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Abstract—The surface conductivity of two-dimensional (2-D)
materials and thin conductive films is considered for surface plas-
mon (SP) excitation and propagation. It is shown that an ideal
surface conductivity exists to maximize the SP field at a given
position, based on a tradeoff relating to propagation loss and
near-field excitation amplitude associated with the local density of
photonic states. Dispersionless and Drude dispersion models are
considered, as well as the effect of interband transitions. Simple
formulas are presented to obtain a maximal SP field at a given dis-
tance from a canonical source. Examples are shown for graphene
and thin metal films, and a discussion of the competition between
propagation loss and SP excitation is provided.

Index Terms—Graphene, surface plasmon (SP), thin films.

I. INTRODUCTION

B ECAUSE of their ability to confine light in subwave-
length spaces, surface plasmons (SPs) are of considerable

importance in a variety of areas, including optical sensors, opti-
cal antennas, solar cells, near-field communications, and data
storage [1]. SPs can be confined to a planar-like surface and
propagate along the surface, and are sometimes called surface
plasmon polaritons (SPPs), or they can be nonpropagating and
confined to the surface of metallic particles or curved metal
objects, in which case they are called localized surface plas-
mons (LSPs) [2] or particle plasmons. The main attributes of
both SPPs and LSPs are high electric field amplitudes and sub-
wavelength energy confinement. Although SPPs and LSPs have
many overlapping applications, uses of SPPs often involve their
propagation aspects for communications or sensing [3]–[6], and
many LSP applications center on their small size and station-
ary nature, such as creating localized hot-spots for biological/
medical imaging and cancer treatment [7], [8]. Planar structures
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having propagating SPs are larger than typical LSP structures,
but are generally easier to fabricate and one does not need to
precisely position nanoparticles as is often required for LSP
applications.

Surface plasmons on two-dimensional (2-D) planar materials
such as graphene and MoS2, and on very thin three-dimensional
(3-D) materials such as thin metal layers, doped semiconduc-
tor films, and 2-D electron gasses are of considerable interest
[9]–[15]. In all cases, the surface can be modeled by a surface
conductivity σ (S), and which can be controlled by chemical
doping and, for some materials like graphene and even thin
metals, can be controlled by an external dc electric or magnetic
field bias [16], [17]. Frequency dispersion typically dictates a
desirable frequency range for strong SP propagation. Moreover,
although it is beyond the scope of the present work, one can
engineer artificial surfaces to achieve desirable characteristics
(often analyzed by 2-D homogenization) [18]–[20].

In general, σ is complex valued, with the real part being
associated with loss (absorption) and the imaginary part being
associated with reactive energy storage. For many materials
of interest, there is a Drude component and an interband
component; Im(σ) < 0 for the Drude component is inductive
due to the kinetic energy of charge carriers, whereas for the
interband component Im(σ) > 0 is related to capacitance asso-
ciated with band transitions. Loss is associated with Re(σ)
due to electronic collisions with phonons, impurities, lattice
imperfections, and band transitions.

Given that the value of σ can be controlled by a range of geo-
metrical and electrical parameters, an important question arises
as to the optimal surface characteristics for SP excitation and
propagation. Obviously, we generally want a low-loss structure,
and so we will assume that Im(σ) � Re(σ) to have low sur-
face plasmon absorption, and also that the permittivity of the
material surrounding the surface has low dielectric loss. In this
work, we consider the optimum value of the surface conductiv-
ity of a 2-D surface and thin film for strong SP excitation and
propagation. We consider several different models of increas-
ing complexity, including dispersionless and Drude dispersion
models, as well as the effect of interband transitions, to achieve
desirable SP characteristics.

II. SURFACE PLASMON AND TOTAL FIELDS ON A 2-D
SURFACE

Consider an infinite 2-D material sheet with surface conduc-
tivity σ = σ′ − jσ′′ immersed in a multilayered environment
as depicted in Fig. 1. In each region, the permittivity may
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Fig. 1. Cross-sectional view of 2-D material sheet with surface conductivity σ
immersed in a multilayer environment.

be complex-valued, ε = ε0εr = ε0(ε
′
r − jε′′r ), where the sup-

pressed time variation is ejωt. The electric field in the nth region
is [21]

E(n)(r, ω) =
1

jωεn

∫
G(n)(r, r′, ω) · J (r′) dΩ′ (1)

where Ω is the support of the current and where the dyadic
Green function is

∇×∇×G(n)(r, r
′
, ω)− k2nG

(n)(r, r
′
, ω) = k2nI δ(r− r′)

(2)

and where kn = ω
√
εnμn is the wavenumber in region n (we

consider the special case where the field observation point and
the current reside in the same layer, and all materials are non-
magnetic). Assuming that the sheet is excited by a vertical
Hertzian dipole current at distance y0 above the surface, J(r) =
ŷδ(x)δ(y − y0)δ(z), then only TM modes can be excited (we
assume σ′′ > 0 as discussed below) and the electric field in
Region 1 is [11], [21]

E(1)(r) =
1

8πjωε1

[(
x̂
x

ρ
+ ẑ

z

ρ

)
∫ ∞

−∞
−k2ρ(e

−p1|y−y0| +RNe−p1(y+y0))H
(2)′
0 (kρρ)dkρ

+ ŷ

∫ ∞

−∞

k3ρ
p1

(e−p1|y−y0| +RNe−p1(y+y0))H
(2)
0 (kρρ)dkρ

]

(3)

where kρ is the radial wavenumber, ρ =
√
x2 + z2, pn =√

k2ρ − k2n, and

RN =
NE

ZE
=

A− cosh (p2d) +B− sinh (p2d)

A+ cosh (p2d) +B+ sinh (p2d)
(4)

with

A± = ε2

(
p1p3σ

jω
+ p1ε3 ± ε1p3

)

B± = p2

(
p1p3ε

2
2

p22
± ε1ε3 +

p1ε3σ

jω

)
.

The first terms in each of the Sommerfeld integrals in (3)
represent the primary field due to the source without the 2-D
material sheet (and can be evaluated in closed form), and
the second terms in each integral represent the surface and
dielectric contributions. These can be decomposed as an SP
term (analytically evaluated by the residue of the Sommerfeld

integral), and a branch cut contribution representing the radi-
ation spectra, which can be numerically computed along the
integration path depicted in [12]. That is, E = Eh + Eresidue +
Ebc. Specifically, the electric field in Region 1 due to the
surface plasmon is

E
(1)
residue(y, ρ) =

(kSPρ )2R′
N

4ωε1
e−

√
(kSP

ρ )2−k2
1(y+y0)

⎡
⎣(x̂x

ρ
+ ẑ

z

ρ

)

×H
(2)′
0 (kSPρ ρ)− ŷ

kSPρ H
(2)
0 (kSPρ ρ)√

(kSPρ )2 − k21

⎤
⎦

(5)

where R′
N = NE/(∂ZE/∂kρ) and H

(2)′
0 (α) = ∂H

(2)
0 (α)/

∂α, and where all quantities are evaluated at the SP wavenum-
ber kSPρ obtained from the dispersion equation discussed in
Section III. This SP field is the desired one to maximize. For
simplicity, we consider the vertical component of the electric
field as follows:

E
(1)
y,residue(y, ρ) =

1

jωε1
G

(1)
yy,residue(y, ρ)

= − (kSPρ )3R′
N

4ωε1

e−
√

(kSP
ρ )2−k2

1(y+y0)√
(kSPρ )2 − k21

×H
(2)
0 (kSPρ ρ). (6)

The photonic local density of states (LDOS) [22] projected
along the dipole orientation associated with the SP field is

ρSPyy (y0, k
SP
ρ ) =

6

πω
Im

(
G

(1)
yy,residue (r, r, ω)

)

=
6

πω
Re

⎛
⎝(kSPρ )3R′

N

e−
√

(kSP
ρ )2−k2

12y0

4
√

(kSPρ )2 − k21

× H
(2)
0 (kSPρ ρ → 0)

⎞
⎠ (7)

since the source is located at (0, y0, 0). Using H
(2)
0 (z → 0) =

1− j 2
π

[
ln
(
z→0
2

)
+ · · · ] where the remaining terms are finite

at z = 0, in the lossless case, the coefficient preceding the
Hankel function is real-valued, and the LDOS is finite.
However, it is well known that in a lossy environment the
LDOS diverges due to a breakdown of the dipole approxima-
tion. Various methods of regularizing the Green function for the
lossy case have been proposed, such as averaging over a small
cavity volume containing the emitter, thereby regularizing the
divergent term (i.e., integrating over the exclusion volume in
the depolarizing dyadic contribution to the field [23]). For our
purposes, it is enough to know that

ρSPyy (y0, k
SP
ρ ) ∝ 6

πω
Re

⎛
⎝(kSPρ )3R′

N

e−
√

(kSP
ρ )2−k2

12y0

4
√

(kSPρ )2 − k21

⎞
⎠ (8)

where the proportionality factor is unity for lossless media.
Although the LDOS is often associated with the decay rate of

a quantum emitter, it more generally relates to field concentra-
tion, with higher LDOS associated with strong field values [22].
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Although the LDOS is defined for r = r′, in the following, we
allow the vertical observation point y to be different than the
vertical source point y0 [e.g., replacing 2y0 with y + y0 in (8)],
and refer to this as a generalized LDOS.1 The utility of this is
that, although the LDOS is real-valued and the residue field is
generally complex valued, it allows interpretation of the residue
field as the product of a (generalized) LDOS-related factor
and the Hankel function lateral propagation factor. If we have
y = y0 and lossless media then the residue field is precisely the
product of the LDOS, the Hankel function propagation factor,
and a constant (π/24ε1). Furthermore, for the lossless case lat-
eral propagation loss is not an issue, and maximizing the SP
field is achieved by simply maximizing the generalized LDOS.
For the low-loss cases considered here, the identification of
the Hankel function prefactor as a LDOS retains considerable
merit.

It is also worth noting that for a lossless environment the
power radiated by the dipole can be expressed as [24]

Pr =
|J|2 π
12ε

ρyy (9)

and so maximizing overall power radiated into surface waves in
a lossless environment is equivalent to maximizing the LDOS
associated with surface waves. However, this does not necessar-
ily maximize the SP field amplitude at a general point y �= y0,
for that, one must maximize the generalized LDOS.

In summary, the SP field (6) can be interpreted as the product
of three terms, two of which are associated with the LDOS (an
amplitude term involving R′

N and a vertical decay term that
governs source coupling to the exponential tail of the SP mode),
and a lateral propagation factor given by the Hankel function.
The interplay among these three terms leads to the existence of
an optimal surface conductivity.

III. SP MODAL CHARACTERISTICS

The dispersion equation for the surface plasmon is obtained
from ZE = 0 in (4). For the general case this cannot be solved
in closed form, but for the case of a homogeneous back-
ground, i.e., ε1 = ε2 = ε3 = ε, (4) can be simplified to RN =
σp/(2jωε+ σp) and the dispersion equation can be solved to
yield

kSPρ = k

√
1−

(
2

ση

)2

(10)

which is the (sole) TM surface plasmon wavenumber for a 2-D
surface in a homogeneous background, η =

√
ε/μ.

1For LDOS applications to determine the natural decay rate of a quantum
emitter, we must have y = y0 since the back-reaction of the environment on
the emitter, associated with the self-consistent field, must be evaluated at the
location of the emitter. In the case of a classical dipole source considered here,
this back-reaction has no effect as the dipole is a constant-current source, and so
we can generalize the LDOS concept to allow for different source and observa-
tion vertical locations. Alternatively, we could define the vertical displacement
Δy = y − y0 and lateral displacement Δρ = ρ− ρ0 = ρ and consider that
the residue field is (exactly for lossless media and approximately for low-
loss media) the LDOS multiplied by lateral and vertical propagation factors

H
(2)
0 (kSPρ Δρ) and e

−
√

(kSP
ρ )2−k2

1Δy
that account for displacement from the

source.

Let k = k0
√

ε′r − jε′′r , η = η0/
√
ε′r − jε′′r , where k0 and η0

are the vacuum values, and assume σ′′ > 0 (to have an inductive
surface, in which case only TM plasmons can propagate [10],
[11]), σ′′ � σ′ to have low surface plasmon loss and ε′′r � ε′r
to have low dielectric loss. Then, from (10),

kSPρ /k0 ≈ 2

σ′′η0

(
ε′r − j

(
ε′′r +

ε′rσ
′

σ′′

))
. (11)

The real-part of kSPρ is related to the phase velocity of the sur-
face plasmon, vp = ω/Re(kSPρ ) [the ratio Re(kSPρ /k0) defines
the slow-wave factor], and the imaginary part of kSPρ is asso-
ciated with attenuation of the surface plasmon along the
propagation direction ρ.

The propagation constant along the vertical direction can be

written as p =
√
k2ρ − k2 = 2jk/(ση) such that, from e−py , a

vertical field confinement factor (1/e) can be defined as

ζ/λ0 =
1

Re(p)λ0
≈ η0σ

′′

4πε′r
(12)

where λ0 is the wavelength in free space. For good confine-
ment, we need ζ/λ0 � 1. It is obvious that small σ′′ leads to a
large slow-wave factor and tight field confinement, but also to
large propagation loss.

IV. OPTIMAL SURFACE CHARACTERISTICS

FOR MAXIMUM SP FIELD AMPLITUDE

In the context of this work, we assume that surface plasmons
have four desirable characteristics: the SP mode should 1) be
slow [Re(kSPρ )/k0 � 1] and therefore nonradiative; 2) have
tight energy confinement to the surface; 3) have low propa-
gation loss; and 4) have a strong excitation amplitude. The
first three criteria are solely based on the natural modal SP
wavenumber (i.e., the mode of the infinite material surface and
dielectric environment), whereas the fourth criteria is affected
by both propagation associated with the modal wavenumber
and with the generalized LDOS. Moreover, the first two cri-
teria contradict the third one (and the fourth criteria is related in
a nontrivial manner to the first three criteria). Maximizing the
SP field can be seen to be a balance between maximizing the
LDOS seen by the source, and loss associated with the lateral
propagation factor.

Using the large-argument approximation of the Hankel func-
tion, (6) can be simplified to

|Ey,residue| ≈ C

∣∣∣∣∣ (k
SP
ρ )

3
2

σ
e
− 2k0ε′r(y+y0)

η0σ′′

∣∣∣∣∣
∣∣∣eIm(kSP

ρ )ρ
∣∣∣ (13)

where C is a coefficient independent of σ. The first term
[(kSPρ )

3
2 /σ] comes from the amplitude factor R′

N , and the expo-

nential term eIm(kSP
ρ )ρ arises from the Hankel function, the

propagation factor of the surface plasmon. As σ′′ decreases
the first term on the right-hand side of (13) increases (consis-
tent with the first two criteria). However, the vertical decay and
lateral propagation factor terms will decrease sharply for suf-
ficiently small σ′′, placing a limit of how small σ′′ can be,
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consistent with the third criteria concerning propagation loss.
By setting ∂ |Ey,residue| /∂σ′′ = 0 in (13), the optimal σ′′ for
the maximum surface plasmon amplitude can be obtained. In
the following, we consider several different material models.
The appendix presents a different optimization based on modal
properties (but ignores excitation).

A. Dispersionless Model

In this section, we consider a generic 2-D material and the
effect of σ (particularly σ′′) on the excitation and propagation
characteristics of surface plasmons. We assume a dispersionless
model to clarify the role of various parameters on SP excitation
and propagation, and in the next section, we consider Drude
dispersive models.

For dispersionless materials, σ is independent of fre-
quency, and σ′′ and σ′ are also assumed independent on
each other (of course, the Kramers–Kronig relations link these
two quantities for a realistic causal material). By setting
∂|Ey,residue|/∂σ′′ = 0 in (13), we obtain

σ′′
opt ≈

2k0(ε
′′
rρ+ ε′rỹ) + 2

√
k20(ε

′′
rρ+ ε′rỹ)2 + 10k0η0ε′rσ′ρ

5η0
(14)

where ỹ = y + y0.
Equation (14) provides the optimal value of σ′′ to maximize

the field at the observation point (for a given fixed value of
σ′), and results in a certain amount of propagation loss—it is
interesting to point out that because of the competing factors
of vertical mode confinement, propagation loss, and excitation
amplitude/LDOS, altering σ′′ to, say, reduce field confinement
and decrease the modal propagation loss below the value asso-
ciated with σ′′

opt actually decreases the amplitude of the electric
field at the observation point. This is partly due to the verti-
cal decay factor in the LDOS, but even for y = y0 = 0 there is
competition between small σ′′ increasing the R′

N term in the
LDOS and lateral propagation loss.

In all of the following results, we assume the dipole source is
located on the surface (y0 = 0) and the observation point at y =
λ0/100. We first consider the case of a thin conductive sheet in
a homogeneous environment with ε′r = 1 and ε′′r = 10−3.

Fig. 2 shows the normalized phase velocity, confinement fac-
tor, and power attenuation of the surface plasmon along the
propagation (ρ) direction as a function of σ′′. As σ′′ decreases
for a fixed σ′ = 10−6 S, the phase velocity is at first constant
and then decreases quickly, while the power attenuation is at
first constant and then increases. Mode confinement becomes
tighter as σ′′ decreases. The level at which the attenuation curve
settles for large σ′′ depends on ε′′r , with lower ε′′r leading to
lower attenuation (the effect of ε′′ on phase velocity and mode
confinement is negligible). The knee of the curve where atten-
uation becomes constant depends on ε′r and σ′. It can be seen
that for small lateral distance ρ (close to the source), conditions
for a maximal SP field are such that modal attenuation is rela-
tively large, and the wave is slow and has good confinement. To
achieve a maximal SP field for a fixed vertical position y, as the
lateral observation point ρ moves further away from the source
attenuation needs to be reduced—here, via a larger value of σ′′

Fig. 2. Normalized phase velocity vp/c0 (c0 is the speed of light in vacuum),
field confinement factor ζ/λ0, and power attenuation AdB/μm versus σ′′, for
a dispersionless model; σ′ = 10−6 S, f = 10 THz. The dot, short dot, and
dash-dot-dot vertical lines represent the optimal σ′′ from (14) for ρ = λ0, ρ =
5λ0, and ρ = 15λ0, respectively.

Fig. 3. Normalized electric fields versus σ′′ for a dispersionless model. The
vertical line represents the optimal σ′′ from (14). σ′ = 10−6 S, f = 10 THz,
ρ = λ0.

that results in a less well confined mode. However, while very
large values of σ′′ minimize the lateral attenuation as shown in
Fig. 2, if the value of σ′′ is greater than that specified by (14)
the SP field amplitude at the observation point (ρ, y) will not be
maximal.

The normalized electric fields for ρ = λ0 are shown in Fig. 3
where Eresidue, Ebc, Etotal, and Eh are the y components of
the residue (SP) field, branch cut (continuous spectrum) field,
total field, and the direct source-excited field without the 2-
D material sheet, respectively (Etotal = Eh + Eresidue + Ebc).
From Fig. 3, one can observe that when σ′′ decreases from 1
to 10−5 S, the total electric field will be dominated by different
terms. For large σ′′ value, i.e., σ′′ > 10−1 S, the branch cut field
is quite close to the direct source-excited field, and both of them
equally contribute to the total field, while the residue field is rel-
atively small. For medium σ′′, i.e., σ′′∈ [8× 10−5, 10−2] S, a
strong residue field occurs, which dominates the total field. For
small σ′′, i.e., σ′′∈ (0, 6× 10−5) S, the residue field decreases
rapidly, and the direct source-excited field dominates the total
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Fig. 4. Normalized surface plasmon electric field versus normalized ρ for
f = 10 THz, and σ′ = 10−6 S for three different σ′′ values: σ′′

a = 1.52×
10−4 S, optimal for ρ = 0.1λ0, σ′′

b = 2.52× 10−4 S, optimal for ρ = λ0,
and σ′′

c = 6.67× 10−4 S, optimal for ρ = 10λ0.

field (since we assume σ′ � σ′′, as σ′′ decreases toward zero
the 2-D material essentially vanishes).

From Fig. 3, it is obvious that the value from (14), σ′′
opt =

0.00025 S, maximizes the electric field. The associated atten-
uation is A ≈ 0.19 dB/μm and ζ/λ0 ≈ 0.0076. As shown in
Fig. 2, as the observation point (ρ) increases, σ′′

opt increases,
reducing attenuation. However, the observation point would
need to be approximately ρ ≈ 600λ0 for σ′′

opt to reach the point
of minimum modal attenuation (σ′′ ≈ 0.01 S).

Moreover, the effect of the source and observation point posi-
tions above the surface is important. As ỹ in (14) increases, the
value of σ′′

opt increases, decreasing field confinement. Clearly,
this is related to the vertical position of the source and/or the
observation point above the graphene—for a given position the
field maximum is associated with the value of σ′′ at which the
field couples strongly to the exponential tail of the SP mode.

Given the position dependance of (14), the SP field versus ρ
for different σ′′ values is of interest. Fig. 4 shows the SP field
for σ′′ optimized at three different radial distances: ρ = 0.1λ0

(σ′′
a = 1.52× 10−4 S), ρ = λ0 (σ′′

b = 2.52× 10−4 S), and ρ =
10λ0 (σ′′

c = 6.67× 10−4 S). The magnitude of the field is more
sensitive to ρ for σ′′ optimized for smaller ρ, whereas the field
is more uniform when optimized for a larger ρ.

B. Drude Dispersion Model

The dispersionless model is not realistic except as an approx-
imation over a fairly narrow frequency range. In this section,
we consider a material with Drude dispersion having 2-D
conductivity of the form

σ(ω) =
σ0

1 + jωτ
(15)

where τ is the relaxation time (ν = 1/τ is the relaxation fre-
quency) and σ0 is the static 2-D conductivity (S). For thin
films, σ0 = σ3-Dt, where σ3-D is the usual 3-D conductivity,
σ3-D = e2nτ/m, where e is charge, n is the carrier number
density, m is the charge mass, and t is the film thickness. For

Fig. 5. Normalized phase velocity vp/c0, field confinement factor ζ/λ0, and
power attenuation AdB/μm versus σ0 for general Drude dispersion model with
t = 10 nm, τ = 0.2 ps, f = 40 THz. The dot, short dot, and dash-dot-dot
vertical lines represent the optimal σ0 from (16) for ρ = λ0, ρ = 5λ0, and
ρ = 15λ0, respectively.

ωτ � 1, σ′ � σ′′ and the sheet is relatively lossy, and for
ωτ > 1, σ′′ > σ′ and the sheet has relatively low loss. Although
σ′′/σ′ = ωτ increases linearly as frequency increases, both σ′

and σ′′ decrease with increasing frequency above ωτ = 1, and
so to have σ′′ � σ′ as considered in the analysis, and to obtain
a sufficiently large value of σ′′, one needs to have ωτ > 1 but
not ωτ � 1.

The Drude model is very applicable to 2-D surfaces and
thin conductive films (below the range of interband transitions,
otherwise augmented by interband transitions as described in
the next section), e.g., Drude materials include graphene [12],
metal films [25], boron-doped diamond films [26], Sb-doped
SnO2 thin films [27], and Al-doped ZnO thin films [28], to
name just a few. In general, any sufficiently conductive material
(i.e., with a sufficient number density of free electrons) will be
plasma-like and will often be well-approximated by the Drude
model.

Differing from the dispersionless model, σ′ and σ′′ are
related to each other in the Drude model, i.e., σ′ = σ′′/(ωτ),
and where it can be noted that the Drude model satisfies
causality and obeys the Kramers–Kronig relations. Setting
∂ |Ey,residue| /∂σ0 = 0, we obtain

σ0,opt ≈ 4k0ε
′
r(1 + (ωτ)2)

5η0ωτ

[(
ε′′r
ε′r

+
1

ωτ

)
ρ+ ỹ

]
. (16)

In general, one can adjust σ0 (e.g., by adjusting the number
density of free carriers n) to obtain a maximum SP field. In
the following examples, we assume film thickness t = 10 nm,
relaxation time τ = 0.2 ps, and frequency 40 THz.

Fig. 5 shows the normalized phase velocity, confinement fac-
tor, and power attenuation of the surface plasmon along the
propagation (ρ) direction as a function of σ0, and Fig. 6 shows
the corresponding electric field as a function of σ0. The optimal
value of σ0 from (16) is also shown.

Fig. 7 shows the optimal σ0 predicted by (16), and the value
determined (extracted) from the numerical field curves for a
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Fig. 6. Normalized electric fields versus σ0 for general Drude dispersion
model with t = 10 nm, τ = 0.2 ps, f = 40 THz, ρ = λ0. The vertical line
represents the optimal σ0 from (16).

Fig. 7. Maximum normalized electric fields, optimal σ0 versus film thickness
predicted by (16) and extracted from the numerical field computation for a
general Drude dispersion model. τ = 0.2 ps, f = 40 THz, ρ = λ0.

thin film having different thicknesses, along with the maximum
normalized residue field for each thickness when changing σ0.
In order to extract the optimal σ0 for each thickness from
numerical results, we computed the field values varying σ0 then
found the maximum amplitude of field and recorded the cor-
responding σ0 as the optimal σ0. One can see that the simple
formula (16) accurately predicts the optimal conductivity in the
Drude model.

As a final example, we now consider one of the best-known
examples of a 2-D material, the Drude model of graphene [12].
A graphene sheet can be considered as a two-sided impedance
surface, and in the intraband approximation the surface conduc-
tivity is [11], [12]

σintra
0 =

e2kBTτ

π�2

[
μc

kBT
+ 2 ln

(
e

−μc
kBT + 1

)]
(17)

where � = h/2π is the reduced Planck’s constant, kB is the
Boltzmann’s constant, T is the temperature, and μc is the chem-
ical potential. At sufficiently low frequencies, or for heavily-
doped/strongly biased surfaces, graphene is well-modeled by
the Drude conductivity. The conductivity of graphene can be
adjusted by changing the chemical potential, and the problem

Fig. 8. Normalized phase velocity vp/c0, field confinement factor ζ/λ0, and
power attenuation AdB/μm versus μc for Drude (intraband) graphene model
with τ = 0.35 ps and f = 40 THz. The dot, short dot, and dash-dot-dot ver-
tical lines represent the optimal μc from (16) and (17) for ρ = 0.5λ0, ρ = λ0,
and ρ = 2λ0, respectively.

Fig. 9. Normalized electric fields versus μc for Drude (intraband) graphene
model. The vertical line represents the optimal μc from the optimal σ0 by (16)
and (17). τ = 0.35 ps, f = 40 THz, ρ = λ0.

of determining the optimal σ0 can be cast in terms of finding the
optimal value of μc. We assume room temperature T = 300 K
and a relaxation time of graphene τ = 0.35 ps [29].

Fig. 8 shows the normalized phase velocity, confinement fac-
tor, and power attenuation of the surface plasmon along the
propagation (ρ) direction as a function of μc. Also shown is
the optimal value of μc arising from σ0,opt from (16) for sev-
eral different positions. As expected, for larger values of ρ the
optimal value of chemical potential results in lower attenua-
tion. Fig. 9 shows the corresponding electric field. For very low
values of chemical potential, the residue and branch cut fields
are negligible, and the total field Etotal reduces to the direct
source-excited field Eh.

Fig. 10 shows a comparison between the optimal μc pre-
dicted by the simple formula (16) and the value determined
(extracted) by numerically computing the field, along with the
maximum normalized residue field for each frequency when
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Fig. 10. Maximum normalized electric fields, predicted, and extracted optimal
μc at different frequencies for Drude (intraband) graphene model ρ = λ0.

changing μc. One can see that the predicted optimal values
agree well with the full numerical results.

C. Effects Beyond the Drude Model: Interband Transitions

The Drude model is sufficient in many situations of interest,
although at sufficiently high frequencies interband transitions
can play an important role in the optical response of materials.
For example, for graphene at frequencies where �ω > 2μc, the
full graphene conductivity is

σ = σintra − je2

π�2
(ω − jΓ)

∫ ∞

0

fd (−ξ)− fd (ξ)

(ω − jΓ)
2 − 4 (ξ/�)

2 dξ

(18)

where Γ = 1/τ ′ is the interband scattering rate (τ ′ =
0.0658 ps is assumed in this work), ξ is energy, and

fd(ξ) =
[
e(ξ−μc)/(kBT ) + 1

]−1
is the Fermi–Dirac distribu-

tion. The second term of (18) is due to interband contributions.
Importantly, σ′′

intra > 0, yielding an inductive surface, whereas
σ′′
inter < 0, resulting in a capacitive surface. For metals, often

interband effects are incorporated using measured data [30], or
curve-fitted models [25]. In the following, we briefly consider
the effect of interband transitions on optimum SP excitation.

Fig. 11 shows comparison of the maximum normalized elec-
tric fields and optimal μc for the Drude graphene model (only
intraband) and the full graphene model (with the addition of
the interband conductivity). The effect of the interband con-
ductivity is negligible at frequencies of several THzs but more
pronounced at higher frequencies, as expected. The inclusion
of the interband contribution decreases the maximum electric
field amplitude in high frequencies, and larger μc is needed to
generate this SP field.

As another example, we consider a thin gold sheet whose
surface conductivity is σ = σ3-Dt. When the thickness of metal
films is near of below the electron mean free path (typically,
about 40–50 nm at room temperature), various effects such as
the presence of impurities, grain-boundary scattering, and sur-
face scattering contribute to decreasing the conductivity of a
metal film compared to a bulk sample, i.e., σ3-D = σ3-D(t)
[31]–[34]. A typical effect is to reduce the conductivity by a
factor of 2–10, with the reduction factor depending on various

Fig. 11. Comparison of the maximum normalized electric fields and optimal μc

for graphene considering the Drude (intraband) model and the more complete
(intraband plus interband) model.

Fig. 12. Comparison of the maximum normalized electric fields and optimal
thickness for gold sheet considering the Drude (intraband) model and the more
complete (intraband plus interband) model.

parameters associated with the different scattering mechanisms.
Here, for simplicity, we use a constant scaling factor α multi-
plying the bulk conductivity, i.e., σfilm

3-D = ασbulk
3-D , with a value

α = 0.2.
For gold including interband effects, we use σ3-D =

αjωε0 [εAu (ω)− 1], where εAu (ω) can be calculated from
the curve-fit formulas in [25]. Fig. 12 shows the maximum
SP field and optimal thickness at different frequencies, cal-
culated from the full model (including interband transitions)
and from the Drude model. One can see that interband tran-
sitions are not important in the low frequency range between
100 and 400 THz, but have strong effects at higher frequencies,
as expected.

D. Effect of Spatial Dispersion

Since we consider maximizing the SP field, it is important
to consider the possible role that spatial dispersion may play
since the surface plasmon may be quite slow [35]. Defining
Re(kSP

ρ )/k0 = c0/vp = a, it is shown in [35] that spatial dis-
persion may be important when a > 100 but less important if
a < 100. From Fig. 8, we can see that the normalized phase
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Fig. 13. Normalized electric fields versus σ0/t for different substrate thick-
nesses, d. f = 40˜THz, τ = 0.2 ps, t = 10 nm, ρ = λ0.

Fig. 14. Normalized phase velocity vp/c0, field confinement factor ζ/λ0, and
power attenuation AdB/μm versus d for substrate-supported Drude conductive
sheet. f = 40 THz, σ0/t = 5× 106 S/m, τ = 0.2 ps, t = 10 nm, ρ = λ0.

velocity vp/c0 is larger than 0.01 at the optimal chemical poten-
tials where the strongest SP wave can be obtained, i.e., a < 100
is satisfied. Therefore, the spatial dispersion does not have a
significant effect on the obtained results in this work.

We validated this by direct calculation. Inclusion of spa-
tial dispersion leads to an anisotropic conductivity tensor σα,β ,
α, β = x, z. For this case, we calculated the fields using the spa-
tially dispersive conductivity tensor developed in [36] and the
Green’s function for anisotropic graphene [35]. The results with
and without spatial dispersion were virtually identical (results
not shown), and so we conclude that spatial dispersion effects
are not important in the results here.

E. Effect of a Substrate

Although 2-D materials can be suspended across gaps in
materials [37], often a substrate support is needed for practical
applications. Here, the effects of a substrate on SP propagation
characteristics are investigated. Referring to Fig. 1, we assume
the substrate is SiO2 with a thickness of d, and ε1 = ε3 = ε0,
ε2 = 4ε0. The conductive sheet is assumed to be a general
Drude dispersive material with thickness of t = 10 nm and
relaxation time τ = 0.2 ps. Figs. 13 and 14 show the effects of

a finite substrate on SP excitation and propagation. Increasing
the thickness of the substrate will decrease the maximal field
amplitude (at a given frequency), and a larger dc conductiv-
ity will be needed to obtain the field maximum. This tendency
saturates for sufficiently-thick substrates (here, above approxi-
mately 100 nm) due to the confinement of the SP field. Fig. 14
shows that for a fixed dc conductivity σ0, increasing the thick-
ness of the substrate will lead to larger power attenuation (due
to increasing field confinement, with a commensurate decrease
in SP phase velocity).

V. CONCLUSION

The optimal surface conductivity for strong surface plasmon
excitation and propagation on 2-D materials and thin films has
been considered. We have shown that an optimum surface con-
ductivity exists to maximize the SP field at a given position, and
discussed the inherent tradeoff between propagation loss and
near-field excitation amplitude/LDOS. Several general mate-
rials models (dispersionless, Drude dispersion, and interband
transition) have been considered, and simple formulas were pre-
sented to obtain a maximal SP field at a given distance from a
canonical source. Graphene and thin metal film examples were
provided.

APPENDIX

OPTIMAL SURFACE CHARACTERISTICS-BASED SOLELY

ON MODAL SP WAVENUMBER

The main text describes optimization of the surface con-
ductivity based on maximizing the SP electric field. Here, we
present a different analysis based only on the modal wavenum-
ber, exhibiting the tradeoff between modal field confinement
and loss. For simplicity, we consider the dispersionless case.

Given (11) and (12), we can now consider the first three
criteria for desirable SP characteristics based on the modal
wavenumber. To satisfy the first two criteria (slow, nonradia-
tive mode with tight energy confinement), we need σ′′/ε′r � 1.
However, to have low propagation loss, from (11) we need
σ′′/ε′′r large.2

Considering the competing interests of criteria 1–3, one
method of determining an optimal surface is to set the max-
imum tolerable loss of the mode and find the smallest value
of σ′′ that does not violate the loss criterion. This will result
in the mode with the best possible slow-wave factor and mode
confinement for a given level of loss.

2As an aside, it is interesting to note that for a lossless surrounding medium
(ε′′r = 0) then the smaller σ′′ becomes the slower the mode and the better the
energy confinement to the surface. Maintaining σ′ � σ′′, as the material van-
ishes (σ′′ → 0), the mode becomes infinity slow and confined. However, in
this case, one needs to be infinitesimally close to the surface to measure any-
thing. More practically, there will always be some material loss in the dielectric
(also generally σ′ �= 0). For a fixed ε′′r � ε′r , as σ′′ becomes small, the loss
becomes very large

Im (kρ/k0) ≈ 2

σ′′η0

(
ε′′r +

ε′rσ′

σ′′

)
(19)

and so, were it even possible, the limit σ′′ → 0 is undesirable from a loss
perspective.
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For radial propagation along the surface and assuming

kρρ � 1, H(2)
0 (kρρ) ≈

√
2

πkρρ
e−j(kρρ−π

4 ), and loss is asso-

ciated with e−jkρρ ∝ e−Im(kρ)ρ, and AdB/m = 8.686Im (kρ)
is attenuation in dB/m. Assuming that a value of D0 dB/m is
tolerable, then Im (kρ) ≤ D0/8.686 such that

σ′′
opt1 ≥ 0.29ε′′

2D0λ0
+

1

2

√(
0.29ε′′

D0λ0

)2

+ 4
0.29

D0λ0
ε′rσ′ (20)

as the optimal value of σ′′ for a given level of tolerable loss (i.e.,
resulting in the tightest field confinement and largest slow-wave
factor for a given loss value D0).

Comparing (20) and (14), we see that (20) requires speci-
fication of a maximum tolerable attenuation (D0), and results
in a surface having the largest slow-wave factor and tightest
field confinement for a given level of attenuation, whereas (14)
requires specification of the observation position (ρ) and results
in a surface that maximizes the SP electric field at the given
point. The two expressions (20) and (14) are internally con-
sistent for a given loss value. For example, for ρ = λ0, y =
λ0/100, ε′r = 1, ε′′r = 0.001, and σ′ = 10−6, at f = 10 THz,
σ′′
opt = 0.00025, leading to D0 ≈ 0.19 dB/µm from (19) and

ζ/λ0 ≈ 0.0076 from (12). Setting D0 = 0.19 dB/µm, σ′′
opt1 =

0.00025 = σ′′
opt.
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