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Abstract— In this article, we showcase an application of neural
networks (NNs) to solve an inverse problem in electromagnetics
(EMs). Wires are randomly distributed into an area of known
dimensions. The wires are then illuminated with a monochro-
matic plane wave (PW) at a certain angle of incidence, and the
EM field measured at a finite number of uniformly spaced points
along the perimeter of the area is then fed into a convolutional
neural network (CNN) designed to predict the number of wires.
Counting the wires is posed as a supervised classification problem
with a known upper limit to the number of wires, and accuracy
of 96% has been achieved for the case where the number of the
wires is known to be ten or less. A number of approaches have
been taken to improve the network performance including fre-
quency variation analysis and illuminating the wire distributions
with additional PW angles of incidence. We conclude with an
analysis of the network capability to resolve objects based on
its performance on known wire distributions, which suggests the
existence of a characteristic resolution limit corresponding to the
CNN topology.

Index Terms— Artificial intelligence, HF antennas, inverse
problems, neural networks (NNs), wire scatterers.

I. INTRODUCTION

REAL-WORLD problems in engineering often require the
recovery of model variables from observations, which is

an inverse problem. This recovery can be formally represented
by a mapping from the space of observables into the space of
model variables [1].

An example of inverse problems in electromagnetics (EMs),
which is of great significance in biomedical engineering, is the
detection and identification of tissue anomalies, such as malig-
nant tumors. In [2], electrical contrast maps of breast tissue
have been extracted from the scattering parameters measured
at 800 MHz using transceivers surrounding the breast tissue.
Another example, which is of special interest in an aerial target
recognition, is the microwave imaging of flying aircraft that
was achieved in [3] and [4] by processing the localized radar
cross section (RCS) measurements acquired at 9.6 GHz at
distances varied from 3 to 20 km.
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A. Neural Networks (NNs) and Inverse EM Problems

Since inverse problems are mostly ill-posed, i.e., a sin-
gle set of observations corresponds to several possible sets
of model variables, conventional inversion methods are not
always applicable [1]. A remedy to ill-posedness is to impose
constraints on the inverse problems. NNs have been demon-
strated to be very effective tools in the machine learning (ML)
toolbox, which makes it possible to impose constraints on
inverse problems by leveraging enough samples of training
data. Therefore, NNs offer a data-driven tool to estimate the
inverse mapping in ill-posed inverse problems in EMs.

Convolutional neural networks (CNNs) have been demon-
strated to be essential in recovery problems, such as MRI
image reconstruction [5]. Recent applications of ML in
optics include: 1) the inverse design of integrated pho-
tonic power splitters [6], metasurfaces [7], and nanophotonic
particles [8], [9]; 2) the optimization of photonic struc-
tures [10] and dielectric metasurfaces [11]; and 3) the pre-
diction of the optical properties of plasmonic structures [12].
Another example is electrical impedance tomography (EIT)
in two and three dimensions, which was achieved in [13],
by feeding the electrostatic voltage measurements acquired
from the electrodes surrounding the area into a combination
of BCR-Net [14], [15] and CNNs. In addition, permittivity
contrast maps have been recovered by feeding surrounding
receiver antenna readings at 400 MHz, 3 GHz, and 4 GHz
into CNNs [16]–[20].

B. Inverse Problem of Counting in EMs

Counting objects based on the EM field measurements is
another example of inverse problems in EMs. In [21], the data
acquired from postdetection processing of high-resolution
Doppler radar signals have been utilized to count aircraft
targets in a moving cluster, and correct-count probabilities of
93% and 87% have been achieved respectively on single- and
double-target data. In [22], the signals acquired by measuring
the EM field backscattered off passive RFID tags at 924 MHz
were processed to count the number of people present in
a room, which was achieved by establishing a correlation
between the variations in the signal strength and the number
of people.

In [23], range-velocity radar images acquired at 57–64 GHz
were fed into a deep residual U-net architecture [24] to detect
and count human targets. Moreover, in [25], the counting
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of one to six moving human targets was performed with an
accuracy of 91% by feeding range-time radar images acquired
at 1.6–2.2 GHz into a residual NN, and similar counting of
one to three moving human targets was performed with an
accuracy of 97%.

In this work, we study the problem of counting identical
wires using EM field values at f = 10 MHz (equivalent to
a free-space wavelength of λ ∼= 30 m) using a CNN. For the
purpose of fast generation of synthetic training/testing data,
the objects are assumed to be vertically oriented thin wires.
The counting problem is posed as a supervised classification
problem, and a number of approaches are discussed to improve
network performance. This study provides a proof of concept
for the application of NNs in counting identical objects
in EMs.

The CNN that is trained on the synthetically generated wire
data should not be applied to other counting problems, even
to the same wire counting setup in the laboratory, because the
computed EM field data might not be an accurate representa-
tion of the actual antenna measurements. Still, the choice of
wires allows us to synthetically and rapidly generate as many
samples as needed for parameter-sweep ML experiments to
obtain estimates of the number of antennas, the number of
training samples, the source illumination wavelength, the num-
ber and placement of illumination sources, and so on, which
yields maximal learning before moving to the “laboratory”
stage where the identical objects are not necessarily wires, and
the EM field due to each camera-recorded object distribution
is measured using the surrounding monopole antennas.

Of particular interest to this work is understanding the
advantages that could be gained by using ML in recognizing
two objects that are separated by a distance smaller than λ,
which is motivated by previous studies in optics, acoustics,
and EMs. To name a few, in [26], 1-D CNNs were utilized to
process the information retrieved from measuring the EM field
scattered off subwavelength silicon nanostructures, which,
subsequently, led to pushing the limits of optical information
storage in the visible frequency range [27]. In [28], subwave-
length acoustic imaging has been experimentally achieved by
feeding the acoustic signals recorded by a microphone array
placed in the far-field into a “U-net-type” CNN. Moreover,
in [29] and [30], the imaging of subwavelength quasi-periodic
structures of circular rods was performed by feeding transient
scattered field data acquired at a ∼3 GHz into CNNs and
RNNs to identify the location of the missing rod. For the first
time, to the best of our knowledge, our work demonstrates
the existence of a resolution threshold of NNs in the context
of counting objects based on the measured EM field (for the
network described here, we find a resolution to be limited to
be approximately 0.1λ).

This article is structured as follows. The specifics of the
inverse problem are detailed in Section II. The generation
of training data and the network structure are described in
Section III. Next, a number of approaches are discussed in
Section IV to improve the performance of the CNN. Failure
analysis of the samples for which the CNN makes incorrect
predictions is included in Section V, which will be followed
by conclusions in Section VI.

II. FORWARD AND INVERSE PROBLEMS

A. General Framework for Identical Objects

In general, we consider the forward problem to be the
computation of the EM field in the presence of N identi-
cal objects when illuminated with a monochromatic plane
wave (PW) of frequency f at an angle of incidence θ . There-
fore, in the forward problem, the total EM field is a function of:
1) f ; 2) θ ; 3) the location of the point where the
EM field is measured, r; and 4) the distribution of objects.
Here, the term “object distribution” refers to the positions
of all N objects denoted by RRR = [R1, . . . , RN ]. Therefore,
the forward problem can be formulated as

E = Esc + Einc = F(RRR, r, f, θ) (1)

where the unsubscripted vector E denotes the total electric
field, the superscripts “sc” and “inc,” respectively, stand for
scattered and incident, and F is a vector-valued function that
represents the forward mapping from the (R, r, f, θ) space
into the space of the observable total EM field. Here, the terms
“total” and “incident” are used to refer to the EM field
measured, respectively, in the presence and the absence of the
objects, and the subtraction of the latter from the former results
in what is referred to as the “scattered” EM field. The inverse
problem constitutes the computation of the number of objects
from the EM field measured at P points whose position are
denoted by r1, r2, r3, . . . , rP . As it can be seen from (1),
the dependence of the total EM field on the number of objects
is implicit. The inverse problem can be formulated as

N = G(vin) (2)

where G denotes the (inverse) mapping of the total EM field
measurements, vin, into the number of objects

vin =

⎡
⎢⎢⎢⎢⎢⎣

E(R, r1, f, θ)

E(R, r2, f, θ)

...

E(R, rP , f, θ)

⎤
⎥⎥⎥⎥⎥⎦. (3)

B. ML Approach in Counting Wires

In this work, ML, in particular NNs, has been utilized as
a data-driven tool to estimate the mapping G from the field
measurements to the number of scatterers. Since the EM field
measurements of a general N-object system could contain a
large number of features, the training dataset is required to
contain a large number of samples [31]–[33].

The geometry of the problem of interest is depicted in Fig. 1,
showing a square region, 100 m × 100 m in area, containing
ten wires and illuminated by a PW (see figure caption for
details). In a real-world problem, the training data can be
acquired by measuring the EM field from antennas located
at the perimeter of the box for a large number of wire
configurations. However, here, we use synthetic generation of
training data, allowing us to control the number of “antennas,”
control the amount of data necessary for training the network,
and acquire data without noise so that the impact of noise
can be studied separately. Depending on the type and shape
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Fig. 1. Amplitude of a z-polarized electric field for a system of N =
10 randomly distributed and z-directed thin wires illuminated with a PW of
frequency f = 50 MHz (λ ∼= 6 m) at an angle of θ = 45◦. The field values
are generated over a 300 × 300 meshgrid using the formalism provided in
Appendix I. The wire length and radius are set to be l = 3 m and a ∼=
0.0498 l ∼= 14.9 cm, respectively, and for graphical reasons, the EM field
data are excluded from circular regions of radius 7a ∼= 106 cm centered at
each wire. These exclusion areas are mostly covered by black-filled circles
that represent wires but with an exaggerated radius. The box sides are L =
100 m long, and the plus symbols represent the P = 40 antennas that are
located at the perimeter of the box for EM field measurement. The EM field
measurements at the location of antennas are to be fed into our NN, which
will be discussed in detail in Section III-A.

of the object, the generation of training data by computing
the EM field for a large number of randomized instances,
of the order of 105, could lead to relatively large run times.
Under this constraint, we chose the identical objects in our
study to be thin wires because each wire can be approximated
by an electric dipole, which leads to tractable run times for
data generation. Following the formulation in [34], the set
of electric dipole moments corresponding to a given wire
geometry can be obtained self-consistently by solving a matrix
equation.

To maximize the electric dipole moment induced in each
wire due to the electric field at the location of the wire,
the incident EM field is set to have a purely z-directed electric
field. To reduce the degrees of freedom in this problem,
we assume the wires to be thin, long,1 and centered at z = 0,
the plane at which the EM field data are to be acquired. This
problem is well-studied [34]–[36], and the analytic formalism
for the scattered EM field taken from [34] can be found in
Appendix I. In this geometry, the z-component of the scattered
magnetic field and the x- and y-components of the scattered
electric field, i.e., H sc

z , E sc
x , and E sc

y , are zero, and we construct
the input vector only from the z-component of the electric

1The assumption of the wires being long and thin is to rule out the possibility
of rotational (Eddy) currents being induced in each wire. Otherwise, magnetic
dipole moment and other higher order terms will be needed in addition to the
electric dipole moment term to compute the scattered EM field due to each
wire.

field. For a case when ten z-directed wires are illuminated
with a PW at f = 50 MHz at an angle of incidence of
θ = 45◦, the values for Ez are obtained using (12) and are
shown in Fig. 1.

III. DESIGN OF THE NN

In this work, the problem of counting the wires is
approached as a classification problem. In this approach,
samples containing the same number of wires belong to the
same class regardless of the location of wires. Since the
number of classes has to be finite, we assume an upper bound
to the number of wires in each sample denoted by Nmax.
This implies our knowledge of the number of wires in
all samples being less than or equal to Nmax. Constructing
the desired output vector will be discussed in more detail
in Section III-A.

A. Generation of Training Data

All the datasets used for training and validation of our NNs
consist of 300 000 samples, each of which corresponds to a
randomized wire distribution (RWD). An RWD is generated
by choosing a random number, N , from {1, . . . , Nmax} as the
number of the z-directed wires, and then for the i th of those
N wires, two random numbers, xi and yi , are chosen from
the range of [δ, L − δ] as the wire location within a square
box of length L = 100 m in the x y plane. The parameter δ
leaves a margin between the perimeter of the area where the
wires are distributed and the sides of the square box at which
the antennas are located, and throughout this article, we set
δ = 0.02 L. The length l and radius a of each wire are
assumed to be 10 m and 1 cm, respectively. Since the problem
aims at predicting the number of wires in each sample, each
sample should be labeled by its desired output. The desired
output corresponding to the class of samples containing N
wires is constructed using one-hot encoding, which results
in an Nmax-dimensional sparse vector with Nmax − 1 of its
components being equal to zero and the N th component being
the only nonzero component and equal to 1, that is,

vout =
�
0, 0, 0, . . . , 1	
��

N -th

, . . . , 0, 0

T

. (4)

The input vector, on the other hand, is a 40-D vector
containing the Ez values computed at P = 40 uniformly
spaced points located at the edges of the box. Since the
calculated EM field is complex-valued, the input vector is
two-folded with each fold containing the real and imaginary
parts, similar to the way the intensity of the red, green, and
blue components of each of the pixels of an RGB image is
stored in three separate arrays [37].

B. From Fully Connected to CNNs

In the earlier stages of this study, we made use of fully
connected NNs, and evaluating the trained networks on sam-
ples outside the training dataset indicated that the networks
memorized the training data. That is, training the network on
a certain dataset led to accuracies as high as 98%, but the
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Fig. 2. Topology of the complex-valued CNN utilized in our work. For the
first three consecutive 1-D convolution layers, the intermediate dense layer,
and the last dense layer, the activation function is, respectively, set to be
exponential linear unit (ELu), rectified exponential linear unit (RELu), and
softmax. Each of the first three convolution layers contains three convolution
filters of length 3, which moves over each channel with steps of 1. The output
of a convolution is zero-padded such that the length of each channel is not
affected by the convolution. This CNN contains 2784 trainable parameters
(weights and biases). The dimension labeled as “None” corresponds to
indexing the samples within the same batch. Since the batch size is set to
be 500, this index can take values from 0 to 499.

trained network made poor predictions for samples outside the
training dataset. This can be understood by the fact that those
fully connected NNs contained too many weights (∼300 000)
and are, therefore, prone to overfitting [38].

To reduce the number of weights, we replaced the first
three fully connected layers with 1-D convolutional layers
with three filters each with a convolution window size of 3.
All three weights in each of the convolution windows are
accompanied by a bias. Since the input vector consists of two
folds, that is, the real fold and the imaginary fold, operating
three convolution filters along with each fold results in a
six-fold output of the first convolutional layer. In this case,
each convolutional layer consists of only 6 × (3 + 1) = 24
trainable parameters, which is considerably smaller comparing
to the case where the first three layers were fully connected.

Fig. 3. Converged accuracy and converged validation accuracy achieved
from training the CNN described in Fig. 2 on a training set containing 3 ×
105 × (1 − rv ) for rv ∈ {0.01, 0.02, . . . , 0.98, 0.99}. For each value of rv ,
the CNN is trained for 500 epochs, and the average of the (validation) accuracy
achieved in the last ten epochs is shown by a data point. It is clear that, as the
size of the training dataset drops below 105, the generalization capability
of the CNN worsens even though its learning from the samples within the
training dataset improves. This experiment determines the minimum size of
the training dataset from which the CNN is able to learn the most. Therefore,
270 000 of samples are set aside for training the CNN, i.e., rv = 0.1, and
another separate and independent set of 30 000 samples is used for validating
the model in each epoch of training.

Ideally, the CNN is expected to output Nmax-dimensional
one-hot vectors when fed with input vectors of the mea-
sured total field. However, in reality, the CNN outputs a
normalized vector with Nmax nonzero components, whose
i th component represents the probability that the sample
corresponding to the input vector belongs to the i th class,
i.e., contains i wires. The output vector of the CNN is
denoted by v̂out. This requires that the activation function of
the last layer is be set to “softmax,” which is described as
follows:

σ
�
u1, . . . , uNmax

�
k

= euk�Nmax
k=1 euk

(5)

where k = 1, 2, 3, . . . , Nmax and u = �
u1, . . . , uNmax

�
is the

input to the last layer. This dense layer is fully connected to
the last convolution layer and is fed with the flattened output
of the last convolution layer. The CNN was constructed using
the complexnn PYTHON library [39], [40] with TensorFlow
backend, and the corresponding network topology is shown
in Fig. 2. It is worthy to note that, unlike the approach
in [5], this treatment of complex-valued input data requires
the separation of real and imaginary components as two
separate channels. Reference [41] is an example of a recent
use of the complexnn library; however, since the authors
did not prepare their complex-valued input data into two
separate real and imaginary channels, their complex-valued
CNN could only work by replacing the first ComplexConv1D
layer with a regular one, i.e., Conv1D, to avoid any input
shape mismatch. The learning process of the CNN involves
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Fig. 4. Evaluation of the CNN performance trained on 270 000 samples containing up to Nmax = 10 wires. All RWDs are illuminated with a PW at
f = 10 MHz and at an angle of incidence of θ = 45◦. The training process involved online-testing (validation) of the CNN on another independent
30 000 samples to monitor the generalization capability of the CNN. After the training and the online-testing processes are completed, a set of 3 × 106 new
samples were generated for final performance evaluation. Operating the trained CNN on the vin of each sample returns an output vector v̂out from which the
predicted number of wires can be obtained. Within the set of 3 ×106 new samples, an overall accuracy of 89% is achieved. (a) Accuracies achieved when the
set of 3 × 106 new samples is divided into Nmax = 10 subsets each containing samples with a given number of wires. The total number of samples within
each subset that is fed into the CNN is shown with blue bars, while the red bars show the number of incorrect predictions. The error percentage, which is
the ratio of the number of incorrect predictions to the total number of predictions within each subset, is shown on the corresponding bar. (b) Average of the
probability vectors returned by the CNN for the samples within the N th subset for N ∈ {1, . . . , Nmax}.

minimizing the categorical cross entropy (CCE) loss function
given by

CCE = −
Nmax�
k=1

vout,k × log10

�
v̂out,k

�
(6)

with vout,k and v̂out,k being the kth components of the desired
output vector and the CNN output vector, respectively. Since
vout is one-hot encoded, the loss function corresponding to
a sample containing N wires is simply given by CCE =
− log10

�
v̂out,N

�
. Upon feeding the input vector corresponding

to each sample into the NN, the loss function and its partial
derivative with respect to each of the trainable parameters
are evaluated, which are then used to adjust the trainable
parameters in the next iteration to lower the loss function. This
adjustment could be done based on the averaged loss function
and its partial derivatives calculated from the values obtained
upon propagating each of the samples of a given unclassified
subset of the training dataset [42]. This subset and its size
are, respectively, referred to as “batch” and “batch size.”
In principle, each batch could contain at least one sample and
at most the whole samples within the training dataset. For all
instances of the training of the CNN, a batch size of 500 has
been used.

To verify whether the CNN is capable of generalization,
i.e., to make correct predictions for samples that do not
belong to the training dataset, a fraction of the samples is
set aside from the dataset for validation purposes. The subset
containing these samples is referred to as the “validation”

dataset. The ratio of the number of the samples within the
validation dataset to the total number of samples is referred to
as the “training–validation split” and denoted by rv . In each
epoch, after the CNN is trained on all samples within the
training dataset, the accuracy of the predictions made by the
CNN on the samples belonging to the validation dataset is
evaluated. If the accuracies achieved in training and validation
processes are reasonably close, then the CNN proves to be
capable of generalization. Inspired by [31]–[33], we carried
out an analysis in which rv was varied from 0.01 to 0.99
in increments of 0.01 to determine the size of the validation
subset. As shown in Fig. 3, a training–validation split of
rv = 0.1, which corresponds to a validation subset size of
3 × 104, yields fairly similar training and validation accuracies
while leaving enough samples for training. Moreover, the flat
behavior of both the training and validation accuracy curves
versus rv in Fig. 3 suggests that adding more samples to the
training subset does not enhance the learning of the CNN from
the data, and therefore, a training subset size of 27 × 104 is
adequate.

Since the training subset contains 27 × 104 samples, and
a batch size of 500 is used, each “epoch” involves 27 ×
104/500 = 540 adjustments of the trainable parameters,
i.e., it takes 540 iterations to propagate all of the samples of
the training subset through the CNN. If the training process
involves NE epochs, the full training of the CNN involves
propagating all samples of the training subset through the CNN
for NE times. For the training processes in this article, we set
NE = 100, 500, and 1000.
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Fig. 5. In each of the five panels, each point represents the wire position
in single-wire samples and is colored with the prediction error made by the
CNN in predicting the number of wires of the corresponding sample. Four
cases where the same RWD is illuminated with PWs at 10 MHz at only one
angle of incidence (45◦ , 135◦ , 225◦ , or 315◦) compared with a case where
the input vector consists of all the four channels acquired by those separate
illuminations. For all five cases, the CNN is trained for 100 epochs with a
training–validation split of 0.5. To achieve a visual contrast in the prediction
error map, a logarithmic scale is used to color-map the calculated CCE values.

C. Learning From Total EM Field Measurements and the
Requirement for Nontrainable Parameters

Initially, the CNN was trained on the input vectors con-
taining the scattered EM field measurements, which led to
predictions made with high accuracies on samples outside
the training subset. However, the CNN was not capable of
learning from the total field measurements at frequencies as
low as 10 MHz. This can be understood by the fact that the
scattered field signal due to a given RWD becomes much
smaller compared to the incident field signal at 10 MHz, and as
a result, the scattered field signal gets “buried” in the incident
field signal.

By definition, the scattered field signal can be retrieved by
subtracting the EM field measurements obtained from antennas

Fig. 6. Convergence of the CNN of the topology described in Section IV-A1
for the Nmax = 10 case. (a) Learning curves of the CNN when trained on
30 datasets each containing the Ez field data generated at 30 wavelengths
ranging from 2 to 60 m. For all 30 cases, the same set of hyperparameters
are used, which includes a learning rate of 0.001, a momentum rate of 0.90,
and a batch size of 500. In each case, the network is trained on a subset of
270 000 samples and validated on a separate subset of 30 000 samples.
(b) Dependence of the accuracy to which the CNN converges on the
wavelength at which the training data are generated. Inset: dependence of
the converged accuracy values on the frequency at which the training data are
generated.

with no wire(s) present from their counterparts measured in
the presence of wire(s). Assuming that we have no knowledge
of the source that transmits the incident field and measuring
the EM field in the absence of wire(s) not being possible,
we suggest a similar numerical remedy to this situation. This
remedy involves the subtraction of a “constant” P-dimensional
vector, which we refer to as the background vector and denote
it by vBG, from all the P-dimensional vectors containing the
total field measurements before being fed into the CNN. Since
all the measured total field vectors corresponding to either
training or testing/validation samples should be subtracted by
the very same vBG before being fed into the CNN, the P com-
ponents of vBG are implied to be the nontrainable parameters
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Fig. 7. Tabulated results for the tenfold cross-validation procedure that was
carried out by: 1) grouping 3 × 106 samples into ten independent datasets
of equal size; 2) training the CNN on each of the ten independent subsets of
3 × 105 samples; and 3) testing the trained CNN on each of the remaining
nine subsets. The cell in the pth column and the qth row (p �= q) shows the
accuracy obtained from testing the CNN on the qth subset after being trained
on the pth subset. The white cell in the pth column and the pth row merely
shows the accuracy obtained from training the CNN on the pth subset. Each
of the off-diagonal cells is color-mapped with the testing accuracy value that
it contains.

of the CNN. Here, we propose two methods to obtain vBG.
In the first method, vBG is obtained by taking the average
of all the total EM field vectors corresponding to samples in
the training subset, which involves collective processing of the
training data known as “centering.” We tested this method that
proved to be effective.

In situations where the collective processing of the training
data is not desired, vBG can simply be the total field mea-
surements corresponding to a given RWD. Since we consider
this method to be the most applicable to practical situations,
we chose to implement this recipe in generating the input
vectors fed into our CNN, that is,

v[n]
in =

⎡
⎢⎢⎢⎢⎢⎣

Ez
�
R[n], r1, f, θ

�
Ez

�
R[n], r2, f, θ

�
...

Ez
�
R[n], rP , f, θ

�

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣

Ez
�
R[n0], r1, f, θ

�
Ez

�
R[n0], r2, f, θ

�
...

Ez
�
R[n0], rP , f, θ

�

⎤
⎥⎥⎥⎥⎥⎦ (7)

with R[n] and R[n0] describing the wire distribution of the
nth and n0th RWDs, respectively. To generate our training
data, the total field measurements due to the first RWD is
taken as vBG, i.e., n0 = 1. This was proven to be effective
because this subtraction yields a signal with an amplitude
comparable to that of the scattered field signal, and it does
not break the one-to-one correspondence between a given
RWD and its associated field measurement. At frequencies
as low as 10 MHz, the difference between the total field

signal and the incident field signal is negligible, but, at higher
frequencies, say 50 MHz, since the scattered field signal ampli-
tude becomes comparable to that of the incident field signal,
such subtraction is not necessary. However, the converged
accuracy will be unaffected by this subtraction because the
aforementioned one-to-one correspondence is not broken by
such subtraction.

IV. CNN PERFORMANCE ANALYSIS

Since the problem of predicting the number of wire(s) in
a given sample is formulated as a classification problem,
the CNN output should be mapped into a class. This is
performed by simply mapping the maximum component of the
normalized output vector into 1 and the rest of the components
into 0. The resulting one-hot vector will then be compared to
the desired output, which is also a one-hot vector. Based on
this comparison, the prediction is labeled as either “accurate”
or “inaccurate.”

The overall performance of CNN can be analyzed by
evaluating the accuracy with which the CNN makes predic-
tions on samples outside the training dataset. This can be
done by dividing the number of correct predictions by the
total number of predictions. For a testing dataset containing
300 000 samples containing up to Nmax = 10 wires and
generated at f = 10 MHz at an angle of incidence of θ = 45◦,
an accuracy of 89% was achieved.

This performance analysis can be done in more detail by
evaluating the accuracy within the subset of testing data,
which contains only samples of a given number of wires.
This is shown in Fig. 4(a), where the total number of samples
and incorrect predictions is shown for each subset. In this
way, the performance of the CNN is determined by the Nmax

accuracies corresponding to the Nmax subsets.
Furthermore, this performance analysis can be done in more

detail by looking at the predictions that were made by the
CNN for samples in a subset containing N wires, where
1 ≤ N ≤ Nmax. Averaging the output vectors returned for all
samples within each subset yields Nmax numbers that describe
the averaged probabilities that the samples within that subset
are predicted to have 1, 2, 3, . . . , Nmax wires. The matrix
constructed from concatenating the resulting Nmax averaged
probability vectors is shown in Fig. 4(b).

A. Improvement of Accuracy

The performance of the CNN can be improved by the
following.

1) Mapping Prediction Error Into Space and Detecting the
“Blind Spots” of the CNN: Another approach to evaluate
the performance of the CNN described in Section III-B is to
search for its “blind spots.” This can be achieved by looking at
the subset of samples containing only one wire. This allows
us to study the error calculated for the prediction made by
the CNN as a function of wire location. The prediction error
can be calculated via plugging the nonprojected output vector
into the CCE function defined by (6). Consider a sample that
actually contains one wire, with the output of the CNN for that
sample being projected into the one-hot vector corresponding
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Fig. 8. Repeat of Fig. 4 for the case where each RWD is illuminated with a PW of f = 10 MHz four separate times each time at a different angle of
incidence. In this case, the CNN is fed with a four-channel input vector, each channel corresponding to θ = 45◦, 135◦, 225◦ , and 315◦ . Each channel is a
twofold vector with each fold containing the real and imaginary parts of Ez. Therefore, in this case, the CNN is fed with an eightfold input vector containing
the real and imaginary parts of Ez measured upon illumination of the wires with a PW at four different angles of incidence. Operating the trained CNN on
a separate set of 3 × 106 independent samples led to predictions with an overall accuracy of 97%.

to a single-wire sample, i.e., [1, 0, 0, . . . , 0, 0]T . Even if the
prediction based on this projection is accurate, the predic-
tion error obtained from the CCE function is still nonzero.
These nonzero values for the prediction error provide insight
into the blind spots of CNN. As implied in Section III-B,
the prediction error for the nth sample that actually contains
one wire is given by CCEn = − log10

�
p[n]

1

�
with p[n]

1 being
the first component of the CNN output vector that gives the
probability with which the nth sample is predicted to contain
one wire.

As it can be seen in the four top panels of Fig. 5,
illuminating the single-wire RWD with a PW only at one
angle of incidence results in a higher prediction error if the
wire is located at the corner of the box toward which the
PW phase velocity is directed (see Fig. 1). This suggests
that appending additional channels obtained from additional
illumination angles to the input vector should reduce the
prediction error for one-wire samples located in the formerly
identified blind spot of the CNN, and this is confirmed by the
bottom panel of Fig. 5.

The CNN that is to be fed with this eight-folded input
vector has a similar topology to the one shown in Fig. 2
except that the input dimension of the first convolution layer,
and of course, the input–output dimensions of the input layer,
should be changed to (None, 40, 8). The CNN into which this
eightfold input vector is fed contains 2838 trainable parameters
(weights and biases). This points out one of the advantages of
utilizing the convolutional layers because a 400% increase in
the size of the input vector led to only 54 additional trainable
parameters.

2) Wavelength Variation: Since the box side is chosen to
be L = 100 m long, the working wavelength of the dataset
on which the CNN is trained is selected from the range

Fig. 9. Three RWDs with three wire locations in common. The wire locations
of each RWD are marked with blue circles, red x’s, and green squares on the
right panel, and each of these three RWDs contains five, four, and five wires,
respectively. Two wires in the RWD marked with circles are intentionally
placed close to each other. Replacing these two wires with a single wire
in their midpoint results in the second RWD marked with x’s. Taking the
two wires farther apart results in the third RWD marked with squares. The
Esc

z fields due to the illumination of these three RWDs with a PW incident at
θ = 45◦ at f = 10 MHz are graphed in the top-left and bottom-left panels.
Although the location of three wires remains intact, as the remaining two
wires get farther apart, replacing them with a single wire in their midpoint
leads to field measurements with lesser similarity.

of 2–60 m, which extends over the HF and VHF frequency
bands. For a given RWD being separately illuminated with
PWs incident at θ = 45◦, 135◦, 225◦, and 315◦, four sets of
40-D input channels are generated all of which containing
the Ez field computed at 40 sites at a given wavelength.
This was repeated for all testing and training RWDs, and
30 different datasets were prepared by varying the illumination
wavelength from 2 to 60 m in steps of 2 m. As shown in Fig. 6,
such frequency analysis indicates that training the network on
datasets containing the Ez field generated at larger wavelengths
leads to higher accuracies.
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Fig. 10. CNN described in Section IV-A1 was tested on 3 × 106 additional independent test samples containing up to Nmax = 10 wires and generated at
f = 10 MHz. This test led to predictions with an overall accuracy of 97%. The density of predictions, σ , was then measured per predicted wire count for
samples of given actual wire numbers. Within the subset of N -wire samples (where 2 ≤ N ≤ 10), σ is simply measured by counting the number of samples
that are predicted to have a certain wire number whose dmin value falls within [m�, (m + 1)�), where m ∈ {0, 1, . . . , mmax}. For visualization purposes,
a logarithmic scale has been utilized to color-map the measured σ values.

As the final test of the generalization capability of the CNN,
we carried out tenfold cross validation. First, 3 × 106 samples
were randomly grouped into ten subsets, each containing
3 × 105 samples. After training the CNN on the pth subset,
it was tested on the qth subset, where q �= p and 1 ≤ p,
q ≤ 10. No internal validation was performed during any
of these training processes, and so the CNN was trained on
3 ×105 samples. The 90 accuracy values obtained from testing
the CNNs are shown as off-diagonal components of a 10 ×10
matrix in Fig. 7, while the diagonal components show the ten
training accuracy values. All the 100 accuracy values range
from 96% to 97%, indicating that the CNN is capable of
generalizing what it learns from any given dataset into any
other given subset.

As suggested by the spatial and frequency analyses,
the training data were generated by illuminating each RWD
with a PW at f = 10 MHz and separately at four different
angles of incidence, namely, θ = 45◦, 135◦, 225◦, and 315◦.
An evaluation of the CNN performance on 3 × 105 additional
independent test samples is shown in Fig. 8. A comparison

between Figs. 4 and 8 indicates the effectiveness of the analy-
sis described in Section IV-A1. Moreover, Fig. 8(a) suggests
that generating the training data with additional illumination
angles not only improves the CNN performance for single-wire
samples but also for samples with multiple wires.

V. FAILURE ANALYSIS

A. Small Interwire Separation

As shown in Fig. 9, in a sample with two wires close
enough to each other, replacing the pair with a single wire
makes negligible changes to the EM field measured at the
40 antennas. This suggests that the CNN would undercount
the wires if two of them are too close to each other.
To study the resolution capability of the CNN described in
Section IV-A1, we measure the minimum interwire distance
for samples that contain more than one wire, and we denote
this quantity by dmin. Then, within the subset of samples that
contain only a given number of wires, N , the predictions to all
possible wire counts are studied versus dmin. More specifically,
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Fig. 11. (a) Undercounting probability curves calculated from the prediction density (σ ) values shown in Fig. 10 corresponding to nine different subsets
each containing only samples with N wires, where 2 ≤ N ≤ 10, generated at an illumination wavelength of λ ∼= 30 m. (b) Same curves generated at an
illumination wavelength of λ ∼= 60 m whose corresponding nine-panel figure for prediction densities is not shown here.

this is done by counting the number of predictions to given
wire count, C , whose dmin value falls within [m�, (m + 1)�)
with m ∈ {0, 1, . . . , mmax}, a quantity known as density of
predictions and denoted by σN,C (m). To measure σN,C (m)
per subset of samples with N wires, per predicted count, C ,
the CNN whose training results are shown in Fig. 8 was
tested on 3×106 additional independent test samples, and the
σ values measured for � = 10 cm are shown in Fig. 10.
For samples containing N wires, where 2 ≤ N ≤ Nmax,
whose dmin value falls within the range of [m�, (m + 1)�),
the undercounting probability is defined as follows:

PN (m) =

�
2 ≤ C < N

σN,C (m)

�
2 ≤ C≤ Nmax

σN,C (m)
(8)

with m being any possible integer that covers the maximum
measured dmin within a given subset. The undercounting
probability was computed from the prediction density values
shown in Fig. 10 for nine different subsets each containing
only samples with N wires, where 2 ≤ N ≤ 10 and
shown in Fig. 11(a). As suggested by the step-like behavior
shown in Fig. 11(a), the CNN makes erroneous predictions
for samples containing a pair of wires whose distance falls
under a certain threshold. That is, if two wires in a sample
are separated by less than a certain threshold, the CNN would
count those two wires as one. For samples with two pairs
of wires with separation under a certain threshold, the CNN
would undercount the number of wires twice and so on. This
suggests the existence of a resolution limit for the CNN used
to predict the number of wires in each RWD. As shown
in Fig. 11(a), the resolution limit for the CNN is estimated
to be 3 m, which is 10% of the illumination wavelength
(λ ∼= 30 m). To understand the correlation between the
illumination wavelength and the resolution limit of the CNN,
we generated the undercounting probability curves by repeat-
ing the same process for an illumination wavelength of λ ∼=
60 m, and as it can be seen in Fig. 11(b), the resolution limit

of the CNN is estimated to be around 6 m, which again turns
out to be around 10% of the illumination wavelength.

B. Small Clearance From Antennas

On the other hand, as it can be seen in the bottom panel
in Fig. 5, even after covering the blind spots of the CNN by
additional illumination angles, the prediction error is larger
for RWDs that contain a wire located too close to any of
the antennas. This can be explained by the fact that the
formalism provided by (12)–(14) generates diverging EM field
values if the wire is too close to the measurement point, and
the resulting 40-D vector of EM field measurements would
contain a component much larger than the rest. As a result,
the input vector resulting from such measurement becomes an
outlier compared with the input vectors for which the CNN
makes correct predictions. As mentioned in Section III-A,
throughout this work, all the generated datasets contain RWDs
with a minimum clearance of δ = 0.02 L = 2 m from the
antennas. Increasing the minimum clearance does not improve
the predictions; however, decreasing the minimum clearance
from 2 m to 10 cm reduces the overall accuracy from 97% to
93%. This source of error is expected to be eliminated when
using a formalism that produces correct EM field values at
points in proximity to the wires. An alternative method to
generate the training EM field data, which goes beyond the
interacting dipole approximation, is utilizing numerical EMs
packages, such as pyGDM [43], which could be considered
for our future works.

VI. CONCLUSION AND FUTURE WORKS

We studied solving an inverse problem in EMs, namely,
counting the number of wires from the EM measurements
acquired from antennas surrounding the wires, using NNs.
Since fully connected NNs require too many weights to learn
from the training data, they are incapable of generalization,
and therefore, their use was ruled out. As a result, we made
use of CNNs that inherently require much fewer trainable
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parameters and were proven to have excellent generalization
capability. This was achieved by moving a 1-D convolution
window of length 3 over each of the channels of the input,
in each of the three consecutive convolution layers.

We then studied the prediction error made by the CNN
for single-wire samples and mapped the prediction error into
space by analyzing the prediction error versus wire location.
As a result of this analysis, the blind spots of the CNN were
identified, and those blind spots were covered by additional
channels of the input vector acquired by illuminating the
RWDs with additional illumination angles. This remedy led
to enhancing the CNN performance, which is suggested by
the increase in accuracy from 88% to 97%.

At the end, the distribution of predictions was studied versus
the minimum interwire separation within Nmax − 1 subsets of
N-wire samples, where 2 ≤ N ≤ Nmax. This analysis indicated
the existence of a resolution limit for the CNN described in
Section IV-A1. That is, the CNN will predict the number of
wires of a sample less than their actual number if at least
one of the interwire separations measured for that sample
falls under a certain threshold. This characteristic threshold
was inferred from the step-like behavior of the undercounting
probability and estimated to be around 10% of the illumination
wavelength.

Our focus is to demonstrate the potential of the NNs to
be utilized in counting identical objects and to introduce
analytic methods that allow us to get estimates of the relevant
parameters before moving to the laboratory stage. In addition,
our analytic approach enables us to understand the capabilities
of the network, such as resolution, and whether or not tuning
the network topology can help in breaking the fundamental
physics-related limits, such as the resolution limit.

Our future works include: 1) predicting the position of
multiple identical targets as a classification or regression prob-
lem; 2) utilizing numerical packages, such as pyGDM [43],
to generate the training data; 3) pulsed illumination of targets
to include more illumination frequencies and applying con-
volution windows to the frequency dimension of the input;
4) the use of antenna transfer function [44]–[47] for more
realistic modeling of antennas; and 5) introducing noise to
the measured EM field to assure a more robust network
performance.

APPENDIX I
FORMALISM TO GENERATE THE SCATTERED EM FIELD

FOR A SYSTEM OF N COUPLED WIRES

The approach discussed in [34] represents the i th object
with a set of electric and magnetic dipoles denoted by
d(i)

2×1 = �
p(i), m(i)

�T
. The first step is to self-consistently

determine the electric and magnetic dipole moments, d(i)
2×1 =�

�0P(i) · E(ri), M(i) · H(ri)
�T

, from the incident EM field at the
location of the i th dipole, ri , using this matrix equation⎡

⎢⎢⎢⎣
d(1)

2×1

...

d(N)
2×1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

III 2×2 · · · QQQ(1,N)
2×2

...
. . .

...

QQQ(N,1)
2×2 · · · III 2×2

⎤
⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎣

F(1)
2×1

...

F(N)
2×1

⎤
⎥⎥⎥⎦ (9)

where F(i)
2×1 = �

�0P(i) · E(inc)(ri ), M(i) · H(inc)(ri)
�T

. Assuming
that all the scatterers are z-directed thin wires of length l and
radius a, the electric and magnetic polarizability tensors for
all the wires, i = 1, 2, . . . , N , can be approximated with

P(i) ∼= 4

3
π

�
l

2

�3�
ln

�
l

a

�
− 1

�−1

ẑẑ & M(i) ∼= 000. (10)

Note that such approximation becomes less valid as the
wire dimensions become comparable to the wavelength. For
z-directed thin wires, QQQ(α,β)

2×2 reduces to

QQQ(α,β)
2×2 = l3e− jkRα,β

24 Rα,β

�
ln

�
l
a

�−1
�
⎡
⎣ 1

R2
α,β

+ jk

Rα,β
−k2 0

0 0

⎤
⎦ (11)

where Rα,β ≡ ��rα − rβ

�� and k ≡ 2π( f/c). Once the elec-
tric dipole moments,

�
p(1)

z , . . . , p(N)
z

�
, are obtained from (9),

we can feed them into the following formalism to compute
the scattered EM fields. The nonvanishing components of the
scattered EM field are given by

E sc
z (r) =

N�
α=1

p(α)
z e− jkRα

4π�0 Rα

�
k2 − 1

R2
α

− jk

Rα

�
(12)

H sc
x (r) = f

2

N�
α=1

p(α)
z e− jkRα

y − yα

R2
α

�
j

Rα
−k

�
(13)

H sc
y (r) = f

2

N�
α=1

p(α)
z e− jkRα

x − xα

R2
α

�
j

Rα
+ k

�
(14)

where Rα ≡ |r − rα|. It is worthwhile to mention that, as we
get closer to the wires, i.e., r → rn for n = 1, . . . , N , the for-
malism given by (12–14) becomes less accurate. Therefore,
in addition to these dipole terms, higher order terms would
be needed to correctly produce the scattered EM field in the
vicinity of the wires. The thin wires are illuminated with a
PW whose electric field vector is purely z-polarized, and the
nonzero components of the incident EM field are given by

E inc
z (r) = E0e− jk[x cos θ+y sin θ ] (15)

H inc
x (r) = − E0

Z0
e− jk[x cos θ+y sin θ ] sin θ (16)

H inc
y (r) = E0

Z0
e− jk[x cos θ+y sin θ ] cos θ (17)

with θ and Z0 = √
μ0/�0

∼= 376.73 �, respectively, being the
PW angle of incidence and the impedance of free space. As a
result, the total fields can be computed by adding the scattered
fields obtained from (12)–(14) to the incident fields obtained
from (15)–(17). The preceding equations assume an e jωt time
dependence.
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