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Abstract—Fundamental properties of surface plasmon polariton
modes propagating along graphene nanoribbons are investigated
by means of a full-wave method-of-moments approach adopting
a spatially dispersive dyadic model for graphene conductivity.
Modal propagation, current profiles, field distributions, and char-
acteristic impedances are studied in detail showing the dramatic
effects of spatial dispersion and the need to go beyond the usual
weak (low- ) spatial dispersion formulation.
Index Terms—Graphene, nanoribbons, surface plasmon

polariton.

I. INTRODUCTION

P LANAR electromagnetic structures incorporating
graphene layers have received considerable attention

in the last few years for waveguide, antenna, and shielding
applications. In particular, graphene nanoribbons (GNRs) have
been proposed in various configurations, as possible intercon-
nects in integrated circuits [1]–[3]. GNRs, either free-standing
or placed in a stratified dielectric structure, support a variety
of propagation modes, including surface-plasmon modes [4],
[5]. Surface plasmon polariton (SPP) propagation in graphene
nanostructures has recently attracted interest for the possibility
of strong confinement of electromagnetic energy at subwave-
length scales, tuned and controlled by a gate voltage or through
chemical doping. Other applications of graphene plasmons
include optical signal processing, light modulation, sensing,
spectral photometry, quantum optics, and nonlinear photonics
[6], [7].
Here, we aim at studying the fundamental properties of the

dominant SPP mode supported by a monolayer GNR placed
on top of a dielectric substrate, employing a rigorous full-wave
non-Galerkin method-of-moments (MoM) approach in the
spectral domain: the non-Galerkin characteristic (i.e., test
functions different from the basis functions) has been chosen
to ensure convergence of the spectral integrals defining the
MoM matrix. The GNR is modeled through an appropriate
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tensor surface-impedance boundary condition which takes into
account the possible presence of static bias fields and also
includes spatial-dispersion effects: this means that graphene
is represented through a dyadic conductivity whose elements
depend also on the spectral wavenumbers [8], [9]. It is worth
noting that the effects of spatial dispersion on the electromag-
netic properties of different graphene structures have recently
been studied mainly in connection with infinite graphene-sheet
structures [10]–[13] and it has been shown that they can dra-
matically change device performance. Although many studies
have been devoted to SPP propagation in GNRs [4], [5], [14],
to the best of our knowledge, none has fully addressed the issue
of nonlocality (a preliminary investigation on nonlocal effects
in GNRs has been presented in [15], but the authors used a
low- model that we will show below to be insufficient for
correct modeling).
In the present study, we investigate how spatial dispersion af-

fects the propagation properties along a GNR giving particular
attention to the dispersion curves, current profiles, field distri-
butions, and characteristic impedances of the fundamental SPP
mode.
It is worth mentioning that, in the more general framework of

using GNRs in graphene-based devices and circuits, two critical
aspects are SPP excitation and graphene-metal contacts.
As concerns the excitation problem, which is a hot research

topic, recent studies demonstrated excitation and detection of
SPPs in graphene through near-field microscopy nanotips [16],
[17]; however, the low excitation efficiency of such near-field
sources has prompted research on alternative approaches based
on free-space electromagnetic waves. In this case the main diffi-
culty arises from the large momentum mismatch between plas-
mons and incoming waves, but different techniques have al-
ready been successfully developed in this connection, e.g., at-
tenuated total reflection (ATR), scattering from a topological de-
fect at the conductor surface, and Bragg scattering using diffrac-
tion gratings or a periodic corrugation of the surface of the
conductor [18]–[20]. Although these techniques have been pro-
posed in connection with infinite graphene sheets as well as ar-
rays of GNRs, they may presumably be considered also for the
excitation of a single GNR.
As concerns metal-graphene contacts, these constitute a po-

tential limiting factor, especially in active devices, because of
the possible occurrence of very large contact resistances, due to
several physical and technological reasons, e.g., the low density
of states in graphene compared with that of metals, the forma-
tion of dipoles and defects at the interface, etc. [21].
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Fig. 1. GNR over a dielectric substrate. Parameters of the reference structure:
200 nm and 400 nm.

Both the considered topics, although important, are beyond
the scope of the present investigation.

II. DESCRIPTION OF THE PROBLEM
The electromagnetic problem under analysis is sketched in

Fig. 1. It consists of a graphene sheet of width along the -di-
rection (i.e., a GNR) deposited on a a laterally infinite dielectric
substrate of thickness along the -direction and relative per-
mittivity . All of the units are in the SI system and a time-har-
monic variation is assumed and suppressed throughout.
Propagation along the -direction, i.e., modes with a spatial de-
pendence , is also assumed.

A. Graphene Conductivity
In general, a graphene sheet can be modeled as a conductive

sheet with a dyadic surface conductivity [22]

(1)

In the absence of magnetic bias and neglecting spatial disper-
sion, graphene can be simply characterized by a scalar local
conductivity , which depends on external and internal param-
eters, e.g., radian frequency , temperature , a phenomeno-
logical scattering rate (where is the relaxation time
depending on a variety of factors and determined experimen-
tally), and the chemical potential (which can be controlled
either through doping or through an applied bias electric field
orthogonal to the graphene plate) [8]. Moreover, for the consid-
ered frequency range (i.e., below hundreds of THz), only the in-
traband contributions are considered, the interband terms being
negligible [8]. In this case

(2)

where

(3)

and , thus showing aDrude-like behavior. In (3)–
is the electron charge, 10 m/s is the Fermi velocity
in graphene, while and are the reduced Planck and the
Boltzmann constants, respectively.
When amore refinedmodel is considered which takes into ac-

count spatial dispersion, the graphene conductivity has a dyadic
form, whose elements have been derived in [8] under a low-

relaxation-time approximation (RTA) and, more recently, in
[9] for arbitrary values and with the Bhatnagar–Gross–Krook
(BGK) model (which allows for including charge diffusion and
deriving the correct quantum capacitance). For completeness,
the expressions for the dyadic elements for different graphene
conductivity models are reported in the Appendix.

B. Dispersion Analysis
Starting from the boundary condition

on the GNR surface, the electric field
integral equation (EFIE) can be expressed in the form

(4)

for and for any , where is the
EJ-type dyadic Green function for planar layered media,

is the Fourier transform of the modal surface current
, and is the dyadic resistivity. By introducing

the spectral-domain Green's function and repre-
senting the surface current of the mode as

(5)
where is the assumed propagation constant, after
some manipulations, (4) can be rewritten as

(6)
for , where is the Fourier transform
of the modal surface current .
Equation (6) is clearly a nonstandard eigenvalue equation:

it has an infinite number of solutions, each of which identifies
a propagation mode of the nanoribbon through its propagation
constant and its surface current distribution .

C. Numerical Solution
A standard MoM procedure can be used to solve the eigen-

value problem.
In particular, by expanding the and components of the

modal current in and entire-domain (e.g., sinusoidal) basis
functions and , respectively, as

(7a)

(7b)

where and are unknown coefficients and

(8a)

(8b)
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It should be observed that the Fourier transforms of the basis
functions in (8) are

(9a)

(9b)

By applying a non-Galerkin test procedure with test functions
( ), (6) can be recast in the following matrix

form:

(10)

where , , and

(11)

where , , , and are the compo-
nents of the dyadic resistivity . In particular, suitable test func-
tions need to be chosen in order to ensure the convergence of the
spectral integral in (11) [23]. This is not trivial, since it can be
shown, based on the expressions derived in the Appendix, that
in a full- formulation we have

(12)

Hence, if the classical Galerkin test procedure were used, the in-
tegrand functions of the matrix elements would show
an asymptotic behavior as without alternating sign thus
leading to non-convergent integrals.
A suitable choice of test functions is instead

(13a)

(13b)

The Fourier transform of (13a) is the same as in (9a), and it has
an asymptotic behavior as , while the Fourier transform
of (13b) is

(14)

with an asymptotic behavior as which ensures the con-
vergence of all of the integrals (11).
The computation of the matrix elements in (11) involves the

integration of functions which oscillate as : the in-
tegration can then efficiently be performed through the double
exponential formulas proposed in [24].
The eigenvalues have to be found searching for the com-

plex zeroes of the determinant of the square matrix in
(10), i.e.,

(15)

and a dispersion analysis can easily be performed
tracking the relevant complex pole as a function of the fre-
quency .
Although several method are available for searching zeros on

the complex plane [25], [26], the Müller's method is here em-
ployed since it is simple and robust. Since the number of iter-
ations required to converge to the correct propagation constant
(matrix eigenvalue) strictly depends on the initial guess, a
suitable predictor has been developed based on an extrapolation
procedure of the previous ten eigenvalues found at the previous
frequencies. It results in a very efficient code that is able to track
the eigenvalue at each frequency step with just three or four it-
erations.

D. Current, Field, and Characteristic Impedance Calculation
Once the propagation constant that makes null the determi-

nant of the MoM matrix at a prescribed frequency is found, the
eigenfunctions associated with the matrix can easily be
computed and the eigenfunction corresponding to the minimum
eigenvalue (which is null within the machine accuracy) gives
the expansion coefficients in (7); this way, both the longitudinal
and transverse current components can easily be computed.
Once the modal current on the GNR surface is

known, the modal field components can then be computed as

(16a)

(16b)

(16c)

where while and are the EJ- and
HJ-type spectral-domain dyadic Green's functions, respec-
tively [27]. It is worth noting that the computation of all of
the involved integrals can be made more efficient by suitably
exploiting the symmetries of the integrand functions.
The characteristic impedance is then calculated according to

the current-power definition [28]

(17)

where the integral in the numerator of (17) is recursively com-
puted over an increasing surface centered on the GNR and trun-
cated when the prescribed accuracy is reached.

III. RESULTS

A. Graphene Conductivity and Basic Structure
Here, a comparison among the different graphene conduc-

tivity models is presented for different radian frequencies , as-
suming in all cases 0.5 ps, 0 eV, and 300 K.
The conductivity dyadic will be represented in polar coordi-
nates, showing results for the longitudinal and transverse con-
ductivities and as functions of the radial wavenumber
normalized with respect to the free-space wavenumber [37].
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Fig. 2. Absolute values of (a) and (b) as functions of at
1 THz.

For clarity, we summarize the different models considered. For
the RTA formulations there are two conductivity expressions:
the full- expression and the low- approximation (cf. (33)-(34)
and (28)–(29), respectively). For the BGK formulation, which
is more accurate than the RTA, we also have two conductivity
expressions: the full- expression and the low- approximation
(cf. (30)-(31) and (26)-(27), respectively). We also show the
scalar local model (2). Similar results have already been shown
in [9], but we report them here for completeness and then focus
on nonlocal GNR modal properties which have not been exam-
ined in detail.
In Fig. 2, the absolute values of and are shown at

1 THz. For both components, the full- RTA and
BGK models are in excellent agreement, whereas the scalar
local conductivity and both the low- RTA and BGK models
are accurate only in a low- range, as expected; this range is
however narrower for than for . In particular, it should
be noted that the low- formulations completely fail for large
, even more than the local model: this is to be expected since
both the low- elements have an asymptotic behavior as

, while the full- longitudinal and transverse elements are
and , respectively (the local formulation is

instead independent of , i.e., ).

Fig. 3. Normalized phase ( ) and attenuation ( ) constants as func-
tions of frequency for a structure as in Fig. 1 with . Different conduc-
tivity models are considered: a local model, a low- BGK model, and a full-
BGK model.

In order to show the effects of spatial dispersion on the elec-
tromagnetic properties of GNRs, we consider a GNR structure
with 200 nm (more than two orders of magnitude larger
than the graphene lattice constant , so that electronic edge-ef-
fects can be ignored) and 400 nm, with different permit-
tivity values for the substrate. All of the results have been ob-
tained with six basis functions for each current component (i.e.,

) which provide converged results.

B. SPP Propagation Characteristics

In Fig. 3, the dispersion properties of the fundamental
SPP mode supported by a free-standing GNR (i.e., )
are reported in a logarithmic scale. In particular, the nor-
malized phase ( ) and attenuation
( ) constants are plotted as functions of
frequency by adopting three different conductivity models for
graphene, i.e., a local formulation, a low- BGK formulation,
and a full- BGK formulation. The latter fully takes into
account the nonlocal effects which are seen to be particularly
pronounced in the lowest (microwave) frequency range. On
the other hand, as expected, the low- formulation leads to
erroneous results especially in the lowest frequency range (this
happens both in the RTA and BGK formulations).
In Fig. 4(a) and (b), the normalized phase and attenua-

tion constants are reported as functions of frequency for a
free-standing GNR with different ribbon widths: from Fig. 4, it
can thus be seen that nonlocal effects are stronger for ribbons
with narrower widths and negligible for ribbons with widths
larger than 1 m.
In Fig. 5(a) and (b), the dispersion properties are reported for

a GNR with two different permittivities of the substrate, i.e., a
moderate permittivity [Fig. 5(a)] and a high permit-
tivity [Fig. 5(b)]. In these cases the low- results have
not been reported since it can be shown that such a low- formu-
lation dramatically fails. On the other hand, it can easily be seen
that increasing the dielectric permittivity strongly enhances the
spatial-dispersion effects, as shown in [11] for modes supported
by an infinite graphene sheet. In particular, it can be seen that
in the high-permittivity case ignoring spatial dispersion leads
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Fig. 4. Normalized propagation constants as functions of frequency for a
structure as in Fig. 1 with for different ribbon widths. Two different
conductivity models are considered, i.e., a local model and a full- BGK model
for the calculation of (a) the normalized phase constant and (b) the nor-
malized attenuation constant .

to relative errors in the calculation of the phase and attenua-
tion constants which are both larger than 50% at 10 THz: at low
frequencies such errors are still larger. In the considered fre-
quency range, including spatial dispersion increases the atten-
uation constant of the plasmon mode, except for the high-per-
mittivity case in the higher part of the frequency spectrum: in
such a case, e.g., at 10 THz, spatial dispersion leads to an
attenuation constant much lower than that of the local formula-
tion. Instead, as concerns the phase constant, spatial dispersion
makes the plasmon mode much slower at lower frequencies and
much faster at higher frequencies.

C. Modal Currents and Field Distributions
In Fig. 6, the amplitude of the longitudinal -component of

the modal current along the nanoribbon (normalized to its max-
imum value) is reported at the operating frequency 1 THz
for a structure as in Fig. 3. The transverse -component is not
reported since its value is more than three-orders of magnitude
smaller than the longitudinal component . It can be seen that
ignoring spatial dispersion or using a spatially-dispersive model
valid for low wave numbers leads to completely erroneous cur-
rent profiles. In particular, the almost constant behavior typical

Fig. 5. Normalized phase ( ) and attenuation ( ) constants as func-
tions of frequency for a structure as in Fig. 1 with (a) and (b)

. Two different conductivity models are considered, i.e., a local model and
a full- BGK model.

of the fundamental mode in microwave microstrip line is ob-
tained using a purely local model, whereas the correct spatially
dispersive full- conductivity formulation determines a variable
current profile across the ribbon with a minimum at the edges
and a maximum near the center of the graphene nanostrip. Such
a behavior is exactly the opposite of what is found adopting a
low- model which predicts a current profile far from both the
purely local model and the correct spatially dispersive model.
Again, using a low- model in such problems dramatically af-
fects the correctness of the results.
It is worth noting that the behavior shown in Fig. 6 is qualita-

tively the same across the considered frequency spectrum (from
10 GHz to 10 THz) and for structures with different substrate
permittivities.
The normalized electric and magnetic field distributions are

reported in Fig. 7(a) and (b), respectively, for a structure as in
Fig. 6 (i.e., and 1 THz). They show a classical
2-D monopole-like behavior and have been obtained using the
full- conductivity formulation. A local model would lead to the
same qualitative field behavior: to observe the quantitative dif-
ferences, in Fig. 8(a) the amplitude of the normalized electric
fields are reported as functions of for at 1 THz
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Fig. 6. Normalized -component of the modal current across the
nanoribbon for a structure as in Fig. 1 with and 1 THz. Different
conductivity models are considered: a local model, a low- BGK model, and
a full- BGK model.

Fig. 7. Normalized (a) electric and (b) magnetic field distribution of the
plasmon mode for a structure as in Fig. 6 using a full- BGK model.

for a free-standing GNR. In order to point out the spatial-disper-
sion effects in the modal field distributions of GNRs the same of
Fig. 8(a) is reported in Fig. 8(b) for a structure with
and at 10 THz. It can be seen that, while in the former
case the plasmon mode is poorly confined and spatial-disper-
sion effects are negligible, in the latter the electric field is well
concentrated near the ribbon, although the inclusion of spatial
dispersion greatly reduces the amount of field confinement. This
also occurs for, e.g., localized surface plasmons, where spatial
dispersion reduces the field concentration in the gap between
two plasmonic dimers [29].

Fig. 8. Amplitude of the normalized electric field as a function of for a struc-
ture as in Fig. 1. Parameters: (a) and 1 THz and (b)
and 10 THz.

D. Characteristic Impedance
The real and imaginary parts of the characteristic impedance

are reported as functions of frequency in Fig. 9(a) for a free-
standing GNR as in Figs. 3 and in Figs. 9(b) for a high-dielectric
GNR as in Fig. 5(b). As it can be seen, at low frequencies, both
the real and imaginary parts are of the order of k , and there is
a significant discrepancy between the local model and the full-
BGK formulation: such a discrepancy disappears beyond 1 THz
for the real part and beyond 2 THz the imaginary part become
one order of magnitude smaller than the real part. Interestingly,
the spatial-dispersion effects on the characteristic impedance of
the GNR are weaker in the high-permittivity case.

E. Electrical Conductivity Tuning
As is well known, one of the most attractive characteristic of

graphene is the possibility of externally controlling its electrical
conductivity bymodifying the chemical potential : this can be
obtained either by applying an electrostatic bias or by doping
[8]. In a more general framework, such an external tuning could
be used to dynamically control the reflection, absorption, or
polarization of the electromagnetic waves impinging against a
graphene shield [30], to control the radiation characteristics of
leaky-wave antennas [31], or to make graphene layers working
as tunable cloacks [32]. Moreover, in recent works it has been
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Fig. 9. Real and imaginary parts of the characteristic impedance of (a) a free-
standing and (b) a high-dielectric GNR as in Fig. 1.

shown that graphene can effectively act as a platform for in-
frared metamaterials and transformation optical devices [33],
[34]. For plasmon propagation in GNRs, the conductivity tuning
allows for varying the chemical potential across the strip (thus
generating a nonhomogeneous conductivity), or for creating dif-
ferent channels for propagation over a uniform sheet [35]. The
analysis of inhomogeneous GNRs is out of the scope of the
present investigation and it requires different numerical tools
[36]; rather, it is here interesting to investigate the effects of
a uniform variation of the chemical potential on the prop-
agation features of the dominant plasmon mode in GNRs, i.e.,
we consider a GNR with a homogeneous conductivity whose
value can be tuned at a fixed frequency by externally varying
the chemical potential .
In Fig. 10 the normalized phase and attenuation constants are

reported as functions of the chemical potential for a struc-
ture as in Fig. 1 with at the operating frequency

1 THz. As for the dispersion analysis, two different con-
ductivity models are considered, i.e., a local model and a full-
BGKmodel. It can be seen that the influence of the chemical po-
tential on the propagation properties of GNRs is the same for the
local and the spatially-dispersive model: in fact, a variation of

only affects the term in (3). By increasing , the real part
of the conductivity (which is responsible of losses) decreases
and, accordingly, the attenuation constant of the propagating

Fig. 10. Normalized phase ( ) and attenuation ( ) constants as func-
tions of the chemical potential for a structure as in Fig. 1 with at the
operating frequency 1 THz.

Fig. 11. Real and imaginary parts of the characteristic impedance of a GNR as
in Fig. 1 with at the operating frequency 1 THz as functions of
the chemical potential .

plasmon mode also decreases: such a decreasing is more pro-
nounced for small values of . Although reported in Fig. 10 for
a particular configuration of GNRs, such a behavior is general,
as verified by numerous simulations.
In Fig. 11, the real and imaginary parts of the characteristic

impedance of the same structure as in Fig. 10 are reported as
function of the chemical potential . These results have been
obtained using a local model and a full- BGK fromulation
for the graphene conductivity. As can be seen, the variation of
the chemical potential can tune the values of the characteristic
impedance by reducing it by about 80%.

IV. DISCUSSION AND CONCLUSION
Nonlocal effects that severely affect the propagation proper-

ties of the fundamental plasmon mode in graphene nanoribbons
have been carefully investigated by means of a Method-of-Mo-
ments approach in the spectral domain which fully takes into ac-
count the spatially dispersive nature of the intraband graphene
conductivity. Results have been presented for the propagation
constant, the current profile, the field patterns, and the charac-
teristic impedance of the dominant plasmon mode showing that
spatial dispersion have to be taken into account through a model
valid for arbitrarily large value if dramatic errors are to be
avoided.
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In particular, it has been shown that the strongest nonlocal
effects occur for GNRs with small widths and supported by a
dielectric with high permittivity: usually the nonlocality largely
attenuates the longitudinal propagation of the plasmon mode
and makes it slower at low frequencies and faster at high fre-
quencies. The transverse profile of the longitudinal component
of the current is strongly modified showing a maximum at the
center of the ribbon, while the modal field is less tightly con-
fined to the ribbon. The characteristic impedance is less affected
by spatial dispersion, at least for high frequencies, whereas in
the low frequency (microwave) regime can be largely increased
both in its resistive and capacitive part. Bias voltages or chem-
ical doping can be effectively used to tune the modal proper-
ties of the propagating SPP and, in particular, the former can
be used to locally modify the transverse conductivity profile to
create a tunable inhomogeneous conductivity (this is left for fu-
ture works).
As concerns the effects that nonlocality may have on

graphene-based devices, the large variety of structures pro-
posed in recent years, e.g., phase-shifters, filters, absorbers,
prevents one from drawing sharp conclusions. However, in
the light of the results obtained in the present investigation,
our feeling is that nonlocality does not necessarily spoil the
expected performance of GNR-based components, but, rather,
it is a key parameter that must be taken into account in proper
device modeling and design.

APPENDIX

For completeness, we report in this Appendix the expres-
sions of the dyadic elements for different graphene conductivity
models derived in [9]. In particular, we show in a low- RTA
model

(18)

whereas in a low- BGK model we have

(19)

In an RTA model, the dyadic conductivity elements whose
expressions are instead valid for arbitrary values of are

(20)

where

(21)

with , , and

(22)

In a BGK full- model, we have

(23)

where

(24)

and with

(25)

Simpler expressions can be obtained in a polar coordinate
system through the conventional longitudinal and transverse

representation [37]. In particular, in a low- approximation

(26)

(27)

while

(28)

and

(29)

whereas the relevant full- expressions are

(30)

(31)

with

(32)
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for the BGK model and

(33)

(34)

for the RTA model. It should be noted that both and al-
ways depend only on . This indicates that, in the absence of
magnetic bias, graphene is modeled as an isotropic medium, the
dyadic nature of its conductivity being uniquely due to the oc-
currence of spatial dispersion.
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