ The normalization wavelengths used for vacuum, graphene reciprocal
(R), graphene nonreciprocal (NR) for vd =

−vF
2 , and graphene nonreciprocal (NR) for vd =

−vF
4

are λ0 ≈ 19.986 µm, λpr ≈ 0.106 µm, λpnr1 ≈ 0.171 µm, and λpnr2 ≈ 0.137 µm, respectively.
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(a)(a) (b) (c)

(d)(d) (e) (f)

(g)(g) (h) (i)

Fig. 4. Effect of the source height on the dispersion for TM surface waves (the SPPs)
supported by the graphene sheet: (a) graphene reciprocal (R) (vd = 0) with cut-plane at 15
THz, (b) graphene R (λ = λpr) with z = z′ = λ

4 , (c) graphene R (λ = λpr) with z = z′ = λ
3 ,

(d) graphene nonreciprocal (NR) for vd =
−vF

4 with cut-plane at 15 THz, (e) graphene NR
(λ = λpnr2) for vd =

−vF
4 with z = z′ = λ

4 , (f) graphene NR (λ = λpnr2) for vd =
−vF

4 with
z = z′ = λ

3 , (g) graphene NR for vd =
−vF

2 with cut-plane at 15 THz, (h) graphene NR
(λ = λpnr1) for vd =

−vF
2 with z = z′ = λ

4 , (i) graphene NR (λ = λpnr1) for vd =
−vF

2 with
z = z′ = λ

3 , where the magnitude of the Green’s function integrand is plotted (in arb. units)
for (b), (c), (e), (f), (h), and (i).
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For no drift velocity the dispersion is reciprocal, and the SPPs (the poles) contribute uniformly
to the Green’s function integrand along the EFC resulting in the SPP propagation being reciprocal.
For nonzero drift velocities the dispersion is nonreciprocal, and the SPPs (the poles) contribute
nonuniformly, where there are more poles contributing at different parts of the EFC, which affects
the shape and direction of the SPPs propagating on the graphene sheet.

For shorter source heights the SPPs at the extents of the EFC contribute; the shape and
direction of the SPP propagation is commensurate. Finally, for larger source heights the SPPs at
the extents of the EFC contribute less, and those towards the center are more dominant; the shape
and direction of the SPP propagation is more focused in the direction of the drift velocity.

3.3. Electric field

The photon model described here is fully (macroscopically) quantum, although the Green’s
function provides the classical electric field, which is useful to envision the surface plasmons. In
order to see the wave propagation for the reciprocal and nonreciprocal cases we plot the classical
electric field, where we can also see the effect of the source height on the electric field response.
We obtain the electric field values from the Green’s function values using Eq. (14) (all results are
for the frequency set to 15 THz). The corresponding plots are in Figs. 5, 6, and 7.

Re(Ez ) arb. unit

-1.0

-0.5

0

0.5

1.0

Fig. 5. Electric field wave propagation for graphene R (vd = 0), (λ = λpr), for z = z′ = λ
3 ;

the plot for z = z′ = λ
4 (not provided) is similar.

For graphene R the wave propagation is the same in all directions, as expected. In the case
of graphene NR the wave propagation becomes unidirectional for larger drift velocity values,
in the direction of the drift velocity. We also see that for larger source heights, that are still in
the vicinity of the interface, the shape and direction of the propagation is more focused in the
direction of the drift velocity, which is commensurate with what was observed for the effect of
the source height on the dispersion for the SPPs. However, if the source height becomes too large,
i.e., too far from the interface, the source will not couple with the interface enough to result in a
strong nonreciprocal SPP response.
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Fig. 6. Electric field wave propagation for graphene NR (λ = λpnr2) for vd =
−vF

4 : (a)
z = z′ = λ

4 and (b) z = z′ = λ
3 .
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Fig. 7. Electric field wave propagation for graphene NR (λ = λpnr1) for vd =
−vF

2 : (a)
z = z′ = λ

4 and (b) z = z′ = λ
3 .
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4. Results

To determine which direction concurrence is maximized we plot concurrence versus angle,
where we consider 0◦ ≤ θ ≤ 180◦ only given the symmetry about the y-axis. We position
the qubits in the configuration defined in Figs. 5, 6, and 7, where we set the qubit separation
distance ρ = 2λ and sweep θ from 0◦ to 180◦, determining the maximum concurrence versus
time at each angle, i.e., C(θ) = maxt (C(ρ, θ, t)). As seen in Fig. 8(a), there is good control over
concurrence (entanglement) as a function of angle for the nonreciprocal (NR) cases. Additionally,
the concurrence is higher for larger drift velocities, i.e., for higher directionality of the field. Also,
in the NR case, the concurrence is higher, at the maximum angle, for the larger source height.
Finally, there is good enhancement of entanglement for the NR case, at the maximum angle, over
the reciprocal (R) case and vacuum.
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z'=z= /4
Vacuum, = o

(b)
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z'=z= /4 =180° =146° n/a

Vacuum, = o

Fig. 8. Concurrence versus angle and qubit separation distance for the qubit position
configuration defined in Figs. 5, 6, and 7, where we consider 0◦ ≤ θ ≤ 180◦ only given the
symmetry about the y-axis: (a) concurrence versus angle, where we obtained the maximum
C(t), at a qubit separation distance of ρ = 2λ, for each angle, i.e., C(θ) = maxt (C(ρ, θ, t)),
and (b) concurrence versus qubit separation distance, where we obtained the maximum
C(t), at the maximum angle determined in (a), where applicable, for each qubit separation
distance ρ, i.e., C(ρ) = maxt (C(ρ, θ, t)). In all cases the plots were done for two different
observation and source heights, z = z′ = λ

4 and z = z′ = λ
3 .
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We then plot concurrence as a function of ρ, at the applicable maximum angle, to see how the
concurrences compare to each other with respect to the qubit separation distance; determining
the maximum concurrence versus time at each ρ value, i.e., C(ρ) = maxt (C(ρ, θ, t)). We can see
from Fig. 8(b) that the entanglement for the NR case is better than the R case, and vacuum, for
fairly large qubit separation distances.

We also plot concurrence versus time (for the transient case, (the pump intensities Ω1 = Ω2 =
0)), at the maximum angle and a qubit separation distance of ρ = 2λ, i.e., C(t) = maxθ (C(ρ, θ, t)),
to compare the concurrences. As seen in Fig. 9(a), there is good enhancement for the NR case
over the R case and vacuum, which is the case for larger qubit separation distances as well.
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Fig. 9. Concurrence versus time, where we look at C(t) for the maximum angle determined
in Fig. 8(a): (a) concurrence versus transient time (the pump intensities Ω1 = Ω2 = 0)), C(t),
at the maximum angle and a qubit separation distance of ρ = 2λ, i.e., C(t) = maxθ (C(ρ, θ, t)),
and (b) steady state concurrence at t → ∞, Css(t → ∞), versus Ω1, for the maximum angle
and a qubit separation distance of ρ = 2λ, i.e., Css(t → ∞,Ω1) = maxθ (C(ρ, θ, t → ∞,Ω1)),
where the laser pump intensity at QB2 is set to zero (Ω2 = 0). The inset in (b) is Css(t)
for the Ω1 value where Css(t → ∞) is maximum (Ω1 = 0.45Γ11 for the vacuum plot and
Ω1 = 0.43Γ11 for the other plots), where (Ω2 = 0). In (b) the plots were done for the cases
of vd =

−vF
2 and vacuum, and in both (a) and (b), the plots for vd =

−vF
2 were done for two

different observation and source heights, z = z′ = λ
4 and z = z′ = λ

3 .

In order to maintain the entanglement an external coherent drive (i.e., a laser pump) is
implemented at each qubit, where different pumping profiles can be applied. We apply the laser
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pump at QB1 only, without applying one at QB2 (the laser pump intensity at QB2 is set to zero
(Ω2 = 0)). We determine the maximum steady state concurrence at t → ∞, Css(t → ∞), by
plotting Css(t → ∞) versus Ω1, for the maximum angle and a qubit separation distance of ρ = 2λ,
i.e., Css(t → ∞,Ω1) = maxθ (C(ρ, θ, t → ∞,Ω1)). We then plot Css(t) for the Ω1 value where
Css(t → ∞) is maximum (see the inset in Fig. 9(b)). All of the plots in Fig. 9(b) are done for the
cases of vd =

−vF
2 and vacuum. As seen in Fig. 9(b), Css(t → ∞,Ω1) is small for low and high

values for Ω1, and is maximum for values that are close to the middle of that range.
Since it was shown that there is good control over concurrence (entanglement) as a function

of angle, we can use this configuration to control entanglement (controlling which qubits are
entangled by means of changing the polarity of the DC bias, i.e., the direction of the drift velocity).
As seen in Fig. 10(a) (note that for the proposed system configuration only pairwise entanglement
needs to be considered since coupling with the third qubit is so weak that we can assume it
doesn’t exist), for the graphene biased such that vd =

−vF
2 , QB1 is entangled with QB2, however,

QB1 is not entangled with QB3. Now, if the graphene is biased such that vd =
vF
2 , as seen in

Fig. 10(b), then QB1 is not entangled with QB2, however, QB1 is entangled with QB3.
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Fig. 10. Configuration for use of the proposed system as a means for entanglement control
(note that for the proposed system configuration only pairwise entanglement needs to be
considered since coupling with the third qubit is so weak that we can assume it doesn’t exist):
(a) graphene biased such that vd =

−vF
2 and (b) graphene biased such that vd =

vF
2 . In all

cases, the observation and source heights are z = z′ = λ
3 and the qubit separation distances

are ρ = 2λ.

5. Conclusion

We investigated DC current induced nonreciprocal graphene plasmon polaritons as a candidate
for entanglement mediation for enhancement over vacuum. We used concurrence as a measure
of entanglement. It was shown that biasing the graphene sheet with a DC current induces
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a nonreciprocal response with highly directed energy, which can be used for entanglement
enhancement and control. We have shown that there was good entanglement enhancement over
vacuum and that the proposed configuration can be used to control which qubits are entangled by
changing the polarity of the DC bias.
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