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The Langevin noise approach for quantization of macroscopic electromagnetics for three-dimensional, inho-
mogeneous environments is compared with normal-mode quantization. Recent works on the applicability of
the method are discussed, and several examples are provided showing that for closed systems the Langevin noise
approach reduces to the usual cavity mode expansion method when loss is eliminated. © 2021 Optical Society of
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1. INTRODUCTION

Methods for the study of the quantum properties of light,
and the interaction of quantized light and atoms and other
multi-leveled systems, were initially developed for vacuum. The
observation of Purcell in 1946 that the spontaneous emission
rate of an atom was dependent on the atom’s environment [1]
was a motivating factor for the study of how cavity materials
affect quantized light. The incorporation of simplified models
of materials (lossless, dispersionless dielectrics, perfect metals) is
accommodated in quantum models in a fairly straightforward
manner [2]. However, the Kramers–Kronig relations [3] require
that absorption is always accomplished by dispersion, and vice
versa. Whereas in classical electromagnetics dispersion and
absorption are easily accounted for, in macroscopic quantum
models this is not the case, since a naive implementation of
absorption causes the commutators to vanish at long times,
violating the Heisenberg uncertainty principle.

Motivated by the fluctuation–dissipation theorem [4–18],
macroscopic quantum electrodynamics (QED), as the quantum
version of classical macroscopic electrodynamics, is a phe-
nomenological dipolar, fully quantum,macroscopic theory
developed to accommodate lossy, dispersive materials, and open
environments. It has been widely applied to a variety of prob-
lems since it is expressed in terms of the Green function, and
allows for very general media, including anisotropic, nonrecip-
rocal, and nonlocal materials [16,19–22]. For inhomogeneous,
complex-shaped regions, the Green function can be computed
numerically [23]. In [24], the phenomenological assumptions
are derived from a canonical, path-integral formulation; this
approach was later extended to moving media [25]. The equiv-
alence of the approach with an alternative based on auxiliary

fields [26] was demonstrated explicitly [27]. A critical assess-
ment is provided in [28] (see also [29,30]), where a comparison
with a generalized Huttner–Barnett approach [4] (canonical
quantization of a bath of oscillators, based on [31]) is discussed.
Canonical quantization for rather general media is discussed in
[32–34]. Dissipation and dielectric models are also discussed in
a wide range of other works (see, e.g., [35,36]).

In [28], the practical equivalence of the Langevin noise
approach (LNA) and Huttner–Barnett descriptions is shown.
More precisely, it is shown that in an open system, the material
oscillator degrees of freedom included in the standard LNA
must be augmented by quantized photonic degrees of freedom
associated with fluctuating fields coming from infinity and
scattered by the inhomogeneities of the medium. If space is con-
sidered to consist of a uniform background having some small
absorption, the free fields coming from infinity are absorbed,
and the standard LNA applies. However, it is often of interest
to model finite regions of space having nonabsorbing materi-
als. In [28], a scheme is developed considering a finite region
of space (which may be vacuum), surrounded by a weakly
absorbing/dispersive medium εinf that extends to infinity, and
fluctuating polarization currents in εinf generate the missing free
fields, in which case the Huttner–Barnett and LNAs are shown
to be equivalent.

Nevertheless, questions about the validity of the LNA remain
[37,38], particularly, concerning various limiting procedures
such as assuming the material region of interest shrinks to zero,
or the limit of a lossless material is taken. In this work, we com-
pare the LNA with the standard cavity normal-mode approach,
which we refer to as normal-mode QED (NMQED) in the
following, which is valid for media characterized by Hermitian
permittivity tensors (lossless, and, therefore, nondispersive).
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Although it is known that the LNA recovers various quan-
tities correctly, such as the atomic spontaneous decay rate, here
we show for several explicit examples that the LNA results in
exactly the same formulation (final equations) as the NMQED,
although the former allows for much more general materials
than the latter. Several possible geometries may be envisioned:
(1) finite-size, PEC-wall cavities (i.e., closed systems) containing
lossless inhomogeneous media; (2) same as (1) but for lossy,
dispersive media; (3) large-cavity limit cavities containing
lossless inhomogeneous media; (4) same as (3) but for lossy
inhomogeneous media; (5) open systems, which admit loss
even when the materials themselves are lossless. Cases (3) and
(4) are actually subsets of (1) and (2); in the former, plane wave
eigenfunctions are used, whereas in the latter, more general
cavity eigenfunctions are used. For (1), NMQED is standard,
often with homogeneous media (e.g., vacuum). The LNA does
not apply to Case (1) directly, but can be applied to Case (2),
the lossy version. Here, we show that the LNA recovers exactly
the NMQED equations for several problems considered in the
lossless limit [i.e., as Case (2) reduces to Case (1)]. For Case (3),
the NMQED is often used for homogeneous environments
(utilizing discrete plane wave mode functions to represent the
actual mode continuum). Again, the LNA cannot be applied
directly to Case (3), although it applies to Case (4) and again
recovers the NMQED result in the lossless limit. In fact, the
resulting equations from the LNA, e.g., the density operator
or population evolution, are easily converted to the NMQED
(and, sometimes, vice versa) using a simple Green function rela-
tion. For the study of nonabsorbing materials, we point out the
need to retain dissipation in the LNA model until the final steps
of the calculation, at which point the lossless limit can be taken.
Similarly, if, say, the medium inhomogeneities vanish (e.g., the
structure of interest, such as a metal resonator, shrinks to zero
size), that limit must be taken at the end of the development.
The lossless limiting case in the LNA has also been examined in
[6], and recently in [39].

Open systems, Case (5), cannot be modeled using cavity
normal modes, but it can be modeled using LNA (in the refer-
ences cited above, it is inherently a system-bath approach). For
open systems, a quasinormal mode quantization (also based on
a Langevin noise model) is a useful and natural approach for
arbitrarily lossy open system modes [40], and it implements
a formulation akin to the standard modal approach, but for
open lossy systems. An advantage of quasinormal modes beyond
the LNA is to explore nonlinear quantum optics at the system
level, where it is no longer valid to treat the medium as a bath,
e.g., [41,42].

2. BASIC RELATIONS

We first consider an environment/reservoir such as a three-
dimensional (3D) cavity�⊆R3 with closed surface6, having
a uniform background material characterized by εbulk and
containing a region �1 ⊆� inhomogeneously filled with
material characterized by relative permittivity tensor ε1(r, ω)
[assumptions about ε1(r, ω) will be described in each subsec-
tion below]. The permittivity for all r ∈� is ε(r, ω). We will
assume the magnetic permeability is the unity tensor, although

Fig. 1. Two-level system in the vicinity of an inhomogeneous region
�1 ⊆�⊆R3.

including a permeability response does not change the pre-
sented conclusions. As the notation indicates, we can allow
�1 =�, and� can be finite (e.g., a closed system with surface
6 perfectly conducting), or in the large-cavity limit. The geom-
etry is depicted in Fig. 1, including a two-level system located
somewhere within�. We compare two formulations.

A. Normal-Mode QED Approach

NMQED is the usual textbook [43–47] and research [48,49]
approach for (i) closed empty cavities, where ε(r, ω)= I, with
I the identity operator; (ii) closed cavities filled with lossless,
dispersionless media, where ε(r) is a real-valued, symmetric
tensor; and (iii) closed cavities homogeneously filled with
lossy media. For the first two cases, classical mode functions
Ek(r)= Ek(r, ωk) can be defined that satisfy [50,51]

∇ ×∇ × Ek(r, ωk)=
ω2

k

c 2
ε(r) · Ek(r, ωk), (1)

subject to boundary conditions on the cavity walls,
n̂(r)× Ek(r, ωk)|rwall = 0, n̂ being the unit normal vector
to the wall, with eigenfunction orthogonality [50],∫

E∗k(r, ωk) · ε(r) · Ek′(r, ωk′)d
3r= δkk′ . (2)

Under the restriction of a Hermitian permittivity tensor,
and defining a subspace of differentiable vector functions
dense in the Hilbert space of Lebesgue integrable vec-
tor functions L2, the operator L E : L2(�)3→ L2(�)3,

L E x≡∇ ×∇ × x−
ω2

k
c 2 ε(r) · x, with boundary condition

B(x)= n× x|0=0 or B(x)= n×∇ × x|0=0 is self-adjoint
(SA) and negative-definite, and the modes form an orthonor-
mal, complete set in the Hilbert space of square-integrable
functions [50],

Iδ(r− r′)=
∑

k
Ek(r, ωk)E∗k(r

′, ωk) · ε(r′). (3)

The electric field operator in the Schrödinger picture is
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Ê(r)NMQED
=

∑
k

Êk(r)+H.c., (4)

where

Êk(r)= i

√
~ωk

2ε0
âkEk(r), (5)

and where âk, â †
k are annihilation and creation operators that

satisfy [
âk, âk′

]
=

[
â †

k, â †
k′

]
= 0,

[
âk, â †

k′

]
= δkk′ . (6)

In the Heisenberg picture, Eq. (6) becomes equal-time commu-
tators.

The free-field Hamiltonian is (dropping the zero-point
energy)

ĤNMQED
=

∑
ks
~ωkâ †

ks âks , (7)

and eigenfunctions of the Hamiltonian are the multimode num-
ber (Fock) states,

|n1〉|n2〉|n3 . . .〉 ≡ |n1, n2, n3 . . .〉 = |{n j }〉, (8)

which can be obtained from the ground state as

|n1〉|n2〉 . . . ni , . . .=
(â †

1)
n1

√
n1!

. . .
(â †

i )
ni

√
ni !

. . . |0〉. (9)

For the special case of an optically large vacuum cavity, the
cavity mode functions become

Eks (r)→
eks
√

V
e ik·r, (10)

which satisfy periodic boundary conditions (� is assumed to
be the union of boxes of volume V ), where s indicates spin
(polarization), with eks being an orthonormal set of polarization
functions such that eks · ek′s ′ = δkk′δs s ′ , and satisfy the transver-
sality condition k · eks = 0. The polarization vectors form a
right-handed coordinate system, ek1 × ek2 = k/|k|. In Eq. (10),
V is a quantization volume such that∫

V
E∗ks (r) · Ek′s ′(r)d

3r= δkk′δs s ′ . (11)

Note, however, that this is not an open system (truly infinite
space), which inherently allows dissipation (photons going to
infinity and never coming back). Mathematically, the difference
between a large cavity and a true open system is that for the
latter, modes must satisfy the Sommerfeld radiation condition,
which renders the operator L E to be non-SA; the Sommerfeld
radiation condition is an outgoing wave condition, and the
adjoint condition is an inward-traveling wave.

Finally, for Case (iii), a cavity homogeneously filled with
lossy media, rather than L E , the operator Lx≡∇ ×∇ × x can
be defined such that eigenfunctions of L satisfy the boundary
condition B(x)= 0, and the resulting operator is SA. The
cavity must be homogeneously filled; material inhomogeneities
in piecewise constant media would necessitate boundary
conditions B such that B 6= B∗, rendering the problem non-SA.

In the usual NMQED, the photonic Green function is not
explicitly needed, although it implicitly arises in, e.g., atom–
atom coupling terms. However, to make connection with the
LNA, it is important to connect the mode functions Ek(r, ωk)

with the Green tensor, which is defined by

∇ ×∇ ×G(r, r′, ω)−
ω2

k

c 2
ε(r) ·G(r, r′, ω)= Iδ(r− r′) (12)

and satisfies G(r, r′)T
=G(r′, r). The Green tensor can be

expanded as

G(r, r′, ω)=
∑

k
c 2 Ek(r, ωk)E∗k(r

′, ωk)

ω2
k −ω

2
. (13)

Equation (13) formally encompasses the case of transverse
modes, forming a transverse Green function, or could include
longitudinal modes as well. It should be emphasized that
Eq. (13) is only valid for closed cavities and the three cases
discussed, although the Green tensor concept itself extends to
dispersive and lossy inhomogeneous media. For certain spatial
positions, a quasinormal mode expansion of the Green function
is also possible [40,41].

An important expression relating the Green function and
modal summation is obtained by integrating Eq. (13) with
respect to frequency and using the Sokhotski–Plemelj (SP)
identity

lim
ε→0+

1

x ± iε
= PV

(
1

x

)
∓ iπδ(x ), (14)

leading to

1

π

∫
∞

0
dω
ω2

c 2
ImG(r, r′, ω)=

∑
k

ωk

2
Ek(r, ωk)E∗k(r

′, ωk). (15)

This is the key relationship that allows converting between the
LNA and NMQED, and it will be needed in the following.
Since the case r= r′ is often needed in field-atom interactions,
it is worth noting that in the event of material loss at point r
(Im(ε(r, ωλ)) > 0), ImG(r, r, ω)→∞, which is not seen with
the transverse Green function/transverse mode expansion.

B. Langevin Noise Approach

The LNA is developed in detail in [6–18], and here we merely
use the main results as needed. We now allow a dispersive
absorbing (complex-valued) permittivity, with causality
requiring ε(r,−ω)= ε∗(r,ω∗). For the Green function,
G∗(r, r′, ω)=G(r, r′,−ω∗), and we impose the condition

G(r, r′, ω)→ 0 for |r− r′|→∞, (16)

associated with some material absorption. This is an often-
overlooked requirement, which is discussed further in
Section 5.

The electric field operator in the Schrödinger picture is

Ê(r)LNA
=

∫
∞

0
dωλ Ê(r, ωλ)+H.c., (17)

where ωλ is a continuum modal frequency (not a Fourier trans-
form frequency), with
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Ê(r, ωλ)= i

√
~
πε0

ω2
λ

c 2

∫
d3r′G(r, r′, ωλ)

·

√
Im(ε(r′, ωλ)) · f̂(r′, ωλ), (18)

where f̂, f̂
†

are canonically conjugate field variables, which are
continuum bosonic operator-valued vectors of the combined
matter-field system that satisfy[

f̂k(r, ω), f̂ †
k′(r
′, ω′)

]
= δkk′δ(ω−ω

′)δ(r− r′), (19)

[
f̂k(r, ω), f̂k′(r

′, ω′)
]
=
[

f̂ †
k (r, ω), f̂ †

k′(r
′, ω′)

]
= 0. (20)

Comparing the two approaches,
∫
∞

0 dωλ f̂(r, ωλ) is seen to be
the continuous analog of

∑
k,s Ek(r)âks . It is worth noting that

Im(ε(r, ωλ)) is a positive semi-definite matrix in the anisotropic
case [16], so that its square root is well-defined.

More complicated environments, including nonlocal and
nonreciprocal media, have also been considered [16,19–22].
The conclusions described below hold for generally lossy,
inhomogeneous, nonreciprocal media.

The free field-matter Hamiltonian is

ĤLNA
=

∫
∞

0
dω
∫

dr ~ωf̂
†
(r, ω) · f̂(r, ω), (21)

which is analogous to Eq. (7). Energy eigenstates of the free
Hamiltonian are compositions of |ni (r, ωλ)〉 (analogous to
|{n}〉 in the cavity mode case), which indicates that the λth

field mode of the nonuniform continuum is populated with
n quanta, and that it is vector-valued with field component in
the i th direction. As a trivial example, the one-quanta states are
obtained from the ground state as

|1i (r, ωλ)〉 = f̂ †
i (r, ωλ)|{0}〉. (22)

An important relation in developing LNA formulations is the
“magic formula” [7],

ω2

c 2

∫
d3r′Im

(
ε(r′, ω)

)
G(r, r′, ω) ·G†(r0, r′, ω)

= ImG(r, r0, ω), (23)

generalized for tensor permittivity as [16,21]

ω2

c 2

∫
d3r′′G(r, r′′, ω) · T(r′′, ω) · T†(r′′, ω) ·G†(r′, r′′, ω)

=
(
G(r, r′, ω)−G†(r′, r, ω)

)
/2i,

(24)

where T(r, ω)=
√

Imε(r, ω) (and valid for nonreciprocal
media using T(r, ω) · T†(r, ω)= 1

2i [ε(r, ω)− ε
†(r, ω)]). The

above integrals generally do not need to be evaluated explicitly,
but they are used in the derivation of system equations; their use
removes Im(ε(r′, ω)) from the resulting equations, allowing the
lossless limit to be subsequently taken.

Furthermore, the correlation relation can be shown to be [16]

〈0|E(r, ω)E†(r, ω′)|0〉 =
~k2

0

2ε2
0

NIm(G(r, r, ω))δ(ω−ω′),

where N(ω, T)= 2/(exp(~ω/kB T)− 1) for negative
frequencies and N(ω, T)= 1+ 2/(exp(~ω/kB T)− 1)
for positive frequencies, where kB is Boltzmann’s constant.

Conversion to the time-domain is achieved by changing
to the Heisenberg picture, where operators Â transform as
ÂH(t)= e i ĤScht/~ ÂSche−i ĤScht/~, leading to

Ê(r, t)=
∫
∞

0
dωλi

√
~
πε0

ω2
λ

c 2

×

∫
G(r, r′, ωλ) ·

√
Im(ε(r′, ωλ))

· f̂(r′, ωλ, t)d3r′ +H.c. (25)

In summary, to compare the two methods, the NMQED
is the standard method ubiquitous in quantum optics. It
is a natural and convenient method to study cavity-QED
(e.g., Jaynes–Cummings models), nonclassical light, and
many-quanta correlations. It puts the system background
(e.g., cavity) on a similar footing as the system (e.g., an atom),
both being modes/harmonic oscillators. The LNA is a system-
bath approach that focuses attention on the system (e.g., the
atom), while rigorously accounting for the system environ-
ment, the latter being relegated to the status of a bath. Although
NMQED can be complimented by system-bath decay operators
that approximately account for the non-Hermitian (outgo-
ing and incoming) nature of the cavity modes in real systems,
the commutation rules assumed are formally only valid for
Q→∞, a restriction not needed for the LNA. In the LNA,
there is often some confusion about the integration limits and
the limit Im(ε(r, ω))→ 0, discussed further in the following.

3. EXAMPLE I: EXCITED ATOM INTRODUCED
INTO A STRUCTURED
RESERVOIR—NON-MARKOVIAN
WEISSKOPF–WIGNER ANALYSIS

As a first example, in this section, we consider introducing an
excited-state atom at r= r0, t = 0 into a structured reservoir
[22], comparing the NMQED and LNAs in the context of 3D
quantization in the limit Im(ε(r, ω))→ 0.

The multipolar-coupling, Coulomb gauge Hamiltonian
operator is

H = HNMQED/LNA
+ ~ω0σ̂+σ− − p̂ · Ê(r0), (26)

where σ̂± represents the canonically conjugate two-level atomic
operators (σ̂+ = |e 〉〈g |, σ̂− = |g 〉〈e | = σ̂

†
+, with |e 〉 and

|g 〉 being the excited and ground atomic states, respectively),
and p̂= (σ̂+ + σ̂−)γ is the dipole operator, where γ is the
dipole operator matrix-element, assumed real-valued. The first
term in each case is the free Hamiltonian for the field modes
(field-matter modes for the LNA), the second term is the free
Hamiltonian for the dipole, and the last term is the interaction
term.
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The equation of motion is

d
dt
|ψ〉 =−

i
~

H|ψ〉, (27)

and in each case the atom-field product states are

|ψ(t)〉NMQED
= c e (t)|e , 0〉 +

∑
λ

cλ(t)|g , 1λ〉, (28)

|ψ(t)〉LNA
= c e (t)|e , 0〉

+

∫
d3r

∫
∞

0
dωλc gi(r, ωλ, t)|g , 1i (r, ωλ)〉,

(29)

where |e , 0〉 ≡ |e 〉 ⊗ |{0}〉 and |g , 1i (r, ωλ)〉 ≡ |g 〉 ⊗
|{1i (r, ωλ)}〉. The interaction Hamiltonian p̂ · Ê(r0)∼

(σ̂+ + σ̂−)( f̂ + f̂
†
) acting on the initial state |e , 0〉 leads

to an infinite-dimensional Hilbert space of the set of states
A= {|e , 0〉, |g , 1〉, |e , 2〉, |g , 3〉, |e , 4〉, . . .}, where the n > 1
photons could be in the same or different field modes. Here, we
truncate the space to consist of {|e , 0〉, |g , 1〉}, which is equiva-
lent to a rotating wave approximation even when using the full
interaction Hamiltonian.

For the NMQED, plugging |ψ(t)〉NMQED into the equation
of motion and defining

g k = γ · i

√
~ωk

2ε0
Ek (r0) , (30)

multiplying by 〈e , 0| and 〈g , 1λ′ |, and discarding higher-order
terms like â †

ks (0)|g , 1λ〉 ∼ |g , 2λ〉 leads to [45]

d
dt

c e =−i c eω0 +
i
~
∑
λ

g λcλ, (31)

d
dt

cλ =
i
~

c e g ∗λ − iωλcλ. (32)

Defining slowly varying amplitudes c es(t)= c e (t)e iω0t and
cλs (t)= cλ(t)e iωλt , where ω0 is the energy level transition
frequency, we have

cλs (t)=
i
~

g ∗λ

∫ t

0
dt ′c es(t ′)e i(ωλ−ω0)t ′ , (33)

and so the population is obtained by solving the Volterra integral
equation of the second kind

dc es(t)
dt
=

∫ t

0
D(t, t ′)c es(t ′)dt ′, (34)

with the kernel

DNMQED(t, t ′)=−
1

~2

∑
λ

|g λ|2e−i(ωλ−ω0)(t−t ′). (35)

The Volterra integral equation has been widely utilized in
quantum optics (see, e.g., [52–54]) and can accommodate
non-Markovian processes. The procedure for numerically
solving the Volterra integral equation is shown in [22,55]. The

initial-value condition c eo(0)= 1 is assumed, representing an
initially excited atom.

Repeating the same procedure for the LNA (details are in
[22]) leads to Eq. (34), where [8,10]

DLNA(t, t ′)=−
1

~πε0

∫
∞

0
dωλ

ω2
λ

c 2
γ · ImG(r0, r0, ωλ) · γ

× e−i(ωλ−ω0)(t−t ′) + DNMQED(t, t ′), (36)

using Eqs. (23), (30), and (15), where .
=· indicates equality in

the lossless limit of the LNA formulation [i.e., when Eq. (15)
holds]. The term

√
Im(ε(r′, ωλ)) does not appear in the expres-

sion for DLNA. Since the LNA can accommodate generally
lossy, dispersive media, the LNA approach exactly recovers the
NMQED as a special case. There is no need to explicitly take the
limit as Im{ε(r, ω)}→ 0, as one merely computes the Green
function assuming lossless media. This is discussed further in
Section 5. The LNA also applies to open systems, where the
Green function accounts for the infinite space. The vacuum
limit is obtained merely by using the vacuum Green function.

To recover the familiar Markov result, setting c es(t ′)= c es(t)
and using the SP identity

∫
∞

0 e±i(ω−ω0)τdτ = πδ(ω−ω0)± i
PV ( 1

ω−ω0
), Eq. (34) can be solved as

c es(t)= c es (0) e−0
1
2 t e iδt , (37)

and the probability of excited-state occupation is P (t)=
|c es(t)|2 = |c es(0)|2e−0t . In Eq. (37),

0 = 2
π

~πε0

ω2
0

c 2
γ · ImG(r0, r0, ωλ) · γ, (38)

δ =
1

~πε0
PV

∫
∞

0
dωλ

ω2
λ

c 2

γ · ImG(r0, r0, ωλ) · γ

(ωλ −ω0)
, (39)

where 0 is the usual decay rate [56], and for vacuum,
0vac
= γ 2ω3

0/πε0~c 3. Note that here we start with the Green
function and obtain the normal-mode result, whereas in [51]
they start with the normal modes and obtain the Green function
(albeit for the lossy case).

4. EXAMPLE II: DRIVEN ATOM IN A
STRUCTURED RESERVOIR—DENSITY
OPERATOR ANALYSIS

As a second example, we consider an atom in a structured
reservoir under the action of an external pump. The derivation
follows the familiar route [57], and, for the LNA, details are
available in [21]. The resulting Schrödinger picture master
equation (ME) is, under the Born and Markov approximations,

d
dt
ρ(t)=−

i
~

[
ĤS, ρ(t)

]
−

∫ t

0
dτ
(

J n+1
ph (τ )σ̂+σ̂−(−τ)ρ(t)

− J n+1
ph (τ )σ̂−(−τ)ρ(t)σ̂+ − J n+1

ph (−τ)σ̂−ρ(t)σ̂+(−τ)

+ J n+1
ph (−τ)ρ(t)σ̂+(−τ)σ̂− − J n

ph(−τ)σ̂−σ̂+(−τ)ρ(t)

+ J n
ph(−τ)σ̂+(−τ)ρ(t)σ̂− + J n

ph(τ )σ̂+ρ(t)σ̂−(−τ)

− J n
ph(τ )ρ(t)σ̂−(−τ)σ̂+, (40)
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where HS = ~(ωd −ωL)σ̂
+σ̂− + ~�

2 (σ
+
+ σ−). For the

NMQED,

J n+1
ph (τ )=

∑
k

Jk(n̄(ωk)+ 1)e−i(ωk−ωL )τ , (41)

J n
ph(τ )=

∑
k

Jkn̄(ωk)e−i(ωk−ωL )τ , (42)

Jk =
ωk

2~ε0
γ · Ek(r)E∗k(r) · γ, (43)

and for the LNA,

J n+1
ph (τ )=

∫
∞

0
dω Jph(ω) (n̄(ω)+ 1) e−i(ω−ωL )τ , (44)

J n
ph(τ )=

∫
∞

0
dω Jph(ω)n̄(ω)e−i(ω−ωL )τ , (45)

Jph(ω)=
ω2

c 2

γ · Im (G (r, r, ω)) · γ
π~ε0

, (46)

and, where n̄ is the average number of thermal photons,

n̄ = (e
~ω

kB T − 1)−1.
Using Eq. (15), it is easy to show that∑

k
Jke−iωkτ =

∫
∞

0
dω J (ω)e−iωτ , (47)

and, thus,

dρ(t)LNA

dt
.
=·

dρ(t)NMQED

dt
, (48)

and the system evolution is the same for both approaches.
As a special case, if we set n̄ = 0 and turn off the pump,

HS = ~ωd σ̂
+σ̂−, in which case σ̂∓(−τ)= σ̂∓e±iωd τ , we

obtain the familiar ME for a single atom interacting with its
environment,

d
dt
ρ =−i(ωd −1d )[σ̂

+σ̂−, ρ(t)]

+
γ (ωd )

2
(2σ̂−ρ(t)σ̂+ − σ̂+σ̂−ρ(t)− ρ(t)σ̂+σ̂−), (49)

where we used the SP identity and where γ (ωd )= 2π J (ωd ),
1d =

1
~2 PV

∫
∞

0 dω J (ω)/(ω−ωd ). The ME for a multi-atom
system, allowing for, e.g., the study of entanglement, is also the
same for the NMQED and LNAs.

5. COMMENTS ON THE CONNECTION
BETWEEN NORMAL-MODE QED AND
LANGEVIN NOISE APPROACHES, AND VALIDITY
OF THE LANGEVIN NOISE APPROACH

NMQED is well-founded mathematically, based on canonical
quantization and completeness of the eigenfunctions of SA
operators [58,59]. Much of quantum optics is based on electric
field operators of the forms of Eqs. (4) and (5) using plane wave
eigenfunctions [Eq. (10)] (including microscopic models). As
more complicated environments have been considered, the
eigenfunctions based on Eq. (1) have been used. However, all
of the aforementioned eigenfunctions only form complete sets

in limited settings (closed cavities, usually lossless, dispersion-
less materials), where material parameters are represented by
Hermitian (SA) tensors. Note that completeness is important,
not only for Eq. (15), but also for validity of Eqs. (4) and (5),
which are also eigenfunction expansions.

Two comments are important: (1) Some level of loss must
be maintained in the system when using Eqs. (17) and (18); it
is impermissible to let Im(ε(r, ωλ))→ 0 until after that term
drops out from the formulation, typically after using Eq. (23)
or Eq. (24). One cannot take this limit in Eqs. (17) and (18).
(2) If in Fig. 1 εbulk is lossless, then it is also impermissible to
let the size of the region of interest shrink to zero to implement
the vacuum limit (i.e., �1→ 0 in Fig. 1), until after using
Eq. (23) or Eq. (24), after which the Green function is merely
the vacuum Green function for the cavity or open space (if εbulk

is lossy, than one can allow the limit �1→ 0 at the onset). In
the presented examples, using Eq. (15), the LNA reduces to the
NMQED result for closed cavities; alternatively, using Eq. (15),
the NMQED result can be generalized to involve the Green
function, allowing cavities with lossy, dispersive materials to be
considered, and even open geometries. However, this is not a
general result (i.e., this does not universally hold).

In a practical sense, lossless materials do not exist, aside from
vacuum. Therefore, it is not unreasonable to consider space to
be filled with a background medium having perhaps Re(ε)' 1
and Im(ε) > 0, into which the actual structure of interest is
placed, as depicted in Fig. 1. The Green function accounts
for the entire permittivity ε(r, ω), including the background,
and after Im(ε(r, ω)) is removed from the formulation using
Eqs. (23) and (24) and only the Green function remains, one can
consider lossless materials.

A. Lossless Limit of the “Magic Formula”: Eq. (23)

The connection between the NMQED and the LNA is estab-
lished by virtue of the conversion formula [Eq. (15)]—showing
that NMQED is a special case of the LNA in the lossless limit.
However, the explicit presence of the factor

√
Im(ε(r, ω)) in

the field expansion [Eq. (18)] indicates that this limit has to
be understood in a strict sense as a mathematical limiting pro-
cedure, where

√
Im(ε(r, ω))→ 0 while

√
Im(ε(r, ω)) > 0.

In fact, the presence of
√

Im(ε(r, ω)) in the field explansion
is an artifact of normalizing the bosonic canonically conjugate
field variables and is avoided if one instead works with the noise
polarization.

In either case, after evaluating operator dynamics or taking
quantum expectation values, one typically arrives at the left-
hand side of the integral relation [Eq. (23)]. The right-hand
side of this formula is obviously finite in the above-defined
lossless limit Imε(r, ω)→ 0+. At first glance, the left-hand
side seems to vanish in this limit due to the presence of the factor
Im(ε(r′, ω)). However, this conclusion is premature as a careful
evaluation of the spatial integral will reveal a factor canceling
Im(ε(r′, ω)), so that the limit may be taken to give the same
result as the right-hand side of the equation.

To illustrate this, consider the case of a bulk medium with per-
mittivity ε(ω)= εR(ω)+ iδ with εR real. The respective Green
tensor is given by
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G(0)(r, r′, ω)=−
1

3k2
δ(ρ)−

eikρ

4πk2ρ3

× {[1− ikρ − (kρ)2]I− [3− 3ikρ − (kρ)2]eρ eρ},
(50)

with ρ = r− r′, ρ = |ρ|, eρ = ρ/ρ, and k =
√
ε(ω)ω/c such

that Imk > 0. In the limit r0→ r, r0 6= r, we hence have

G(0)(r, r′, ω) ·G(0)†(r0, r′, ω)∝ e−2δρ . (51)

To leading order in δ, this implies∫
d3r′G(0)(r, r′, ω) ·G(0)†(r0, r′, ω)=O(1/δ), (52)

so that∫
d3r′Imε(ω)G(0)(r, r′, ω) ·G(0)†(r0, r′, ω) (53)

remains finite in the limit Imε(ω)≡ δ→ 0+. In Appendix A,
we explicitly demonstrate the validity of the integral relation
[Eq. (23)] in the lossless limit for the more general case of
arbitrary r, r0.

An alternative way to establish contact with the nonabosorb-
ing case was suggested in [28]. Here, the region of interest is
surrounded by a strictly lossless region Imε(ω)= 0 at infinity
(or sufficiently far, respectively). It was shown that under such
conditions the integral relation [Eq. (23)] has an additional
term,

ω2

c 2

∫
�

d3r′Im
(
ε
(
r′, ω

))
G(r, r′, ω) ·G†(r0, r′, ω)

+

∮
6

d2r′F
(
r′, r, r0

)
= ImG(r, r0, ω), (54)

where∮
6

d2r′F
(
r′, r, r0

)
=
ω

c
√
εbulk

∮
6

d2r′GT (r′, r
)

·R×R×G∗
(
r′, r0

)
, (55)

and 6 is the bounding surface that is far from the system in
question. In the event of an absorbing (perhaps limitingly
low-loss) background medium εbulk, the Green tensor vanishes
on 6, and the surface contribution vanishes accordingly. This
is commensurate with the requirement G(r, r′, ω)→ 0 for
|r− r′|→∞. Thus, one must retain material absorption of the
background environment if Eq. (23) or Eq. (24) is to be used,
to ensure that no boundry contribution arises. Physically, one
could argue that the assumption of a background environment
without at least some small amount of absorption is generally a
fiction anyway, aside from perhaps evacuated superconducting
chambers. Alternatively, in [28], it is shown that by implement-
ing the developed scheme of replacing the missing free incident
field with polarization currents at infinity with a lossless interior
region, to bring the LNA into accordance with the Huttner–
Barnett result, and by including the boundary term one recovers
the usual LNA.

B. Commutation Relations of Normal-Mode
Operators in the Lossless Limit

Even in the lossy case where Im[ε(ω)]> 0 one can formally
define normal-mode creation and annihilation operators via
Eqs. (4) and (5). These operators can be expressed in terms of

the polaritonic creation and annihilation operators f̂
(†)

via the
Green’s function but will in general not obey bosonic com-
mutation relations. In the lossless limit, however, the known
commutation relations from NMQED are reproduced as is
shown in the following. This shows that the algebra of these
operators in the lossless limit is equivalent in the normal-mode
and the Langevin noise quantization schemes, underpinning the
equivalence of the two approaches in the lossless limit.

By inverting Eqs. (4) and (5) and using Eq. (10), one obtains
the normal-mode creation and annihilation operators in

terms of the positive ( Ê
(+)

) and negative ( Ê
(−)

) frequency
components of the electric field operator,

âks =−i
√

ε0

4π3~ωk

∫
d3r eik·reks · Ê

(+)
(r). (56)

Here we have used Ê
(+)†
= Ê

(−)
. Inserting the expression for

the electric field operator in the LNA by means of Eq. (18) we
find the normal-mode annihilation operators in terms of the
polaritonic ones,

âks =

√
1

4π4ωk

∫
∞

0
dωλ

ω2
λ

c 2

∫
d3r

∫
d3r ′eik·r

× eks ·G
(
r, r′, ωλ

)
·

√
Im (ε (r′, ωλ)) · f̂

(
r′, ωλ

)
.
(57)

Note in general that the normal-mode creation and annihilation
operators formally defined here via Eq. (56) are different from
the photon creation and annihilation operators in a general,
lossy optical environment. The latter have been shown to be
linear combinations of creation and annihilation operators of
the polaritonic field operators [4,60]. Since we are here only
interested in showing that the correct commutation relations are
reproduced in the lossless case, we stick with the formal defini-
tion of the normal-mode creation and annihilation operators in
Eq. (56) although their physical interpretation in the lossy case
is not straightforward.

Using the commutation relations of the polaritonic creation
and annihilation operators in Eqs. (19) and (20) as well as the
“magic formula” [Eq. (23)], one can obtain the commutation
relations of the normal-mode operators in case of lossy material:
[âks , âk′s ′ ] = [â

†
ks , â †

k′s ′
] = 0 and

[âks , â †
k′s ′
] =

ε0µ0

8π4√ωkωk′

∫
d3r

∫
d3r ′eik·re−ik′·r′

× eks ·

∫
∞

0
dωλω

2
λIm[G(r, r′, ωλ)] · e∗k′s ′ .

(58)

For Im[ε(ω)]> 0, Eq. (58) will in general not be given by
δkk′δs s ′ as it is the case in NMQED, Eq. (6). This can be seen,



8 Vol. 38, No. 2 / February 2021 / Journal of the Optical Society of America B Research Article

e.g., from the fact that the exponentials in the bulk Green func-
tion [cf. Eq. (50)] are not purely oscillating but have a decaying
factor e−Im(

√
ε)ωρ/c .

Nevertheless, in the lossless limit, the commutation relations
as found in Eq. (6) using NMQED are reproduced. This can be
seen from Eq. (58) by evaluating the frequency integral using
Eq. (15) such that

[âks , â †
k′ s ′ ] =

1

16π 3√ωkωk′

∑
s ′′

∑
k′′

ωk′′

∫
d3r

∫
d3r ′

× eik·reks · Ê k′′ s ′′(r, ωk′′)e
−ik′·r′e∗k′ s ′ · Ê

∗

k′′ s ′′(r
′, ωk′′).

(59)

In a last step, we use Eqs. (10) and (11) to carry out the spatial
integrals and obtain

[âks , â †
k′s ′
] = δkk′δs s ′ , (60)

as desired.

6. CONCLUSION

The LNA for quantization of macroscopic electromagnetics
for 3D, inhomogeneous environments has been compared
with the usual normal-mode quantization in quantum optics.
The conditions of validity of the normal-mode expansion were
discussed, and it was shown using several examples that the LNA
reduces exactly to the normal-mode expansion formulation
in the lossless limit. Conditions on applying the LNA to finite
structures were also discussed.

APPENDIX A: LOSSLESS LIMIT FOR THE BULK
CASE

In this appendix, we explicitly show that the “magic formula”
in Eq. (23) holds also in the limit of lossless media for the case
of a single bulk dielectric material described by ε(r, ω)= ε(ω).
This means we show that

lim
Im[ε(ω)]→0+

ω2

c 2

∫
d3r′Im

(
ε
(
r′, ω

))
×G(0)(r, r′, ω) ·G(0)∗(r′, r0, ω)

= lim
Im[ε(ω)]→0+

ImG(0)(r, r0, ω). (A1)

Here, G(0) is the bulk Green tensor. Note that compared to
Eq. (23), we have already used that the Green’s tensor for
bulk isotropic dielectric material obeys Onsager reciprocity,
i.e., G (0)

ij (r, r′)= G (0)
ji (r

′, r). We will show that Eq. (A1) holds

by using the bulk Green tensor G(0) in its (2+ 1)-dimensional
decomposition [17],

G(0)(r, r0, ω)=−
1

k2
δ3(r− r0)ezez +

i
8π 2

∫
d2k‖

ei k‖·(r−r0)

k⊥

×

∑
σ=s ,p

[eσ+eσ+eik⊥(z−z0)θ(z− z0)

+ eσ−eσ−e−ik⊥(z−z0)θ(z0 − z)]. (A2)

Here, k⊥ =
√

k2 − k2
‖

and k =
√
ε(ω)ω/c , and we have

defined the polarization vectors,

e p± =
1

k‖

 ky

−kx

0

 , e p± =
1

k

 k⊥kx/k‖
k⊥ky /k‖

k‖

 . (A3)

Inserting the first term of the Green’s tensor in Eq. (A2) into the
left-hand side of Eq. (A1), one obtains

lim
Im[ε(ω)]→0+

1

|k|4
Im[ε(ω)]

ω2

c 2

∫
d3r ′δ3(r− r′)δ3(r′ − r0)

= lim
Im[ε(ω)]→0+

1

|k|4
Im[ε(ω)]

ω2

c 2
δ3(r− r0)= 0.

(A4)

For the terms of the left-hand side of Eq. (A1) consisting of the
product of a first and a second term of the bulk Green’s tensor in
Eq. (A2), one finds

lim
Im[ε(ω)]→0+

Im[ε(ω)]
ω2

c 2

i

8π2|k|2

∫
d2k‖eik‖(r−r0)k‖

×

{
θ(z− z0)

[
eze∗p−e−ik⊥∗(z−z0)

kk⊥∗
− e p+ez

eik⊥(z−z0)

k∗k⊥

]

+ θ(z0 − z)

[
eze∗p+eik⊥∗(z−z0)

kk⊥∗
− e p−ez

e−ik⊥(z−z0)

k∗k⊥

]}
.

(A5)

This term again vanishes in the limit of Im[ε(ω)]→ 0.
Hence, we are left with the terms stemming from the second

term of the Green’s tensor in Eq. (A2) only. Inserting the second
and third rows of Eq. (A2) into the left-hand side of Eq. (A1),
one finds

lim
Im[ε(ω)]→0+

Im[ε(ω)]
ω2

c 2

1

16π 2

∫
∞

−∞

dz′
∫

d2k‖
eik‖·(r−r0)

|k⊥|2

×

∑
σ

[
eσ+eσ+eik⊥(z−z′)θ(z− z′)+ eσ−eσ−e−ik⊥(z−z′)θ(z′ − z)

]

·

[
e∗σ−e∗σ−e−ik⊥∗(z′−z0)θ(z′ − z0)+ e∗σ+e∗σ+eik⊥∗(z′−z0)θ(z0 − z′)

]
.

(A6)

Here, we carried out the r′
‖

integral leading to a factor
δ2(k‖ + k′

‖
), which in turn has been used to perform the k′

‖

integral. Finally, we also used

eσ±(−k‖)eσ±(−k‖)= eσ∓(k‖)eσ∓(k‖), (A7)

eσ± · e∗σ ′± = δσσ ′ , (A8)

eσ± · e∗σ ′∓ ∝ δσσ ′ . (A9)

The remaining z′ integral can be carried out straightforwardly,
and some lengthy algebra shows that Eq. (A6) can be further
reduced to
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lim
Im[ε(ω)]→0+

Im[ε(ω)]
ω2

c 2

1

16π 2

∫
d2k‖

eik‖·(r−r0)

|k⊥|2
∑
σ

{
1

2Im[k⊥]

[
eσ+e∗σ+eik⊥(z−z0)θ(z− z0)+ eσ−e∗σ−e−ik⊥(z−z0)θ(z0 − z)

+ eσ−e∗σ−e−ik⊥∗(z−z0)θ(z− z0)+ eσ+e∗σ+e+ik⊥∗(z−z0)θ(z0 − z)
]
−

ieσ− · e∗σ+
2Re[k⊥]

[
eσ+e∗σ−eik⊥(z−z0)θ(z− z0)+ eσ−e∗σ+eik⊥(z0−z)θ(z0 − z)

− eσ+e∗σ−e−ik⊥∗(z−z0)θ(z− z0)− eσ−e∗σ+e−ik⊥∗(z0−z)θ(z0 − z)
]}

.

(A10)

To derive Eq. (A10), we also used eσ− · e∗σ+ = eσ+ · e∗σ−. Next, we rewrite

1

Im[k⊥]
=

|k⊥|2

Im[k⊥]Re[k⊥]
Re

[
1

k⊥

]
=

2|k⊥|2c 2

Im[ε(ω)]ω2
Re

[
1

k⊥

]
, (A11)

1

Re[k⊥]
=−

|k⊥|2

Re[k⊥]Im[k⊥]
Im

[
1

k⊥

]
=−

2|k⊥|2c 2

Im[ε(ω)]ω2
Im

[
1

k⊥

]
, (A12)

in order to find that Eq. (A10) is equivalent to

lim
ε(ω)=1+iδ→1

1

8π 2

∫
d2k‖eik‖ ·(r−r0) ×

∑
σ

{
Re

[
1

k⊥

]
1

2

[
eσ+e∗σ+eik⊥(z−z0)θ(z− z0)+ eσ−e∗σ−e−ik⊥(z−z0)θ(z0 − z)

+eσ−e∗σ−e−ik⊥∗(z−z0)θ(z− z0)+ eσ+e∗σ+e+ik⊥∗(z−z0)θ(z0 − z)
]
− eσ− · e∗σ+Im

[
1

k⊥

]
1

2i

[
eσ+e∗σ−eik⊥(z−z0)θ(z− z0)+ eσ−e∗σ+eik⊥(z0−z)θ(z0 − z)

− eσ+e∗σ−e−ik⊥∗(z−z0)θ(z− z0)− eσ−e∗σ+e−ik⊥∗(z0−z)θ(z0 − z)
]}

.

(A13)

This was the crucial step, since the factor Im[ε(ω)]was canceled, meaning that now we are ready to take the limit Im[ε(ω)]→ 0. In this

limit, we find that k ∈R, which also leads to the fact that k⊥ =
√

k2 − k2
‖

is either real or purely imaginary depending on whether k‖ <

k or k‖ > k, respectively. This way, we find that in the second and third row of Eq. (A13), we can use

e∗σ± = eσ± if k⊥, k ∈R, (A14)

whereas in the third and fourth row of Eq. (A14), we have

e∗σ± = eσ∓ if k⊥ ∈ iR, k ∈R. (A15)

Since eσ± · eσ ′± = δσσ ′ , and using Eq. (A7) again, we finally find that Eq. (A13) can be further reduced to

1

8π2

∫
d2k‖ei k‖·(r−r0)

∑
σ=s ,p

{
Re

[
1

k⊥

]
1

2
[eσ+eσ+eik⊥(z−z0)θ(z− z0)+ eσ−eσ−e−ik⊥(z−z0)θ(z0 − z) + c.c.(k‖→−k‖)]

− Im

[
1

k⊥

]
1

2i
[eσ+eσ+eik⊥(z−z0)θ(z− z0)+ eσ−eσ−e−ik⊥(z−z0)θ(z0 − z)− c.c.(k‖→−k‖)]

}
. (A16)

Here, c.c.(k‖→−k‖) denotes adding the complex conjugate of the preceding term, which has also been subject to the replacement
k‖→−k‖. Equation (A16) is equivalent to limIm[ε(ω)]→0+ ImG(0)(r, r′, ω) [cf. Eq. (A2)] as desired.
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