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Abstract—The accurate electromagnetic analysis of artificial pe-
riodic surfaces formed as planar layers with complicated periodic
metallization patterns, having a grid period much smaller than the
effective wavelength (densely periodic), is important for the design
and analysis of a variety of electromagnetic structures. However,
full-wave modeling can be extremely time-consuming and compu-
tationally expensive, especially for aperiodic sources in close prox-
imity to periodic surfaces. In this paper, we describe approximate
homogenized models for a Green’s function that treats planar pat-
terned screens (grids) as quasi-dynamic homogenized impedance
surfaces and dielectric layers in a fully dynamic manner. The re-
sulting Green’s functions are only slightly more complicated than
those for dielectric layers without metallization and can be numer-
ically computed using standard methods for layered media. We re-
strict attention to line sources and compare numerical results from
this method with those from a full-wave array scanning method,
which is more complex analytically and much more demanding to
evaluate numerically. Very good agreement is found between the
two methods except for source and/or field points extremely close
to the metallization layer, confirming the accuracy of the homoge-
nized representations of periodic surfaces for near-field sources.

Index Terms—Array scanning method (ASM), electromagnetic
analysis, Green’s functions, high-impedance surfaces, nonhomoge-
nous media, periodic structures.

I. INTRODUCTION

I N RECENT years, there has being a growing interest in
the analysis and development of densely periodic artificial

impedance surfaces (with the grid period much smaller than
the effective wavelength) due to their broad applications in the
emerging areas of metamaterials. In particular, high-impedance
surfaces (HISs), originally proposed by Sievenpiper as mush-
room-type periodic structures formed by a 2-D square lattice of
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nonresonant patches with grounding vias [1], have been used
as artificial high-impedance textured substrates for low-profile
antennas [2]. Other designs of HIS structures utilize subwave-
length periodic arrays of frequency-selective surface (FSS)
elements of different shapes without vias printed on a thin
grounded dielectric slab. This includes patch arrays [3]–[5],
printed dipole/slot arrays [6], [7], dipole/slot arrays of dif-
ferent resonant length of FSS elements in the unit cell [8],
[9], and complicated configurations of FSS elements [10],
among others. Other applications of HIS structures and, in
general, artificial periodic impedance surfaces include thin
absorbers [11]–[13], planar tunable reflect-arrays [14], [15],
TEM waveguides [16], [17], partially reflecting surfaces (PRSs)
for high-directivity/gain antennas [18]–[22], and leaky-wave
antennas with broadside radiation [23], [24].

An approach for the accurate and rapid analysis of
plane-wave interaction with densely periodic planar metal-
lization patterns used in HIS structures has been proposed in
[25]–[28], and the analytical model for the analysis of sur-
face-wave and leaky-wave propagation has been presented in
[29]. The dynamic model is based on the full-wave solution
of a plane-wave scattering problem incorporating an averaged
impedance boundary condition and enables one to accurately
capture the physics of plane-wave interaction with complicated
metallization patterns by modeling a single unit cell of a peri-
odic grid and considering a single Floquet propagating mode.
It is based on the homogenization of grid impedance in terms
of effective circuit parameters (inductance and capacitance).
It should be noted that the analytical expressions for the grid
impedance take into account frequency dispersion and spatial
dispersion (the latter corresponding to the dependence of the
grid parameters on the incidence angle), and they have been
obtained by considering the main contribution of all elements
of the infinite grid to the local field [26].

However, the exact analysis of the interaction of an aperiodic
fundamental near-field source (a line or point source) with pe-
riodic metallization patterns requires considerable effort. The
array-scanning method (ASM) is an efficient technique for the
full-wave analysis of the planar periodic artificial impedance
surfaces described above [30], [31], although the formulation is
somewhat complex and numerically demanding. In the special
case when the metallization is densely periodic, one can hope
to use a homogenization theory to simplify the formulation. In
fact, this is a regime that is particularly demanding for full-wave
methods due to the required dense discretization of the struc-
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Fig. 1. Line source over a layered medium, with each material interface char-
acterized by a grid impedance � , representing a periodic metallization at the
interface.

ture. In this connection, investigations on the limits of validity
of classical homogeneous models for the field description in 2-D
problems involving a line source and structures periodic in one
direction have been previously carried out in [32]–[35].

In this study, we investigate the accuracy of homogenized rep-
resentations of planar periodic screens, initially proposed and
validated for plane-wave incidence (see, for example, [28]) for
the calculation of the field excited by an aperiodic line source.
In particular, quasi-analytical homogenized Green’s function
models are presented for the analysis of planar metallization
patterns densely periodic in two directions, printed on dielec-
tric substrates. The homogenization analysis makes use of ei-
ther a single impedance surface composed of the parallel com-
bination of grid and dielectric slab impedances [26] or a two-
sided impedance boundary condition for the metallization in the
boundary-value problem for the grounded dielectric slab [29].
These two methods lead to the same result, which is compared
with results obtained using a full-wave ASM. Very good agree-
ment is found for the simple quasi-analytic approach presented
here, except for source and field points approaching extremely
closely to the metallization.

We restrict the source to be a line source, which decouples
the problem into transverse magnetic (TM) and transverse elec-
tric (TE) parts. Since a general point source excites both TE
and TM potentials, one requires a spectrally anisotropic dyadic
grid impedance (represented by TE and TM parts along with
cross-coupling terms); the extension to a point source will be
considered in future work. In the following, the suppressed time
dependence is .

II. LINE-SOURCE GREEN’S FUNCTIONS:
HOMOGENIZED MODELS

A. General Formulation

Consider the geometry depicted in Fig. 1, showing a line
source over a layered medium. Each material interface may have
a grid impedance for the th interface.

Following the method of obtaining the Green’s dyadics in
[36], adapted here to the incorporation of impedance surfaces,
the fields in the region of space have the forms [37], [38]

(1)

(2)

where and are the electric and magnetic
Hertzian potentials associated with electric and magnetic cur-
rents , respectively. Each can be written as [36]

(3)

where , , and , are the direct and
scattered dyadic Green’s functions for the Hertzian potentials.
The potential is due to the primary wave, incident from the
source in a homogeneous medium characterized by , and

is the scattered potential (in this case, reflected potential) that
accounts for the layered medium. For source and field points in
arbitrary layers, the above formulation is easily generalized.

For a 2-D infinite electric line source

(4)

we have

(5)

where , , and the spectral
coefficient is associated with potential (a -polarized
electric line source creates a field). Here, the first term is
associated with the 2-D principal scalar Green’s function

(6)

and the second term is the scattered potential. The latter is ob-
tained by enforcing the appropriate boundary conditions at each
interface

(7)

where the superscripts indicate a position infinitesimally above
and below the interface, and where (A/m) is an electric sur-
face current on the boundary

(8)

The units of the grid impedance are ohms.
For a magnetic line source

(9)
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Fig. 2. Original problem (for the special case of an array of metal patches) and
the homogenized problem represented as a single one-sided impedance surface
� (with no fields beyond the surface).

and, considering the magnetic Hertzian potential, we obtain

(10)

The spectral coefficient in (10) is associated with
potential (a -polarized magnetic line source creates a
field). The coefficients depend on the layered medium and
will be presented in Section II-B.

B. Green’s Function Coefficients

Here, two analytical methods for developing Green’s function
coefficients for the analysis of densely periodic metalliza-
tions in layered media are described. In both cases, we assume
a periodic metallization layer on a grounded dielectric slab, but
the method is easily generalized to multiple layers. In the first
model, a single impedance surface is obtained in the spectral
domain as parallel connection of grid impedance of homoge-
nized metallization and an input impedance for the grounded
dielectric slab. The second model is based on the implementa-
tion of a two-sided impedance boundary condition for the ho-
mogenized metallization in the boundary-value problem for a
grounded dielectric slab. Mathematically, the two methods are
equivalent. The first method has the advantage that it provides
the simplest formulation, however, it is somewhat cumbersome
to find the fields in the dielectric (since the grounded dielec-
tric has been subsumed into an input impedance). On the other
hand, using the second method it is very easy to directly deter-
mine the fields in the dielectric using equations similar to (5)
and (10) (but omitted due to space limitations).

1) Method I: Single Impedance Interface: Fig. 2 shows
the original problem (for the special case of an array of metal
patches), and the homogenized problem represented as a single
one-sided surface impedance sheet .

The surface impedance in the spectral domain is obtained as
parallel combination of grid impedance that represents a ho-
mogenized planar periodic metallization pattern (grid) and the
input impedance of the grounded dielectric slab,

(11)

Fig. 3. Original problem (for the special case of an array of metal patches)
and homogenized problem where the periodic metallization is replaced by an
homogenized grid with impedance � , which now lies on top of a grounded
slab.

where is the wavenumber transverse to the line source in the
plane of the grid. For a grounded slab having thickness and
characterized by , the dielectric impedances for
and waves are [26]

(12)

(13)

where . Grid impedances for various metalliza-
tions (strips, patches, and Jerusalem crosses) are provided in the
appendix (assuming for simplicity nonmagnetic media).

The scattered potential is obtained by enforcing the boundary
condition at as

(14)

where is given by (11), leading to the coefficients

(15)

2) Method II: Two-Sided Impedance Surface in Layered
Medium: In this method, we again assume that the peri-
odic metallization is replaced by an homogenized grid with
impedance (the same as in Method I), which now lies on
top of a grounded slab, as shown in Fig. 3.

In this case, the boundary conditions are

(16)

at , and at (at the ground plane).
Thus, rather than using the slab impedance , we solve the
boundary-value problem of an impedance surface in a layered
medium. This leads to the spectral coefficients

(17)

(18)
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For observation points in the half-space as considered
above, .

III. HOMOGENIZED MODEL AND ASM

Some general considerations on the accuracy of the above-de-
scribed homogenized model and a short description of the rig-
orous full-wave approach (based on the ASM) adopted here for
comparison and validation purposes are provided in this section.

A. Accuracy of the Homogenized Model for Aperiodic Line
Sources

Qualitative insight into the validity of homogenized represen-
tations for the description of the field excited by an aperiodic
line source can be gained by simple considerations of adimen-
sional ratios between the characteristic lengths involved in the
problem, i.e., the spatial periods , , the free-space wave-
length , and the distances of the source plane and the
observation plane from the periodic grid.

For a homogenized representation of a periodic grid in terms
of a surface impedance to be valid it is required that: 1) the
incident field produced by the line source, which is independent
of the -coordinate, varies little over one spatial period in the

-direction and 2) the evanescent field scattered by the screen is
negligible at the observation point.

Considering the plane-wave spectrum representation (6) of
the incident field, evaluated on the plane of a densely periodic
grid , condition 1) above is certainly satisfied by the plane
waves in the visible part of the spectrum , since

implies . On the other hand, from the term
in (6), we see that the spectrum in the evanescent

region decays (at least) exponentially as a function
of ; hence, it can be neglected for , where is a
suitable constant, i.e., for . By
requiring and taking into account that ,
a lower bound for is obtained in the form .
From our numerical experiments, we have found that a sound
choice for is , resulting in the lower bound .

Assuming that the latter condition is satisfied, for each plane
wave in the spectrum of the incident field, the field scattered by
the grid admits a Floquet representation in which all the higher-
order space harmonics are evanescent. Condition 2) above can
then be enforced by requiring that the first higher order space
harmonic (i.e., the one with the smallest attenuation constant in
the -direction) has a negligible amplitude at the observation
point. For a densely periodic screen and for each plane wave in
the spectrum of the incident field, the scattered field has only
one propagating space harmonic; furthermore, the attenuation
constant of the first higher order evanescent space harmonic
can be approximated as , where .
Condition 2) requires that , where again is a
suitable constant; this sets a lower bound for in the form

. The constant depends on the specific geom-
etry of the periodic screen inside the unit cell, since this affects
the excitation amplitude of the higher order space harmonics.
It is very difficult to determine analytically such a dependence;
however, from our numerical experiments, it turns out that, by
letting , the homogenized model gives good results;
this results in the lower bound . It is to be noted that,

while generally valid, this criterion may result in an unduly re-
strictive condition for specific grid geometries; the case of metal
strips parallel to the line source is one example, as illustrated in
Section IV.

In conclusion, we stress that the above-discussed lower
bounds for and provide only sufficient conditions for the
accuracy of homogenized models in representing the exact,
microscopic field. They have been obtained empirically from
the analysis of a number of specific grids and their validity will
be illustrated in Section IV on selected structures. As a final
remark, we note that the average of the microscopic field over
one period (i.e., by definition, the macroscopic field) is usually
very well represented by the homogenized models considered
here, hence the agreement between homogenized and averaged
exact fields can be very good also when the above-discussed
lower bounds are not satisfied.

B. Full-Wave ASM Method

A full-wave ASM method has been used to verify the
presented homogenized Green’s function models. The ASM
method is based on the representation of the aperiodic line
source as an integral superposition of auxiliary Floquet-peri-
odic sources, obtained by periodically replicating (see Fig. 2)
the aperiodic source along the -direction with phase shift

, where is the spatial period along the
-direction. By linearity, once the electric field excited by

the auxiliary sources has been determined, the electric field
solution of the original problem can be obtained through a
similar spectral integral superposition.

The determination of the auxiliary Floquet-periodic fields has
been performed here by discretizing the relevant electric-field
integral equation (EFIE) with the method of moments (MoM)
in the spatial domain. A fully general code for the analysis of
planar structures periodic along two directions (2-D periodic)
with arbitrary metallizations within the unit cell has been used,
employing Rao–Wilton–Glisson basis functions and adopting a
Galerkin testing scheme [39]. A simpler MoM code for the anal-
ysis of a metal strip grating (1-D periodic) with strips parallel
to the source has also been employed, with entire-domain basis
functions defined on the strip cross section [35]. In both codes,
a crucial aspect is the use of accelerated periodic Green’s func-
tions [40] to reduce the computation time and, hence, allowing
for a calculation of the involved spectral integrals in a reason-
able time. More details on the ASM approach for the analysis
of a line source in the presence of a 2-D periodic structure can
be found in [41].

IV. NUMERICAL RESULTS

Here, we compare results obtained using the homogenized
Green’s functions and the ASM for a variety of grid geome-
tries. We remark that the computation times required by the
ASM are typically from two to three orders of magnitude larger
than those required by the homogenized models. The involved
physical and geometrical parameters are varied in order to illus-
trate their effect on the accuracy of the relevant homogenized
representations.

Figs. 4–8 show results for a line source over metal strips ori-
ented parallel to the source, as depicted in the inserts of the fig-
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Fig. 4. Near electric field (in magnitude) excited by a line source above a
grounded dielectric slab covered with a metal strip grating as a function of fre-
quency at � � 10 mm: comparison between the homogenized model (solid gray
line), ASM-MoM results with 1-D periodicity (black circles), and ASM-MoM
results with 2-D periodicity (black crosses). Parameters: � � 1 mm; � �10.2;
� � 2 mm; � � 1.8 mm; � � 0.5 mm.

Fig. 5. Near electric field (in magnitude) excited by a line source above a
grounded dielectric slab covered with a metal strip grating as a function of
the abscissa � at � � 15 GHz: comparison between the homogenized model
(solid gray line), ASM-MoM results with 1-D periodicity (black circles), and
ASM-MoM results with 2-D periodicity (black crosses). Parameters: as in
Fig. 4, except for � � 3 mm.

ures (see also Fig. 19). In all of the shown cases, the dielec-
tric thickness is 1 mm, and the dielectric permittivity is

. Results obtained with ASM-MoM methods with
both 2-D and 1-D periodicity (see Section III-B) are reported
in order to validate the 2-D approach for the cases when the ho-
mogenized model of the periodic structure is accurate and when
it fails to reproduce the exact field.

In Fig. 4, the period is 2 mm ( 0.1 at 15
GHz), the line source is located at mm
( 0.025 at 15 GHz), and the observation points are lo-
cated at mm, where results for 1 mm, 0.8 mm,
and 0.1 mm correspond to 0.05, 0.04,
and 0.005 at 15 GHz, respectively. Note that the line
source is located right above the center of a metal strip. This
figure shows that the homogenized model is very accurate in
a wide frequency range and also for observation points very
close to the periodic structure, i.e., even for and smaller
than (see Section III-A). This can be expected taking into

Fig. 6. Same as in Fig. 5, except for � � 1 mm.

Fig. 7. Same as in Fig. 6 at � � 0.1 mm.

account that the metal strips are relatively wide, so that the ef-
fect of the gaps is small, and the grating is acting effectively as a
homogeneous good conductor. This in turn implies that higher
order evanescent space harmonics are only weakly excited, thus
producing a very good agreement between homogenized and
full-wave results.

In order to explore the limits of validity of the homogenized
representation, we consider now the behavior of the field as a
function of the horizontal abscissa when the source is located
at 3 mm, i.e., above the lower bound given in
Section III-A , for the same distances between
grid and observation point as in Fig. 4. In Fig. 5, a very good
agreement between homogenized and full-wave results can still
be observed. By reducing the ratio , the excitation of the
higher order space harmonics is expected to increase, thus re-
ducing the accuracy of the homogenized representation. To in-
vestigate the effect of varying , in Figs. 6 and 7, a geometry
as in Fig. 5 is considered except that 1 mm, thus reducing

from 0.9 to 0.5. The observation point in Fig. 6 is
mm and 0.8 mm , whereas

in Fig. 7 it is 0.1 mm . As expected, while
excellent agreement is found for 1 mm and 0.8 mm,
extremely close to the metallization , a strong
disagreement is observed. In this case, the evanescent field scat-
tered by the grid is not negligible and is responsible for the os-
cillation of the field. As observed in Section III-A, the average
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Fig. 8. Same as in Fig. 5, except for � � 5 mm and � � 2.5 mm.

Fig. 9. Near electric field (in magnitude) excited by a line source above a
grounded dielectric slab covered with a metal strip grating orthogonal to the
line source, as a function of the absicssa � at � � 15 GHz: comparison be-
tween the homogenized model (solid gray line) and ASM-MoM results with
2-D periodicity (black crosses or diamonds). Parameters:� � 1 mm; � �10.2;
� � 2 mm; � � 1.8 mm; � � 3 mm.

value of the field over one spatial period is anyway well repre-
sented by the homogenized model; this is also clearly visible in
Fig. 7, taking into account that the field is independent of the

-coordinate and the structure is periodic along the -axis.
Finally, Fig. 8 illustrates the effect of increasing the normal-

ized period by keeping and the other parameters
fixed; in particular, now 5 mm, so that 0.25
at 15 GHz, and 2.5 mm, so that again . For
larger values of the normalized period, the accuracy of the ho-
mogenized model decreases; in this case, a discrepancy with
respect to the full-wave results can be appreciated already at

0.8 mm.
The results shown so far for a line source parallel to the strip

grating have illustrated the validity and limits of the homoge-
nized model and have validated the accuracy of the ASM-MoM
code with 2-D periodicity against an independent ASM-MoM
approach with 1-D periodicity. In the following, periodic struc-
tures will be considered for which a 1-D periodic analysis as in
[35] is not possible.

In Figs. 9 and 10, the strips are oriented perpendicular to the
line source (see also Fig. 20). As in Figs. 5–7, 2 mm,

1 mm, and 10.2, 3 mm, and 15 GHz. In
Fig. 9 the strip width is 1.8 mm (as in Fig. 5), whereas

Fig. 10. Same as in Fig. 9, except for � � 1 mm.

Fig. 11. Same as in Fig. 9, except for � � 0.2 mm and � � 0.1 mm.

in Fig. 10 1 mm (as in Figs. 6 and 7). For source or field
points sufficiently far above the metallization, i.e., , the
homogenized Greens’s functions are accurate. However, when

, their accuracy breaks down, as can be observed both in
Figs. 9 and 10 when 0.1 mm

. Furthermore, by reducing the spatial period
to 0.2 mm (i.e., 0.01 at 15 GHz) by keeping

and the other parameters fixed, a good agreement can be
restored between homogenized and full-wave results, as can be
observed in Fig. 11.

In Figs. 12–15, a square array of metal patches is considered,
with 2 mm, 1 mm, 10.2, and

3 mm (see also Fig. 21). In Figs. 12 and 13, 0.2 mm
and 15 GHz. In Fig. 12, the cases 8 mm and

2 mm, for which , show a good agreement between
homogenized and full-wave results. In Fig. 13, a disagreement is
observed at 0.5 mm. By plotting the field at 10 mm as
a function of frequency for the values of considered in Fig. 12,
we see in Fig. 14 that a good agreement is maintained over the
entire shown frequency range. Incidentally, a typical resonant
behavior can be observed, with the field amplitude exhibiting a
maximum close to the frequency at which the periodic interface
behaves as a perfect magnetic conductor for normally incident
plane waves.

Fig. 15 shows results for a patch array with 1 mm
at 15 GHz, for observation points ranging from 8 mm

to 0.5 mm . For 1 mm
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Fig. 12. Near electric field (in magnitude) excited by a line source above a
grounded dielectric slab covered with an array of square metal patches, as a
function of the absicssa � at � � 15 GHz: comparison between the homoge-
nized model (solid gray line) and ASM-MoM results with 2-D periodicity (black
crosses). Parameters: � � 1 mm; � �10.2; � � � � � � 2 mm;
� � 0.2 mm; � � 3 mm.

Fig. 13. Same as in Fig. 12 at � � 1 mm and � � 0.5 mm. ASM-MoM
results with 2-D periodicity are represented with black crosses �� � 1 mm� or
diamonds �� � 0.5 mm�.

Fig. 14. Near electric field (in magnitude) excited by a line source above a
grounded dielectric slab covered with an array of square metal patches, as a func-
tion of frequency at � � 10 mm: comparison between the homogenized model
(solid gray line) and ASM-MoM results with 2-D periodicity (black crosses).
Parameters: the same as in Fig. 12.

, the agreement between the homogenized ap-
proach and the ASM begins to deteriorate. Again, by reducing
the normalized period, the agreement improves, as illustrated

Fig. 15. Same as in Figs. 12 and 13, except for � � 1 mm.

Fig. 16. Same as in Fig. 13, except for � � 0.5 mm and � � 0.25 mm.

Fig. 17. Near electric field (in magnitude) excited by a line source above a
grounded dielectric slab covered with an array of metal Jerusalem crosses, as
a function of the abscissa � at � � 10 GHz: comparison between the ho-
mogenized model (solid gray line) and ASM-MoM results with 2-D periodicity
(black crosses). Parameters: � � 0.1 mm; � � �	� mm; 
 � � � 0.2 mm;
� � � � � � 4 mm; � � 6 mm; � � �	�; � � 10 mm.

in Fig. 16 for the case 0.5 mm and
0.25 mm.

Finally, Figs. 17 and 18 show results for a Jerusalem-cross
structure with 0.1 mm, 2.8 mm, 0.2 mm,

4 mm, 6 mm, and (see also
Fig. 22). In Fig. 17, 10 GHz and 10 mm: agreement
between the two methods is excellent for the shown values of
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Fig. 18. Same as in Fig. 17, except for � � � mm and � � � mm, at two
different frequencies.

. In Fig. 18, the source distance from the screen is reduced to
3 mm; the case 2 mm is considered for 10 GHz

and 3 GHz. At the former frequency, comparison with
Fig. 17 shows that, by reducing , the accuracy of the homog-
enized model decreases. As expected, by reducing frequency to
3 GHz, hence reducing , the agreement with full-wave re-
sults is restored.

V. CONCLUSION

A homogenized line-source Green’s function model that
treats planar, densely periodic metallization patterns as
quasi-dynamic homogenized impedance surfaces has been
described. Two methods were presented to obtain the homoge-
nized Green’s functions in layered media. In the first method,
the entire structure is modeled as a one-sided impedance sur-
face, and, in the second method, the metallization is treated
as a homogenized impedance surface embedded in a layered
medium. In both cases, the dielectric layers are treated in a
fully dynamic manner. The resulting Green’s functions are
relatively simple in form and very efficient to evaluate com-
pared with full-wave methods. Extensive numerical results
have been shown to demonstrate the accuracy of the presented
homogenized analysis.

Although the accuracy of the homogenized Green’s functions
varies depending on grid parameters and frequency (e.g.,
and ), for a range of parameters likely to be encountered
in applications, the homogenized Green’s functions are very ac-
curate, even for source and observation points very close to the
grid, and only begin to lose accuracy for .

APPENDIX

The grid impedance is a uniform surface impedance that
arises from a planar homogenization of the grid metallization
[25]–[29] and obviously varies with the type of grid. Several
metallization patterns are considered in the following: parallel
strips, square patches, and the Jerusalem cross. In each case,
the line source is assumed to lie parallel to the -axis, and we

Fig. 19. Strips parallel to the line source.

Fig. 20. Strips perpendicular to the line source.

assume that the grid is in a nonmagnetic environment (
with and .

For strips as in Fig. 19 (line source parallel to the strips) [26]

(19)

(20)

where

(21)

and , , and where
approximately accounts for the strips not being in

free space.
For strips as in Fig. 20 (line source perpendicular to the strips)

[26], [28]

(22)

(23)

where

(24)
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Fig. 21. Square-patch array.

For an array of patches as depicted in Fig. 21 with
[28]

(25)

(26)

where the grid parameter is

(27)

(This is the same expression as for the perpendicular strip array,
where is the spacing between strips, except that the
factor of 1/2 in the patch formula is absent for the strip case.)

For a Jerusalem cross as shown in Fig. 22 with
[27], [29]

(28)

(29)

where

(30)

(31)

(32)

with given by (21) and

(33)

(34)

Fig. 22. Jerusalem-cross array.
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