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Disclaimer: The topic of photonic topological insulators and scattering-protected edge states
bridges concepts from condensed matter physics and electromagnetics, and necessitates understand-
ing the Berry phase, potential, and curvature, and related concepts. These notes are an attempt at a
moderately self-contained introduction to the topic, including two detailed photonic examples drawn
from the literature. We made these notes in the process of trying to understand this topic ourselves,
and we are posting this material in the spirit of helping other researchers start to understand this
material. We claim no novelty in the material or its presentation, nor is this work intended as a
comprehensive review.

1 Berry Phase Concepts

In this section we introduce the main idea of Berry phase, potential, and curvature, and summarize some related
concepts.

1.1 Motivation - backscattering-immune one-way SPP propagation

Surface plasmons polaritons (SPPs) are well-known and long-studied waves that can be guided at the interface
between two materials (nominally, for an SPP to exist in an isotropic environment one material has relative
permittivity ε = ε1 < 0 and the other has ε = ε2 > 0, such as an air-plasma (metal) interface). For a wave
travelling as e±ikz (z parallel to the interface), the SPP dispersion relation is

k =
ω

c

√
ε1ε2

ε1 + ε2
, (1)

where εα = εα (ω). For example, for a simple lossless plasma ε (ω) = 1 − ω2
p/ω

2 with ωp being the plasma
frequency. Plotting the dispersion equation (Fig. 1.a) we see that propagation is reciprocal, ω (−k) = ω (k),
so that forward-propagating (k) and backward-travelling (−k) waves exist at the same frequency. A source
near the surface will excite SPPs travelling in both directions (±z), and upon encountering a discontinuity an
SPP travelling in, say, the +z direction will undergo both reflection and transmission, again resulting in both
forward and backward travelling waves. This is shown in the upper-left insert of the figure (see also Fig. 17
and associated example later in the text).

Waves can be excited in a single direction using a directive source (e.g., planar Yagi-Uda antenna, or by a
circularly-polarized source that couples to the SPPs spin polarization), but upon encountering a discontinuity,
partial reflection of the wave will occur since the material itself allows propagation in both directions.

However, if the medium only supports modes that can travel in one direction, say, via non-reciprocity
as depicted in Fig. 1.b (e.g., via a magnetic-field biased plasma having a tensor permittivity with non-zero
off-diagonal elements), then upon encountering a discontinuity an SPP cannot be reflected (back-scattered),
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Figure 1: a. Dispersion of reciprocal SPP. Upper-left insert shows SPP power flow excited by a vertical dipole
source near a step change in height at the interface between a reciprocal medium (below) and a different
reciprocal medium (above), b. nonreciprocal SPP; shaded region depicts frequency range of uni-directional
propagation. Upper-right insert is the same as upper-left insert, except that the lower medium is now non-
reciprocal and we operate in the gap, ensuring one-way propagation.

as shown in the upper-right insert of the figure. This is a rather remarkable occurrence, and has important
applications in waveguiding (e.g., defect- immune waveguides). In general, there will be a range of energies
where only propagation in one direction is possible (e.g., in Fig. 1.b in the indicated frequency band only
forward propagating modes can exist, there are no states with −k). Fig. 17 at the end of these notes shows
power density excited by a source over a magnetoplasma material, as discussed in [1]- [3].

However, the idea of one-way (backscattering-immune) surface-wave propagation is more general then indi-
cated above. In particular, one does not necessarily need a non-reciprocal material. A broad class of materi-
als exist known as photonic topological insulators (PTIs) which have this characteristic, generally supporting
Hall/chiral edge states. This class of materials includes biased non-reciprocal magneto-plasmas (more generally,
materials with broken time-reversal symmetry), but it also includes time-reversal-invariant materials with bro-
ken inversion symmetry. In the latter case, photon states are separated in two ‘spin’ sub-spaces (usually through
geometry such as via a hexagonal lattice), and ‘spin-orbit’ coupling is introduced through inversion symmetry-
breaking. Here focus on the simplest subclass formed by photonic topological media with a broken time reversal
symmetry, sometimes also designated as Chern-type insulators (the analogs of quantum Hall insulators).

On the electronic side, topological insulators (TIs) and quantum Hall edge state materials (which utilize
many of the same concepts described here) came first, and, noting the analogy between electronic and optical
systems, the first work on PTIs was described in [4] and [5]. The first experimental demonstration of an optical
TI was shown in [6], and in various material systems [7], [8], [9], [10], and [11], among others. Understanding the
broad field of PTIs necessitates understanding the Berry phase, potential, curvature, and the concept of Chern
invariants, which is the subject of these notes. After an introduction to these concepts, we examine two previous
PTI results from the literature, and provide details of the various computations necessary to characterize the
materials.

1.2 Origin of the Berry Phase

Here we derive the Berry phase, following the usual procedure for electronic systems. For a derivation that only
considers classical electromagnetics, as well as a more thorough introduction, see [12].

We consider a system described by a Hamiltonian dependent on parameters that vary in time, H = H(R),
such that R = R (t) = (R1 (t) , R2 (t) , R3 (t) , ....) We will consider a path in parameter space C along which R
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changes. For example, R could describe the position of a particle (x (t) , y (t) , z (t)) and C could be a path in
physical space. However, here we are primarily interested in the case when R (t) lives in momentum (reciprocal)
space.

The evolution of the system is assumed to be adiabatic, such that the parameters R(t) of the Hamiltonian
change slowly along path C in parameter space. The adiabatic theorem states that if a system is initially in the
nth eigenstate of the initial Hamiltonian H (R (0)), and the system is moved slowly-enough as R (t) changes,
it will arrive at the nth eigenstate of the final Hamiltonian H (R (T )). Development of the adiabatic solution
below will show how the Berry phase comes about.

We will assume that the time dependent states evolves through an evolution equation

i~∂t |Ψ(t)〉 = H(R(t)) |Ψ(t)〉 (2)

which is typically taken to be the Schrödinger equation, where |Ψ(t)〉 is a scalar, but it could also represent the
Dirac equation where |Ψ(t)〉 is a spinor, and classical Maxwell’s equations (} = 1), where |Ψ(t)〉 is the six-vector
of EM fields.

Because of the slow variation of the Hamiltonian parameters we can assume that at every time the instan-
taneous eigenstates of the Hamiltonian satisfy

H(R) |n(R)〉 = En |n(R)〉 . (3)

However, (3) does not uniquely determine the function |n(R)〉, since we could include an arbitrary phase factor
(gauge choice) that depends on R (t).

To motivate the following derivation, note that if the Hamiltonian is independent of time, then a system
that starts out in the nth eigenstate |n〉, remains in nth eigenstate but simply pick up a phase factor,

|Ψn(t)〉 = |n〉 e− i
~Ent. (4)

So, to represent the evolution of the system with slowly varying Hamiltonian we use a superposition of these
instantaneous eigenvectors, adjusting the phase factor to account for the time variation,

|Ψ(t)〉 =
∑
n

an(t)e−
i
~
∫ t
0
En(R(t′))dt′ |n(R(t))〉 =

∑
n

an(t)eiαn |n(R(t))〉 (5)

where αn(t) = − 1
~
∫ t

0
En(R(t′))dt′ is called the dynamical phase. If we substitute this general form of solution

in the evolution equation (2) we obtain

i~
∑
n

(∂tan + ian∂tαn)eiαn |n〉+ i~
∑
n

ane
iαn |∂tn〉 = H |Ψ〉

i~
∑
n

(∂tan)eiαn |n〉+
∑
n

Enane
iαn |n〉+ i~

∑
n

ane
iαn |∂tn〉 = H |Ψ〉 , (6)

and taking the inner product of both sides by 〈m|, yields

∂tam = −
∑
n

ane
i(αn−αm) 〈m|∂tn〉 . (7)

In the adiabatic limit, where excitation to other instantaneous eigenvectors is negligible 1 , the choice of initial

1To prove the statement that the excitation probability of states n 6= m is small, the time derivative of the energy state equation
is ∂tH |n〉 + H |∂tn〉 = ∂tEn |n〉 + En |∂tn〉, where we can set ∂tEn = 0 due to slow variation. The inner product with 〈m| yields
〈m|∂tn〉 = 〈m|∂tH|n〉 /(Em − En) (n 6= m) so we have from (7) ∂tam = −

∑
n ane

i(αn−αm) 〈m|∂tH|n〉 /(Em − En) (n 6= m).
Choose the initial state to be one of the instantaneous eigenstates |Ψ(t = 0)〉 = |n(R(0))〉, so an(t = 0) = 1 and am(t = 0) = 0
for n 6= m. Then, for n 6= m we have ∂tam ≈ −ei(αn−αm) 〈m|∂tH|n〉 /(Em − En). Since the time dependencies of 〈m|∂tH|n〉 and
En − Em are slow, the most important time dependence will be in the exponential, which can be approximated by ei(αn−αm) =
ei(Em−En)t/~. Neglecting the other slow time dependencies then yields

∂tam ≈ −ei(αn−αm) 〈m|∂tH|n〉 /(Em − En)

am(t) = −
∫ t

0
ei(Em−En)t/~

〈m|∂tH|n〉
(Em − En)

· dt =
i

~
〈m|∂tH|n〉

ω2
mn

{eiωmnt/~ − 1}, (8)

ωmn = (Em − En)/~, (n 6= m). Due to adiabatic approximation we have adopted, 〈m|∂tH|n〉 is slow compared to the transition
frequency ωmn = (Em−En)/~. Therefore, the magnitude of the excitation probability to other states |am(t)|2 is small for n 6= m.
For further reading see [14].
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state |Ψ(t)〉 = |n(R(t = 0))〉 will imply that |an(t)| = 1, am(t) = 0 for m 6= n. We then have

∂tam = −
∑
n

ane
i(αn−αm) 〈m|∂tn〉

∂tan = −an 〈n|∂tn〉 → an = eiγn ; ∂tγn = i 〈n|∂tn〉 . (9)

Therefore, the adiabatic evolution of the state vector becomes

|Ψ(t)〉 = eiγneiαn |n(R(t))〉 . (10)

We have

γn = i

∫ t

0

〈n(R(t′))| ∂
∂t
|n(R(t′))〉 dt′

= i

∫ t

0

〈n(R(t′))| ∂
∂R
|n(R(t′))〉 · ∂R

∂t′
dt′

=

∫ Rf

Ri

dR · i 〈n(R)| ∇R |n(R)〉 =

∫ Rf

Ri

dR ·An(R) (11)

(setting ∇R = ∂/∂R), where Ri and Rf are the initial and final values of R(t) in parameter space, and where

An(R) = i 〈n(R)| ∇R |n(R)〉 = −Im 〈n(R)| ∇R |n(R)〉 (12)

is called the Berry vector potential (also called the Berry connection since it connects the state at R and the
state at R + dR) and γn is called the Berry phase.2.

Eq. (11) shows that, in addition to the dynamical phase, the state will acquire an additional phase γn during
the adiabatic evolution (note that γn is real-valued; eiγn(t) is a phase, not a decay term3). The existence of this
phase has been known since the early days of quantum mechanics, but it was thought to be non-observable since
a gauge-transformation could remove it. It was Berry who, in 1984, showed that for cyclic variation (Rf = Ri)
the phase is not removable under a gauge transformation [19] (discussed below), and was also observable4. This
net phase change depends only on the path C in parameter space that is traversed by R(t), but not on the
rate at which it is traversed (assuming the adiabatic hypothesis still holds). It is therefore called a geometrical
phase, in distinction to the dynamical phase which depends on the elapsed time. This geometric phase has been
generalized for non-adiabatic evolution [20].

1.2.1 Geometric Phase

Geometric phases have a long history, and arise in many branches of physics [21]. They are well-illustrated by
considering parallel transport of a vector along a curved surface. To consider an intuitive example, as widely
discussed (see, e.g., [15]) and depicted in Fig. 2, consider at t = 0 a pendulum at the north pole of a sphere,
swinging along a longitude line. If the pendulum is moved along the longitude line to the equator, across the
equator some distance, and at t = T arriving back at the north pole via a different longitude line (and assuming
the movement is sufficiently slow, in keeping with the adiabatic assumption), the angle of the pendulum swing
with some fixed reference is obviously different from it’s initial angle (this difference is called the defect angle,
which is a mechanical analogue of phase). The defect angle is given by the solid angle Ω subtended by the
path of movement. For example, Ωsphere = 4π for a sphere, and so if the longitude lines are 180 degrees apart
the subtended angle is Ωsphere/4 = π. For the electronic case, moving along a contour in parameter space, the
Berry phase is equal to sΩ, where s is the particle spin. Parallel transport along an non-curved surface does not
lead to a defect angle, and so we see that a non-zero Berry phase has it’s origins in the curvature of parameter
space. In optics, an optical fiber wound into a helix has been used to demonstrate Berry phase [16], among other
results (see, e.g., [17]). In these cases the momentum is p = x̂px + ŷpy + ẑpz = }k, where k is the propagation

2One can also obtain this result by assuming the existence of this extra phase [19], |Ψ(t)〉 = eiγneiαn |n(R(t))〉, and inserting
into Schrödinger’s equation. Taking the inner product with 〈n(R(t))| and using 〈n(R(t))|H(R)|n(R(t))〉 = En leads to the same
result as above.

3〈n(R)|∇R |n(R)〉 can easily seen to be itself imaginary since 〈n(R)| n(R)〉 = 1, and so taking a derivative on both sides yields
〈n(R)|∇R |n(R)〉 = −〈n(R)|∇R |n(R)〉∗.

4Physically observable quantities must be gauge-independent
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Ω

Figure 2: a. Parallel transport around a sphere. b. Parallel transport about a closed contour on a sphere and
solid angle subtended.

vector of the optical wave, |k| = k = 2π/λ. Therefore, |p|2 = p2
x + p2

y + p2
z = (}k)2, which is a sphere, and so

rotation of momentum is equivalent to movement on the surface of a sphere.
When R is a real-space parameter, consider an electron in the ground state of an atom. As the atom is slowly

moved through a static magnetic field the electron stays in the ground state (adiabatic) but picks up a Berry
phase, which is the Aharonov-Bohm phase. An example of R as a parameter space is given in Section 1.4.1 for
an electron fixed in space but exposed to a time-varying magnetic field B (t). As detailed in the electromagnetic
examples below, we will be more interested in the case when the parameter space R is momentum space, R = k.
In this case, we can simply consider moving through k-space without necessitating the time variable, and simply
consider γn (k), which will depend on the path taken in k-space.

1.2.2 Gauge

Obviously, An(R) is a gauge dependent quantity. If we make a gauge transformation |n(R)〉 → eiξ(R) |n(R)〉
with ξ(R) an arbitrary smooth function (this is equivalent to the EM gauge transformation5) the Berry potential
transforms to An(R)→ An(R)−∇Rξ(R). Consequently, the additional phase γn will be changed by ξ(Ri)−
ξ(Rf ) after the gauge transformation, where Ri and Rf are the initial and final points of the path C. For
an arbitrary path one can choose a suitable ξ(R) such that accumulation of that extra phase term vanishes,
and we left only with the dynamical phase. However, by considering a closed path (cyclic evolution of the
system) C where Rf = Ri and noting that the eigenbasis should be single-valued, |n(Ri〉 = |n(Rf 〉, then
eiξ(Ri) |n(Ri〉 = eiξ(Rf ) |n(Rf 〉 = eiξ(Rf ) |n(Ri)〉, and so eiξ(Ri) = eiξ(Rf ). That is, single-valuedness of the
eigenbasis means that eiξ(R) (but not necessarily ξ(R)) must be single-valued, and therefore we must have

ξ(Ri)− ξ(Rf ) = 2πm (17)

5 In EM, the gauge transform is

Φ′ (r, t) = Φ (r, t)−
∂χ (r, t)

∂t
, A′ (r, t) = A (r, t) +∇χ (r, t) , (13)

which leaves the fields

E (r, t) = −∇Φ (r, t)−
∂A (r, t)

∂t
, B (r, t) = ∇×A (r, t) (14)

unchanged. Then,

i}
d

dt
|ψ〉 = Ĥ |ψ〉 (15)

with the Hamiltonian

Ĥ (r, t) =
1

2m
[p̂ + eA (r, t)]2 − eΦ (r, t) + V (r) ,

becomes

i}
d

dt

∣∣ψ′〉 = Ĥ′
∣∣ψ′〉 (16)

where |ψ′〉 = e−ieχ(r,t)/} |ψ〉 and

Ĥ′ =
1

2m

[
p̂ + eA′ (r, t)

]2 − eΦ′ (r, t) + V (r) .

Therefore, Schrödinger’s equation is invariant under the gauge transformation, and the EM change of gauge is equivalent to a phase
change in the wavefunction, |ψ′〉 = e−ieχ(r,t)/} |ψ〉.
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where m is an integer. This shows that γn can be only changed by an integer multiple of 2π under a gauge
transformation using a smooth gauge function; this phase cannot be removed. Note that this holds for Dim(R) >
1, so that we have a path integral in (11). For a one-parameter space R, (11) becomes a simple integral over a

vanishing path; for Rf = Ri = R
∫ R
R
i 〈n(R)| ∂∂R |n(R)〉 dR = 0. However, when applied to periodic solids (for

which the Berry phase is also called the Zac phase, electrons crossing the Brillouin zone can indeed pick up a
Berry phase, which persists in 1D because of the periodicity of the Brillouin zone; assuming period a, when k

sweeps across the BZ due to, say, an applied field, a phase can be acquired since
∫ π/a
−π/a (·) dk =

∮ π/a
−π/a (·) dk.

As described below, we will only be interested in paths C that are closed in parameter space, and so we
write

γn = γn (R) =

∮
C

dR ·An(R). (18)

In the space of gauge functions ξ where eiξ(R) is single-valued, (18) is gauge-dependent (one could say it is
gauge-invarient up to factors of 2π). If we restrain the class of gauge functions ξ to be themselves single-valued,
then (18) is gauge-independent6.

For a two-dimensional periodic material (such as graphene as an electronic example, or a hexagonal array of
infinite cylinders as an electromagnetic example), C is typically the boundary of the first Brillouin zone and S is
its surface in k-space. In this case, the “cyclic” variation forming the closed path C in k-space is the perimeter
of the first Brillouin zone.

1.3 Berry curvature, flux, and tensor, and Chern number

Eq. (18) is an analogy to the equation for magnetic flux Φmag, in terms of the real-space magnetic field and
magnetic vector potential Amag in electromagnetics,

Φmag =

∫
S

dS ·B (r) =

∮
C

dl ·Amag (r) . (19)

where
∮
C
dl ·Amag (r) is also related to the Aharonov-Bohm phase in quantum mechanics. For the magnetic

flux density in electromagnetics we have

B (r) = ∇r ×Amag(r). (20)

By analogy to electromagnetics, when 2 ≤ dim (R) ≤ 3 (other dimensional are considered below) a vector wave
can be obtained from the Berry vector potential An(R) as

Fn(R) = ∇R ×An(R) (21)

= i∇R × 〈n(R)| ∇R |n(R)〉 = i 〈∇Rn(R)| × |∇Rn(R)〉 . (22)

This field is called the Berry curvature, and is obviously gauge-independent. It is a geometrical property of the
parameter space, and can be viewed as an effective magnetic field in parameter space; just as the motion of a
moving charge is perpendicular to the magnetic field (FB = v ×B), i.e., the curvature of the magnetic vector
potential, the Berry curvature will induce transverse particle motion (an electronic or optical Hall effect). To
continue the analogy, first note that the magnetic flux can also be written as

Φmag =

∫
S

dS ·B (r) , (23)

where (19) and (23) are equal via Stokes’ theorem, i.e.,∮
C

dl ·Amag (r) =

∫
S

dS · ∇r ×Amag(r) =

∫
S

dS ·B (r) . (24)

For Stokes’ theorem to hold the fields must be nonsingular on and within the contour C. Given that magnetic
monopoles, which would serve as singularities of the field, do not seem to exist, Stokes’ theorem is valid to apply
in this case. One can similarly use Stokes’ theorem to connect the Berry phase and the Berry curvature,

γn =

∮
C

dR ·An(R)
?
=

∫
S

dS · Fn(R) (25)

6This is easily seen since
∮
C dR · ∇Rξ(R) = 0 for ξ a smooth, single-valued function.
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where C and S are a contour and surface in parameter space, and where the right side could be called the Berry
flux. However, it must be kept in mind that the relation (25) is not always valid, since for the parameter-space
fields An (R), Fn (R) singularities can occur, such that Stokes’ theorem does not generally hold7. Nevertheless,
a gauge-independent Berry phase γn can be computed from the Berry flux integral,

γn =

∫
S

dS · Fn(R), (27)

Stokes’ theorem holding modulo 2π.
The above form of Fn (and of An) can be inconvenient for numerical work since it involves derivatives

of the state function (the problem this engenders is described below). In the following an alternative tensor
formulation is shown, applicable for any dimension parameter space, and which also leads to a more convenient
form for numerical computations.

For Rµ and Rν elements of R, with µ, ν covering all of R, then the Berry curvature tensor can be defined as

Fnµν =
∂

∂Rµ
Aνn −

∂

∂Rν
Aµn = i

[〈
∂

∂Rµ
n(R)

∣∣∣∣ ∂

∂Rν
n(R)

〉
−
〈

∂

∂Rν
n(R)

∣∣∣∣ ∂

∂Rµ
n(R)

〉]
(28)

which serves as a generalization of the vector Berry curvature. We can also write the Berry curvature tensor in
terms of the Berry curvature vector; for dim (R) = 3

F = −F× I3×3 =

 0 Fz −Fy
−Fz 0 Fx
Fy −Fx 0

 (29)

where I3×3 is the identity. More generally, the Berry curvature tensor Fnµν and vector Fn are related by
Fnµν = εµνξ(Fn)ξ with εµνξ the Levi-Civita anti-symmetry tensor.

Importantly, the Berry curvature tensor (28) can be also written as a summation over the eigenstates,

Fnµν = i
∑

n′, n′ 6=n

〈n| ∂H/∂Rµ |n′〉 〈n′| ∂H/∂Rν |n〉 − 〈n| ∂H/∂Rν |n′〉 〈n′| ∂H/∂Rµ |n〉
(En − En′)2

. (30)

To obtain this result, note that

Aν,µn = i 〈n(R)| ∂

∂Rν,µ
|n(R)〉 , ∂

∂Rα
Aν,µn = i

〈
∂

∂Rα
n(R)| ∂

∂Rν,µ
n(R)

〉
+ i

〈
n(R)| ∂

∂Rα∂Rν,µ
n(R)

〉
.

Inserting into (28),

Fnµν =
∂

∂Rµ
Aνn −

∂

∂Rν
Aµn = i

[
<

∂

∂Rµ
n(R)| ∂

∂Rν
n(R) > − < ∂

∂Rν
n(R)| ∂

∂Rµ
n(R) >

]
. (31)

Then,
H(R) |n(R)〉 = En(R) |n(R)〉 → ∂H/∂R |n〉+H |∂n/∂R〉 = ∂En/∂R |n〉+ En |∂n/∂R〉

and because of the adiabatic assumption we can drop the first term on the right side. By changing the kets to
bras and multiplying by |n′〉 we obtain

〈n| ∂H/∂R |n′〉+ 〈∂n/∂R|H |n′〉 = En 〈∂n/∂R|n′〉
〈n| ∂H/∂R |n′〉 = (En − En′) 〈∂n/∂R|n′〉 , n 6= n′ (32)

from which the result (30) follows.
In general, the fact that the wavefunction itself is gauge-dependent, creates an issue in computing An via

(18), and therefore Fn via (22), since for slightly different R values a numerical algorithm will generally output

7The obstruction to Stokes’ theorem

D =
1

π

[∮
C
dR ·An(R)−

∫
S
dS · Fn(R)

]
6= 0 (26)

can lead to a Z2 invariant that characterizes the system [41], [42].
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eigenstates with unrelated phases, thus prohibiting one from numerically taking the required derivative of the
eigenvector unless care is taken to make sure the phases are smooth. However, (30) only requires the derivative
of the Hamiltonian, and so any numerical phase will disappear in taking the inner product.

Similar manipulations lead to the Berry phase

γn = i

∫
dS·

∑
n′, n′ 6=n

〈n| ∇RH |n′〉 × 〈n′| ∇RH |n〉
(En − En′)2

. (33)

Although the previous forms depend only on a certain state and it’s derivative, the forms (30) and (33) involving
summation over n′ 6= n show that the Berry properties can be thought of as resulting from interactions between
the nth state and all other states – it is a global property of the bandstructure.

Equations (30) and (33) show that the Berry curvature becomes singular if two energy levels En and En′ are
brought together at a certain value of R, resulting in the “Berry monopole.” In fact, the adiabatic approximation
assumes no degeneracies on the path C, but degeneracies can occur within the space enclosed by the path.

It is easy to show the conservation law8 ∑
n

Fnµν = 0, (34)

which demonstrates, among other things, that the sum over all bands of the Berry curvature is zero.
As discussed later for the photonic case, under time-reversal (TR) and inversion (I) symmetries,

TR: F (−k) = −F (k) (35)

I: F (−k) = F (k) (36)

TR+I: F (k) = 0. (37)

Therefore, a non-zero Berry curvature will exist when either TR or I are broken.

1.4 Chern number, bulk-edge correspondence, and topologically protected edge
states

From elementary electromagnetics, Gauss’s law relates the total flux over a closed surface S to the total charge
within the surface, ∮

S

ε0E (r) · dS = QT = mq, (38)

where, assuming identical charged particles, m is the number of particles and q the charge of each particle
(although often approximated as a continuum, QT is quantized). To keep things simple we’ll assume a monopole
charge of strength mq located at the origin. The electric field is given by Coulombs law,

E =

(
mq

4πε0

)
r

r3
. (39)

The analogous magnetic form ∮
S

B (r, t) · dS = 0 (40)

indicates that there are no magnetic monopoles. However, in parameter space the flux integral over a closed
manifold of the Berry curvature is quantized in units of 2π, indicating the number of Berry monopoles (degen-
eracies) within the surface, ∮

S

dS · Fn(R) = 2πmn = 2πCn (41)

where mn = Cn is an integer for the nth band known as the Chern number. The Chern number can be seen to
be the flux associated with a Berry monopole of strength 2πCn, leading to the Berry curvature

Fn =

(
Cn
2

)
k

k3
. (42)

8When we also do a summation over n then in fact we are taking all of the non-diagonal elements of the operators
∂H/∂Rµ,v into account. Then, for any states like |n〉 ≡ |a〉 , |n′〉 ≡ |b〉 ; a 6= b there are another set of states like
|n〉 ≡ |b〉 , |n′〉 ≡ |a〉 ; a 6= b such that 〈n| ∂H/∂Rµ |n′〉 〈n′| ∂H/∂Rν |n〉 |(n=a,n′=b)= 〈a| ∂H/∂Rµ |b〉 〈b| ∂H/∂Rν |a〉 and
〈n| ∂H/∂Rν |n′〉 〈n′| ∂H/∂Rµ |n〉 |(n=b,n′=a)= 〈b| ∂H/∂Rν |a〉 〈a| ∂H/∂Rµ |b〉 = 〈a| ∂H/∂Rµ |b〉 〈b| ∂H/∂Rν |a〉 cancel out each
other at the numerator.
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The Berry monopole plays the role of source/sink of Berry curvature F, just the electric charge monopole mq
servers as a source/sink of electric field E ∝ r/r3. The Chern number can also be written in terms of the gauge
form. For two dimensions, e.g., R = k = (kx, ky) ,

Cn =
1

2π

∫
S

dkxdkyF
n
xy =

1

2π

∫
S

dkxdky

(
∂

∂kx
Ayn −

∂

∂ky
Axn

)
, (43)

or, from (30),

Cn =
i

2π

∫
S

dkxdky
∑

n′, n′ 6=n

〈n| ∂H/∂kx |n′〉 〈n′| ∂H/∂ky |n〉 − 〈n| ∂H/∂ky |n′〉 〈n′| ∂H/∂kx |n〉
(En − En′)2

, (44)

which is a form used later for computation.
Importantly, the Chern number is topologically invariant, meaning it is unaffected by smooth deformations

in the surface that preserve topology (e.g., for a real-space surface, a teacup deforming into a torus). Moreover,
the sum

∑
n Cn over all energies or bands n is zero (this comes from the curvature conservation equation (34)),

which plays a role in what is know as bulk-edge correspondence. This is an extremely important point in
understanding the most significant aspect of Topological Insulators (TIs), which is backscattering-protected
edge propagation. Note that in the presence of TR but with I broken, integration over the entire BZ yields zero
Chern number for each band, whereas in the presence of I but with TR broken, the band Chern number will
generally be nonzero.

In periodic media (e.g., for electrons, in a crystalline solid, and for photons, EM waves in a photonic crystal),
the Berry phase γn is a geometric (in parameter space) attribute of the nth band. The Brillouin zone is equivalent
to a torus, forming the closed surface over which the Berry curvature of any non-degenerate band is integrated
to compute the Chern number Cn for that band.

1.4.1 Example - Two-level systems in parameter space

A common example that demonstrates Berry phase, curvature, and Chern number concepts is cyclic evolution
of a two level system [15], such as electronic spin or valley pseudospin. Consider the evolution of spin for an
electron at the origin immersed in a magnetic field. Let the tip of the magnetic field vector trace out a closed
curve on a sphere of radius r = B0, B = B0r̂ (t) – in this case the magnetic field itself plays the role of parameter
space, R = (Bx, By, Bz). The Hamiltonian is the projection of spin onto the magnetic field coordinates,

H = −µ ·B = −γB · S, (45)

where µ is the magnetic moment (µ = γS), γ is the gyromagnetic ratio (γ = qe/2mc for orbital electrons,
γ = gqe/2mc where g ∼ 2), S = (}/2)σ, and σ = (σx, σy, σz) are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (46)

Whereas for magnetic moment due to a current loop the torque T = µ×B acts to align µ and B, for angular
momentum and spin the torque causes a precession of µ around B, with the precession frequency ω0 = −γB.

Writing the Hamiltonian as H = h · σ, where h = hr̂ with h = −γ}B0/2,

σr = hr̂ · σ = h

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
. (47)

Eigenvalues and eigenvectors satisfy (hσ · r̂) |u〉 = λ |u〉 and are

λ+ = +h,
∣∣u+
〉

=

(
e−iφ cos (θ/2)

sin (θ/2)

)
, (48)

λ− = −h,
∣∣u−〉 =

(
e−iφ sin (θ/2)
− cos (θ/2)

)
. (49)
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The Berry potential is A±(R) = i 〈u±| ∇R |u±〉 where R = (r, θ, φ). Since the gradient is ∇f = ∂f
∂h ĥ +

1
h
∂f
∂θ θ̂ + 1

h sin θ
∂f
∂φ φ̂,

A−θ = i
〈
u−
∣∣ ∂

h∂θ

∣∣u−〉 = 0, A+
θ = i

〈
u+
∣∣ ∂

h∂θ

∣∣u+
〉

= 0, (50)

A−φ = i
〈
u−
∣∣ 1

h sin θ

∂

∂φ

∣∣u−〉 =
sin2 1

2θ

h sin θ
, A+

φ = i
〈
u+
∣∣ 1

h sin θ

∂

∂φ

∣∣u+
〉

=
cos2 1

2θ

h sin θ
. (51)

The Berry curvature is

F± =
1

h sin θ

(
∂

∂θ

(
A−φ sin θ

))
ĥ = ±1

2

h

h3
, (52)

which is the field generated by a monopole (in parameter space) at the origin. Obviously, the Berry curvature
has a singularity at h = 0 (i.e., B0 = 0). This singularity is due to a degeneracy between λ+ = h and λ− = −h at
the origin of parameter space (h = 0); these degeneracy points serve as “sources” (for λ−, producing monopole
strength 1/2) and “sinks” (for λ+, producing monopole strength −1/2) of Berry curvature (like any monopole).
Similar to Gauss’s law, when we integrate around a closed surface containing the monopole we get an integer
(here we call it the Chern number). The Chern number is

C =

∮
S

F · dS = ±
∮
S

1

2

h

h3
· ĥh2 sin θ dθdφ = ±2π = ±1

2
Ω. (53)

Given that

γn =

∫
S

dS · Fn(R), (54)

the Berry phase can be viewed as 1/2 the solid angle subtended by the closed path,

γ = ±
∫
S

1

2

h

h3
· ĥh2 sin θ dθdφ = ±1

2

∫
S

sin θ dθdφ = ±1

2
Ω. (55)

In fact, in general the answer is sΩ, where Ω is the solid angle and s is the spin.
As a related example, but considering momentum space as the parameter space, consider a two-dimensional

material with a hexagonal lattice and two inequivalent Dirac points, such as graphene. The two in-equivalent
Dirac points lead to two different valleys sufficiently separated in momentum space so that inter-valley transitions
can usually be ignored. In the absence of a magnetic field, graphene respects both TR and I symmetry (and,
hence, has zero Berry curvature, but posses a Berry phase). The tight-binding Hamiltonian near the K and K ′

valleys has the same form as the magnetic field problem considered above,

H = τ}vFqτ · σ, (56)

where qτ = (qx, τqy) is momentum relative to the degeneracy point, τ = ±1 is the valley index (for the K and
K ′ points, respectively), and s = ±1 is the conduction and valance band index. In this case the two inequivalent
valleys play the role of spin, and so here σ represents pseudospin, not actual spin. In the K valley conduction
band, the projection of pseudospin onto momentum is parallel to momentum, whereas in the valance band it is
antiparallel to momentum. In the K ′ valley these are reversed.

The eigenvalues and eigenvectors are 9

λs,τ = s}vF |qτ | , |us,τ 〉 =
1√
2

(
1

sτeiφq

)
eiqτ ·r, (58)

where (qx + iqy) = |q| eiφq , φq being the angle between q and the x-axis, φq = tan−1 (qy/qx). Then, since the

gradient is ∇f = ∂f
∂q q̂ + 1

q
∂f
∂φq

φ̂q + ∂f
∂z ẑ,

As,τφq
= i 〈us,τ | 1

q

∂

∂φq
|us,τ 〉 = −1

2

1

q
, (59)

9The often used eigenfunctions

|us,τ 〉 =
1
√

2

(
e−iφq/2

sτeiφq/2

)
eiqτ ·r, (57)

are not appropriate since they are not single-valued [27]
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and [25]

γn =

∮
C

dq ·A(q) =

∫ 2π

0

−1

2

1

q
qdφq = −π. (60)

The Berry phase of π manifests itself in various ways, including in the suppression of backscattering and a phase
shift in Shubinikov de-Haas (SdH) oscillations [28]. Note, however, that

F =
1

q

∂

∂q

(
qAφq

)
ẑ = −1

q

∂

∂q

(
1

2

)
ẑ = 0, (61)

so that in (non-gapped) graphene, which has both time-reversal and inversion symmetry, the Berry curvature
vanishes. This is considered further in Section 1.4.4.

Finally, let us consider the optical fiber wound into a helix as mentioned previously. For a linearly polarized
optical field we have (σ · k) |u〉 = λ |u〉, which is the projection of spin (e.g., polarization) onto the direction of
momentum. This has the same general form as the magnetic field problem. However, for photons (spin 1), the
spin matrices are different and Berry phase is equal to the solid angle, γ = Ω.

1.4.2 Generalized equations of motion in a crystal

For electronic applications, an important aspect of the Berry curvature is that it plays a role in the equations

of motion [18]. In a crystal, the usual expression for the velocity, v =
·
r = ∂ε/}∂k, is modified by a non-zero

Berry curvature,

v =
·
r =

∂ε

}∂k
−
·
k× F (62)

}
·
k = −e

(
E +

·
r×B

)
, (63)

where k is crystal momentum. The term
·
k×F is the anomalous (Hall) velocity due to Berry curvature, and is

transverse to the momentum. If we ignore the magnetic field contribution, then }
·
k = −eE and

v =
·
r =

∂ε

}∂k
+
e

}
E× F. (64)

In the photonic case, analogous equations of motion for the geometrical optics field are presented in [26].

1.4.3 The Effect of the Hall Velocity: Quantum Hall and Valley Hall Effects

Obviously, the anomalous Hall velocity will give rise to an anomalous Hall current,

J = qe
∑
n,τ

∫
ve (k) f (E (k)) [dk] (65)

→ JHall =
e2

}
∑
n,τ

∫
(E× F) f (E (k)) [dk] (66)

= (E× I) · e
2

}
∑
n,τ

∫
Ff (E (k)) [dk] (67)

= E ·

(
I× e2

}
∑
n,τ

∫
Ff (E (k)) [dk]

)
(68)

where τ is spin and [dk] = ddk
(2π)d

in d dimensions (and we have ignored any magnetic field effect). Therefore,

the Hall conductivity tensor is

σ = I× e2

}
∑
n,τ

∫
Ff (E (k)) [dk] (69)
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whenever the Berry curvature is nonzero. In fact, unlike the usual current, the Hall current will be non-zero
even when f = f0, the equilibrium Fermi distribution 10. In the following we restrict attention to insulators,
with the Fermi-level in the band gap. We further only consider 2D materials, where F = ẑFz (z out-of-plane).
Then, e.g.,

σx,y =
e2

}
∑
n,τ

∫
Fzf (E (k)) [dk] (70)

where we sum over filled bands below the bandgap. Let E = E0ŷ; from the tensor

F = −F× I3×3 =

 0 Fz −Fy
−Fz 0 Fx
Fy −Fx 0

 (71)

we note that Fxy = Fz. Assuming a single valance band and spin component,

JHall = −x̂

(
q2
e

}

∫
Fxy [dk]

)
E0 = −x̂σxyEy (72)

where the Hall conductivity is

σxy =

(
q2
e

}

∫
Fxy [dk]

)
, (73)

such that [22]

σxy =
q2
e

}
Cn, (74)

where the Chern number is

Cn =

∫
Fxy [dk] . (75)

1.4.4 Valley Hall Effect

Although graphene respects both TR and I symmetry (and, hence, has zero Berry curvature), if we consider
materials like gapped graphene (gap opening by, say, an applied strain) or MoS2, inversion symmetry will be
broken and Berry curvature will be nonzero. In this case, the effective Hamiltonian is

H = atqτ · σ +
∆

2
σz − ντ

σz − 1

2
ŝz, (76)

where qτ = (τqx, qy), τ = ± describes the two valleys, ∆ is the energy gap (effectively, a mass term), the last
term accounts for spin-orbit coupling (negligible in graphene systems) where 2ν is the spin-orbit splitting. The
Berry curvature is [23]

Fz,c = τ

(
2a2t2∆′

(∆′2 + 4a2q2t2)
3/2

)
(77)

in the conduction band, where ∆′ = ∆−ντs with s = ±1 a spin index. For the valance band, Fv (k) = −Fc (k).
Upon the application of an electric field, electrons in different valleys will flow to opposite directions transverse
to the electric field, giving rise to a valley Hall current. As ∆ → 0 the system exhibits Dirac cones, and the
Berry curvature vanishes everywhere except at the Dirac points where it diverges. For ∆ > 0, the presence of
Berry curvature leads to an anomalous velocity transverse to momentum, and to a Hall conductivity for each
valley. However, it is important to note that the Berry curvatures in the two valleys have opposite signs, so that,
upon summing over the two valleys, the net Hall conductivity (as seen by an electromagnetic field) will vanish.
This can be overcome by pumping the material with circularly-polarized light tuned to the bandgap [23], which
will preferentially populate one of the valley conduction bands, leading to a net optical Hall conductivity and
chiral edge SPPs [24].

10Under typical perturbation conditions where a small electric field causes f = f0 + δf , δf << f , Hall current will be associated
with both terms, and the term associated with δf is second-order small since δf itself is proportional to the electric field
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1.4.5 Bulk-Edge Correspondence

An aspect of Berry curvature that is of immense interest in both electronic and photonic applications is the
presence of one-way edge modes that are topologically protected from backscattering. The idea of Hall con-
ductivity in an insulator gives some intuition about the one-way nature of these modes. Consider a finite-sized
rectangle of thin material, immersed in a perpendicular magnetic field as depicted in Fig. 3. Bound electrons
will circulate in response to the applied field, and those near the edge will have their orbits terminated by the
edge [29]. The net effect is to have a uni-directional movement of electrons at the edge (orange arrows). The

B

Figure 3: Depiction of electron orbits in an insulator in the presence of a magnetic field, and interrupted orbits
at the edge.

presence of a Hall conductivity (whether due to a magnetic field in the ordinary manner, or due to non-zero
Berry curvature associated with broken TR or I symmetry) will elicit a similar response, although the response
is quantized as described above. Thus, the bulk properties of the insulating material will result in a conducting
edge state. This happes in both the electronic case, and the photonic case to be described below.

Furthermore, consider that the Chern number and all Berry properties are related to an infinite bulk material,
which generates bandstructure. However, in any practical application the material is finite, and has an interface
with another medium. Let’s consider a planar interface between medium 1 and medium 2. Far from the
interface, in each region, particles (electrons, photons) will be governed by the respective Hamiltonians H1,2.

Let’s assume that both materials share a common bandgap, and that Cgap,1 =
∑
n<ng

C
(1)
n , the Chern number

sum over bands below the gap for material 1, and Cgap,2 =
∑
n<ng

C
(2)
n , the corresponding sum for material 2,

differ, Cgap,∆ = C2 − C1 6= 0. For some parameter value the shared bandgap between the two mediums can
close and then reopen. At the closing point there is a degeneracy, and as the gap reopens it can be crossed by a
surface mode, as depicted in Fig. 4. The edge-modes are circularly-polarized (spin-polarized), and in periodic
media are localized to a few lattice constants from the material boundary.

ω

k

ω

k

+1

-1

Figure 4: Bulk-edge correspondence. Materials with common bandgap and different Chern numbers share an
interface where a uni-directional edge state closes the gap.

The existence of the surface/edge state is necessitated by the bulk material characteristics, and so is inde-
pendent of interface details. Therefore, the interface can possess discontinuities, defects, etc., which will not
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affect the surface wave. It can also be seen that the fact that the surface/edge states connect different energy
levels indicates that they will have a group velocity that has definite sign (i.e., one-directional propagation).
Therefore, in summary, the surface states are unidirectional and topologically protected from backscattering.

2 Electromagnetic Description - Berry quantities for photons

Although the concept of Berry phase is general for any cyclic variation through some parameter space R, a
primary application is to periodic solid solid state systems (e.g., electrons in a crystal lattice), although here
we are primarily interested in the photonic analogous of those systems, photonic topological insulators (PTIs)
for both photonic crystals and for continuum media.

For simplicity in observing the correspondence between Maxwell’s equations and the evolution equation
(2), we first assume lossless and dispersionless materials characterized by dimensionless real-valued parameter
ε, µ, ξ, ς, representing permittivity, permeability and magneto-electric coupling tensors. Although any real
material must have frequency dispersion, this simple model allows a straightforward conversion of various Berry
quantities from the electronic to the electromagnetic case. The inclusion of both frequency and spatial dispersion
will be discussed later.

In this case, Maxwell’s equations are

∇×E = −µ0µ ·
∂H

∂t
− ς

c
· ∂E

∂t
− Jm

∇×H = ε0ε ·
∂E

∂t
+
ξ

c
· ∂H

∂t
+ Je. (78)

By defining the matrices

M =

(
ε0ε

1
c ξ

1
c ς µ0µ

)
, N =

(
0 i∇× I3×3

−i∇× I3×3 0

)
, (79)

f =

(
E
H

)
, g =

(
D
B

)
= Mf, J =

(
Je
Jm

)
where M is Hermitian and real-valued, we can write Maxwell’s equations in a compact form [30],

N · f = i

[
∂g

∂t
+ J

]
= i

[
M
∂f

∂t
+
∂M

∂t
f + J

]
. (80)

Note that the units of the sub-blocks of M differ (as do the dimensions of the 6-vectors f and g) , and that ε, ξ, ς,
and µ are dimensionless. In the absence of an external excitation (J = 0) and assumption of non-dispersive
(instantaneous) materials, Maxwell’s equations become

i
∂f

∂t
= Hcl · f (81)

where Hcl = M−1 ·N , which has the same form as the evolution equation (2) (e.g., the Schrödinger equation)
with ~ = 1, where the operator Hcl plays the role of a classical Hamiltonian. Because of this similarity between
Maxwell’s equations and the evolution equation (2) it is straightforward to extend the Berry potential concept
to electromagnetic energy (photons); rather then, say, electrons acquiring a Berry phase while transversing a
path in parameters space, photons will do the same (the polarization of the photon plays the role of particle
spin). In this case, we define fn as a six-component eigenmode satisfying11

Hcl · fn = Enfn (82)

where En = ωn. Under a suitable inner product (discussed below) Hcl is Hermitian, and assuming the normal-
ization condition 〈fn|fm〉 = δnm, the Berry vector potential has the same form as (12)

An = i 〈fn|∇Rfn〉 . (83)

11In (79) and (81) f is real-valued, unlike in the Schrödinger equation where the wavefunction is complex-valued. The eigenfunc-
tions in (82) fn are complex-valued.

14



If we assume a photonic crystal (periodic structure), fn has the Bloch form fn (r) = un (r) eikr, where un (r)
is the periodic Bloch function and k is the Block wavevector. In this case, ∇R = ∇k operates over parameter
space k = (kx, ky, kz) and

An = i 〈un|∇kun〉 (84)

where the inner product is

〈un |um 〉 =
1

2

∫
BZ

u∗n (r)M (r)um (r) dr. (85)

This is the dispersionless special case of the result presented in [5] (see (41) in that reference), generalized to
account for magnetoelectric coupling parameters in M .

The extension to dispersive media (i.e., real materials) would seem difficult since the simple product g = Mf
in (79) becomes a convolution in time. However, it is shown in [5] (omitting magnetoelectric parameters,
although this can also be included) that the only necessary modification to allow for dispersive materials
M = M (ω) is to replace M in (85) with ∂ (ωM (ω)) /∂ω, so that

〈un |um 〉 =
1

2

∫
BZ

u∗n (r)
∂ (ωM (ω))

∂ω
um (r) dr. (86)

The material continuum model will be considered below.

2.1 Some electromagnetic material classes that posses non-trivial Chern numbers

Although the field of topological photonic insulators is still being developed, there are several classes of materials
and structures which posses topological protection and non-trivial Chern numbers. The approaches to design
PTIs can be roughly divided into two categories. The first one relies on breaking of time-reversal symmetry
by applying a static magnetic field to a gyromagnetic material [13] or time-harmonic modulation of coupled
resonators [31], [32]. Another approach involves time-reversal-invariant metamaterials, where photon states are
separated in two ‘spin’ sub-spaces (usually through geometry such as via a hexagonal lattice), and ‘spin-orbit’
coupling is introduced through symmetry-breaking exploring such non-trivial characteristics of metamaterials
as chirality, bianisotropy and hyperbolicity [33], [34]. For an electromagnetic standpoint, the most important
aspect of a PTI is the presence of surface/edge states that are topologically protected from backscattering
(having non-trivial Chern number).

In classical electromagnetics, the fields E, D, and P are even under time reversal (do not change with
time-reversal), whereas Amag, B, H, J, and S (Poynting vector) are odd under time reversal (negated under
time reversal). For systems with time-reversal (TR) symmetry,

Fnαβ (k) = −Fnαβ (−k) . (87)

Furthermore, the fields B and H are even under space inversion, whereas E, D, J, P, Amag, and S are odd
under spacial inversion. For systems with parity/inversion (I) symmetry,

Fnαβ (k) = Fnαβ (−k) , (88)

so that if both symmetries are present,
Fnαβ (k) = 0. (89)

Systems having both spatial-inversion and time-reversal symmetry will exhibit trivial topology in momentum
space, so that no one-way edge mode will exist (all bands have Cn = 0).

Regarding periodic materials, Dirac (linear) degeneracies will occur for hexagonal lattices, and other lattice
types may exhibit other degeneracies (e.g., quadratic degeneracies consisting of double Dirac degeneracies for
a cubic lattice [35], [36], but, regardless of degeneracy type, for, e.g., a simple lattice of material cylinders in a
host medium, if the cylinders are made of simple isotropic materials have scalar material properties ε and µ, the
system will be both space-inversion and time-reversal symmetric, and all bands will have trivial Chern number.

In the periodic case the degeneracies can be broken in several ways. One way that has been widely studied
is to use rods with materials that themselves break TR symmetry [36], or to embed, say, a hexagonal array of
nonreciprocal rods into another array of simple rods [37] so that both arrays share a common bandgap. The
resulting nonreciprocal structure will generally have bands of non-trivial Chern number, leading to a non-zero
gap Chern number. A detailed example is provided below. Large Chern numbers can be achieved by increasing
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spatial symmetry to result in point degeneracies of higher order (e.g., several co-located Dirac points), and then
to, say, introduce TR breaking [38].

Another method to create a nontrivial Chern number is to use simple materials (simple dielectrics and
metals), but to break inversion symmetry by deforming the lattice. For example, in [39] simple dielectric rods
are used in a hexagonal pattern, resulting in a Dirac degeneracy and trivial Chern number. Slightly deforming
the lattice can result in inversion-symmetry breaking, and Cgap 6= 0. Various other schemes have also been
proposed [33], [10].

2.2 Berry quantities for continuum media

Although the electronic case, and, by analogy, the photonic case, were developed for periodic systems (for which
the relations provided in sections 1.2 and 1.3 hold), it turns out that continuum material models can also lead
to nontrivial Chern numbers. The simplest example is of a biased plasma (magneto-plasma) as considered in
Fig. 1, with permittivity tensor

ε =

 ε11 ε12 0
ε21 ε22 0
0 0 ε33

 (90)

where typically ε21 = ε∗12 and ε11 = ε22 = ε33 (in the absence of a bias field ε12 = 0, the material is reciprocal,
and ε reduces to a scalar). An example involving this type of material is provided below. At the interface
between the magneto-plasma and an ordinary (unbiased) plasma, a topologically protected edge mode can
exist [3], [1], [2]. In addition, more complicated materials combining hyperbolic and chiral response have been
shown to be topologically nontrivial [34].

A continuum material presents a difficulty in that, rather than have a periodic Brillouin zone that is,
effectively, a closed surface (equivalent to a torus), providing the surface over which the Chern number can be
computed, the momentum-space of an infinite homogeneous material continuum model does not form a closed
surface. However, in [3] it is shown that 2D momentum space can be mapped to the Riemann sphere, forming
the necessary surface (north and south poles being exceptional points, as discussed below).

Another issue, for both periodic and continuum models, is to account for material dispersion. Following
the result in [5] for lossless dispersive local periodic media, in [3] continuum models of dispersive lossless, and
possibly wavevector-dependent (nonlocal) materials are considered. The Berry potential is again given by (12),
with the inner product12

〈fn|fm〉 =
1

2
f∗n
∂ (ωM (ω))

∂ω
fm. (91)

3 Photonic Examples

3.1 Periodic photonic system example

This example is taken directly from [37].
One way to create a PTI is via a hexagonal array of infinite cylinders. Consider a simple dielectric of ε

with a periodic array of air holes (cylinders of radius r1 = α1a, with a the lattice constant) in the form of a
triangular lattice, as shown in Fig. 5a. The periodicity is chosen to create a bandgap in the allowed modes
of the system [37]. A single defect, such as making one hole a different radius, or filling the hole with some
material, can establish a resonator having frequency in the bandgap. Making a periodic array of defects can
create bandstructure within the original bandgap, in this case creating four modes in the bandgap. Here the
array of defects is created using cylinders of radius r2 = α2a of magneto-optic material,

εrod =

 εr −iεi 0
iεi εr 0
0 0 εr

 (92)

and arranging them in a hexagonal lattice with lattice constant a′ = α3a, as shown in Fig. 5b. Due to the
hexagonal symmetry, for the unbiased defect array (εi = 0) there are degeneracies in the modes at the Γ and
K points. Time-reversal symmetry can be broken by applying a bias parallel to the cylinders (εi 6= 0), lifting
the degeneracy (see Fig. 9 discussed later).

12The most general result in [3] is more complicated, but for a wide range of material classes the simpler result shown here holds.
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Figure 5: (a) Top view of photonic crystal made from air holes (cylinders) in a host insulating medium. Lattice
constant is a, cylinders have radius r1 = α1a, and the host medium is characterized by ε (equivalently, one could
have dielectric cylinders in a host material), (b) Defected structure; here, magneto-optic cylinders forming a
hexagonal array of “defects” in the air-hole medium. Magneto-optic cylinders have radius r2 = α2a and lattice
constant a′ = α3a.

To determine the bandstructure, we could solve the eigenvalue equation Hclfnk (r) = Enkfnk (r), where
Hcl is the 6x6 electromagnetic Hamiltonian and fnk is the six-vector of fields, both defined previously. In
general, this is a quite complicated electromagnetic problem, which, however, can be solved using commercial
simulators. We can simplify the problem from the 6x6 formulation by noting that from Maxwell’s equations for
a material characterized by this magneto-optic permittivity, TE modes have a single magnetic field component
Hz parallel to the infinite cylinders, and an in-plane electric field. The magnetic field satisfies the eigenvalue
equation [43]– [44]

H(zHz) =
(ω
c

)2

(zHz) (93)

where the operator H = Hcl = ∇ × ε−1∇× is Hermitian for lossless media, under the usual inner product
〈f ,g〉 =

∫
f∗ · gdr. Thus, we can solve a scalar equation for Hz. Furthermore, an approximate solution can

be obtained that gives considerable insight into the problem; the typical-binding method of condensed matter
physics can be used to obtain an effective four-band Hamiltonian in the electromagnetic case [45] (and, as a
special case we recover the graphene result).

The individual resonators support two p-type (dipole-like) modes at the same frequency ω0. Considering
that the honeycomb lattice has two inequivalent sites A and B, each having two different states px,y, then
considering Bloch’s theorem the wavefunction fnk (r) = Hz (r) is expanded as

fnk (r) =
1√
N

∑
R

eik·R
∑

β=A,B

∑
α=x,y

cβαφpα (r− dβ −R) (94)

where R is the lattice vector and φ the mode function. Plugging into the energy eigenvalue equation Hfnk (r) =
Enkfnk (r), multiplying through by

∫
dr φpα (r− dγ) and exploiting the assumed orthogonality of the modes,

it is easy to obtain the Hermitian (effective, 4-band) Hamiltonian matrix

H =


ω0 gAAxy (k) gABxx (k) gABxy (k)

ω0 gAByx (k) gAByy (k)
ω0 gBBxy (k)

ω0

 (95)

where
gαβγδ (k) =

∑
R

eik·RHαβ
γδ (R) , (96)

with Hαβ
γδ (τ) being overlap/hopping integrals having the form

Hαβ
γδ (R) =

∫
dr φpα (r− dγ)Hφpβ (r− dδ −R) . (97)
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We assume that Hαα
γγ is dominated by the self energy13, which leads to the diagonal components.

To evaluate the off-diagonal components, we consider only nearest neighbors. However, let us first digress
and consider graphene, which is arranged in a hexagonal lattice and has two carbon atoms per unit cell.

3.1.1 Graphene interlude – the hexagonal lattice

The direct and reciprocal lattices for a hexagon lattice are shown in Figs. 6-8.

a1

Α

y

x

a2

Β

b

R2

R3

R1

Α

Β

Figure 6: Direct space for a hexagonal lattice, two-atoms (A and B) per unit cell. Nearest-neighbor vectors are
R1,2,3

The direct-space vectors are

a1 =
a

2

(√
3, 1
)
, a2 =

a

2

(√
3,−1

)
, (99)

where a = |a1| = |a2| =
√

3b is the lattice constant. For graphene, b = 0.142 nm is the interatomic distance
between carbon atoms. The nearest neighbor vectors are (see Fig. 6)

R1 =

(
a√
3
, 0

)
, R2 = −a2 + R1 =

(
− a

2
√

3
,
a

2

)
, R3 = −a1 + R1 =

(
− a

2
√

3
,−a

2

)
, (100)

with |R1| = |R2| = |R3| = b = a/
√

3.
The reciprocal lattice vectors are (see Fig. 7)

b1 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
, (101)

where |b1| = |b2| = 4π/
√

3a, (the side length of the reciprocal lattice hexagon is bbz = |b1| /
√

3 = 4π/3a).
The high-symmetry points in the Brillouin zone are

Γ = (0, 0) , K =

(
2π√
3a
,

2π

3a

)
, M =

(
2π√
3a
, 0

)
, (102)

and |Γ−M| = 2π/
√

3a, |Γ−K| = 4π/3a, and |M−K| = 2π/3a.

13

Hαα
γγ =

∫
dr φpα (r− dγ)Hφpα (r− dγ −R) '

∫
dr φpα (r− dγ)Hγφpα (r− dγ −R) (98)

= ω0

∫
dr φpα (r− dγ)φpα (r− dγ −R) = ω0

{
1, R = 0
0, R 6= 0

,

where Hγ is the Hamiltonian of an isolated resonator
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Figure 7: Reciprocal space for a hexagonal lattice. Γ, K, and M are the high-symmetry points.
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Figure 8: Close-up, reciprocal space for a hexagonal lattice.

For π−bonding in graphene (the usual low-energy case), each carbon atom contributes one 2pz-orbital, so
we have half as many unknowns compared to the two-orbital photonic case described above. Then,

fnk (r) =
1√
N

∑
R

eik·R
∑

β=A,B

cβφp (r− dβ −R) . (103)

Since there is only one symmetric orbital, confining the summation to the three nearest neighbors τ ,

gαβ (k) =
∑
τ

eik·τHαβ (τ) ' Hαβ
∑
τ

eik·τ (104)

For atom A, the three nearest neighbors are the three nearby B atoms, located at τ1,2,3 = R1,2,3, so that

h (k) =
∑
τ

eik·τ = e
ikx

a√
3 + e

i
(
−kx a

2
√

3
+ky

a
2

)
+ e
−i
(
kx

a
2
√

3
+ky

a
2

)
= e

ikx
a√
3 + 2 cos

(
ky
a

2

)
e
−ikx a

2
√

3 . (105)

The Hamiltonian matrix is then [
ω0 γh (k)

γh∗ (k) ω0

] [
cAk
cBk

]
= Enk

[
cAk
cBk

]
(106)

where γ = Hαβ is the overlap integral (with typical values of several eV). Then, the energy dispersion is

(ω0 − Enk)
2 − |γh (k)|2 = 0, so that, since ω0 = 0, we have the celebrated graphene result

Enk = ±γ

√√√√1 + 4 cos

(
kx

√
3a

2

)
cos
(
ky
a

2

)
+ 4 cos2

(
ky
a

2

)
. (107)
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There is no bandgap because the two atoms are identical. The above is the simplest formulation; we obtain
several corrections to this result if we do not drop the R 6= 0 terms in the diagonal components, and also from
the fact that the A and B orbitals have some overlap.

Returning to the electromagnetic cylinder case considered in [37], since there are two orbitals per mode φpx,y ,

evaluation of the gαβγδ (k) functions is more difficult because we cannot factorize
∑
τ e

ik·τHαβ (τ) ' Hαβ
∑
τ e

ik·τ

as above for the graphene case, due to the complexity of the orbitals. However, this is a common occurrence in
condensed matter physics, and the following two-center interaction integrals are widely used,

Hα6=β
γδ (R) =

∫
dr φpα (r− dγ)Hφpβ (r− dδ −R) =

{
l2αVσ +

(
1− l2β

)
Vπ for α = β = x, y

lαlβ (Vσ − Vπ) for α 6= β,
(108)

where lx,y are the direction cosines lα = α ·R/ |R|. For R = R1, lx = 1, ly = 0, for R = R2, lx = −1/2 and
ly =

√
3/2, and for R = R3, lx = −1/2 and ly = −

√
3/2. Therefore,∑

R

eik·RHABxx (R) =
∑
R

eik·R
∫
dr φpx (r− dA)Hφpx (r− dB −R) (109)

= e
ikx

a√
3Vσ + cos

(
ky
a

2

)
e
−ikx a

2
√

3

(
1

2
Vσ +

3

2
Vπ

)
. (110)

For the next element,∑
R

eik·RHABxy (R) =
∑
R

eik·R
∫
dr φpx (r− dA)Hφpy (r− dB −R) (111)

= −2i sin
(
ky
a

2

)
e
−ikx a

2
√

3

√
3

4
(Vσ − Vπ) . (112)

The other elements are evaluated in a similar fashion.
In the following, we assume [37] ε = 16, r1 = 0.35a, r2 = 0.5a, and a′ = 6a. Making the substitution a→ 6a

since in the derivation a = a′ is the hexagon lattice constant, but it is convenient to express the matrix entries
in terms of the original (undeformed) lattice constant a, the final matrix is [37]14

H =


ω0 −iVp

(
3
2Vπ + 1

2Vσ
)

cos (3kya) e−i
√

3kxa + Vαe
i2
√

3kxa −i
√

3
2 (Vσ − Vπ) sin (3kya) e−i

√
3kxa

ω0 −i
√

3
2 (Vσ − Vπ) sin (3kya) e−i

√
3kxa

(
3
2Vσ + 1

2Vπ
)

cos (3kya) e−i
√

3kxa + Vπe
i2
√

3kxa

ω0 −iVp
ω0

 .
(113)

The bond integrals Vσ,π are evaluated by matching the resulting bandstructure to the commercial simulation.
This results in the absence of applied magnetization (time-reversal invariant case) [37] Vσ = −0.001185, Vπ =
0.000085, and Vp = 0, the overlap between x and y orbitals for the same atom. In the presence of magnetization
(time-reversal symmetry broken, assuming εi = 1), Vσ = −0.001192, Vπ = 0.000092, and Vp = 0.0007, where
all terms have units of radian frequency 2πc/a.

From the projected Hamiltonian matrix Hn,m it is easy to solve the eigenvalue problem Hfn = ωnfn. Results
are shown in Fig. 9, showing (a) the case for no magnetic bias (Vp = 0 and (b) with bias applied, breaking TR
symmetry and lifting the degeneracies. Note that the high-symmetry points in Fig. 9 are with respect to the
a′ lattice,

Γ = (0, 0) , K =

(
2π√
3a′

,
2π

3a′

)
, M =

(
2π√
3a′

, 0

)
. (114)

To compute the Chern number, the form of the Berry curvature (30) is convenient to use since derivatives of
the effective 4-band Hamiltonian can be taken analytically. Eigenvalues ωn = En of the matrix H were found
analytically using a symbolic solver, and eigenfunctions |n〉 were found numerically. Integration over the first
Brillouin zone depicted in Fig. 8 results in the Chern number by (44),

Cn =
1

2π

∫
BZ

Fnxydkxdky (115)
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Figure 9: Bandstructure for the lattice depicted in Fig. 5b. Left side shows the reciprocal case, Vp = 0, where
there are modal degeneracies that close the bandgap, and Cn = 0, and the right side shows the nonreciprocal
case, Vp 6= 0, for which the degeneracies are lifted and two bands have Cn = ±1.
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Figure 10: Left: Original hexagonal Brillouin zone (blue), and Right: equivalent rectangular Brillouin zone.

leading to bands 1 and 4 having Chern number C1,4 = ∓1 and the middle two bands having C2,3 = 0 (note
that the sum of Chern numbers is zero, as expected). For the reciprocal case Vp = 0, Cn = 0 for all bands.

For the numerical integration, it is convenient to use the fact that any two points in adjacent Brillouin zones
(or any points connect by multiples of a basis vector) are equivalent. Figure 10 shows that the upper two right
triangles (red and green) that form the top of the hexagon (blue) can be mapped to the bottom of the hexagon,
so that the integration reduces to being over the simple rectangle shown at the right of the figure.

The Berry curvature for each band in the non-reciprocal case is plotted as a function of kx − ky in Fig. 11.
The two bands C2,3 = 0 have odd Berry curvature (so that they integrate to zero), and the two bands with
C1,4 = ±1 have even, sinusoidal Berry curvature (so that they integrate to an integer). In the reciprocal case
(Vp = 0), the Berry curvature is identically zero, by (89), and which is also easy to confirm numerically.

3.2 Continuum photonic example

This example is related to [1] (see also [2]), with Berry quantities and Chern number analysis directly taken
from the seminal work [3].

As an example of a nonreciprocal continuous medium, we consider a magnetized plasma in the Voigt configu-
ration (propagation perpendicular to the bias magnetic field B), as depicted in Fig. 12. For a single-component
plasma biased with a static magnetic field B = zBz, the permeability is µ = µ0 and the relative permittivity

14Note that [37] uses a coordinate system where x and y are interchanged from those used here.
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Figure 11: Berry curvature for the four bands of Fig. 9; C1,4 = ∓1 and C2,3 = 0

has the form of a Hermitian antisymmetric tensor,

ε =

 ε11 ε12 0
ε21 ε22 0
0 0 ε33

 (116)

where

ε11 = ε22 = 1−
ω2
p

ω2 − ω2
c

, ε33 = 1−
ω2
p

ω2
,

ε12 = −ε21 = i
−ωcω2

p

ω (ω2 − ω2
c )

(117)

where the cyclotron frequency is ωc = (qe/me)Bz and the plasma frequency is ω2
p = Neq

2
e/ε0me. In the above,

Ne is the free electron density, and qe and me are the electron charge and mass, respectively.
We will also consider the material model examined in [3], where ε33 = 1 and

ε11 = ε22 = 1− ω0ωe
ω2 − ω2

0

, ε12 = ε21 = i
ωωe

ω2 − ω2
0

, (118)

where |ω0| a the resonance frequency and ωe determines the resonance strength, with ω0ωe > 0.
For propagation in the x − y plane, k = (kx, ky, 0), the plane wave supported by this medium can be

decoupled into TE (Ez 6= 0, Hz = 0) and TM (Ez = 0, Hz 6= 0) waves. Since there is no magneto-electric
coupling ξ = ς = 0, the dispersion of these modes is

k2 =
ε211 + ε212

ε11

(ωn
c

)2

, TM mode (119)

k2 = ε33

(ωn
c

)2

, TE mode (120)

such that ωn is the eigenfrequency of each mode. Despite the non-reciprocal nature of the medium itself, in
the Voigt configuration the bulk dispersion behavior is reciprocal (an interface will break this reciprocity). The
dispersion curves for these material are shown in Fig. 13 (the spatial cutoff is described later).
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Figure 13: Band diagram and Chern numbers (TM modes) for a magneto-optic material; blue: TM mode, no
spatial cut-off, green: TM mode, with spatial cut-off, red: TE mode, purple: gap. Left: magneto-optic material
(118) with ωe/ω0 = 5.6 and kmax = 10 (ω0/c), right: magneto-optic material (117) with ωp/2π = 9.7 THz,
ωc/2π = 1.73 THz (ωp/ωc = 5.6), and kmax = 10 (ωc/c), black: SPP dispersion.
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Figure 12: Interface between a
magnetic-field biased plasma (bottom)
and a simple material (top).

The associated electromagnetic waves envelopes can be obtained
by finding the solution f = [E,H]

T
, of (82), N · f = ωM · f , which is(

0 −k× I3×3

k× I3×3 0

)
·
(

E
H

)
=

(
ωε0ε 0

0 ωµ0I3×3

)
·
(

E
H

)
(121)

so that(
−I3×3 − ε

−1

ωε0
· k× I3×3

1
ωµ0
· k× I3×3 −I3×3

)
·
(

E
H

)
= 0. (122)

With H = ẑ → E = ε−1 · ẑ×kωε0
(TM), E = ẑ → H = k

ωµ0
× ẑ (TE),

we have the 6× 1 vectors

fTM
nk =

(
ε−1 · ẑ× k

ε0ωnk
ẑ

)
,

fTE
nk =

(
ẑ

k
µ0ωnk

× ẑ

)
. (123)

Because the envelopes of the electromagnetic waves in the above equa-
tions are not normalized, the Berry potential is computed using

Ank =
Re{if∗nk · ∂∂ω (ωM(ω))∂kfn,k}

f∗nk ·
∂
∂ω (ωM(ω))fn,k

. (124)

Considering the Riemann sphere mapping of the kx − ky plane as detailed in [3], it is possible to write the
Chern number associated with nth eigenmode branch as

Cn =
1

2π

∫
An,k=∞ · dl−

1

2π

∫
An,k=0+ · dl (125)

where the two line integrals are over infinite and infinitesimal radii (north and south poles of the Riemann

sphere), respectively. If we define Ank = Ank · φ̂ then we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k). (126)
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For a lossless TM-mode in propagating in the x− y plane we have k = kxx̂ + kyŷ = k cos(φ)x̂ + k sin(φ)ŷ.
Writing

ε−1 =

 α11 α12 0
α21 α22 0
0 0 α33

 (127)

we have

fnk =

(
ε−1 · ẑ× k

ε0ωnk
ẑ

)
=



−α11ky+α12kx
ε0ωn

−α21ky+α22kx
ε0ωn

0
0
0
1

 , ∂kfnk =



−α11ŷ+α12x̂
ε0ωn

−α21ŷ+α22x̂
ε0ωn

0
0
0
0

 (128)

where

α11 =
ε22

ε11ε22 − ε12ε21
, α22 =

ε11

ε11ε22 − ε12ε21
, α12 =

−ε12

ε11ε22 − ε12ε21
, α21 =

−ε21

ε11ε22 − ε12ε21
, (129)

such that

f∗nk =
1

ε0ωn

(
(−α11ky + α12kx)∗ (−α21ky + α22kx)∗ 0 0 0 1

)
. (130)

From the frequency derivative of the material response matrix, ∂ω(ωM), we have βij = ∂ω(ωε0εij). So, for the
Berry potential we have

Ank =
Re{if∗nk · 1

2
∂
∂ω (ωM(ω))∂kfn,k}

f∗nk ·
1
2
∂
∂ω (ωM(ω))fn,k

=
Re{Nx +Ny}

D
(131)

where

Nx =
i

2(ε0ωn)2
{−2α11α12[kxβ12 + kyβ11] + (|α11|2 + |α12|2)[kxβ11 − kyβ12]}x̂ (132)

Ny =
i

2(ε0ωn)2
{2α11α12[kxβ11 − kyβ12] + (|α11|2 + |α12|2)[kxβ12 + kyβ11]}ŷ

D =
|k|2

2(ε0ωn)2
[(|α11|2 + |α12|2)β11 − 2α11α12β12] + µ0. (133)

Therefore, for the Chern number calculation we obtain

An = An · φ̂ =
Re{Nycos(φ)−Nxsin(φ)}

D
(134)

An(φ = 0) =
Re{Ny(φ = 0)}

D
, Ny(φ = 0) =

ik

(ε0ωn)2
{2α11α12β11 + (|α11|2 + |α12|2)β12}

An(φ = 0)k =
Re( i|k|2

(ε0ωn)2 {2α11α12β11 + (|α11|2 + |α12|2)β12})
|k|2

(ε0ωn)2 [(|α11|2 + |α12|2)β11 − 2α11α12β12] + µ0

. (135)

These expressions are used below in calculating the Chern number from (126).

3.2.1 Chern number calculation as a surface integral over the kx − ky plane

From (132) the Berry curvature is

Fk = Re{∂Ax(kx, ky)

∂ky
− ∂Ay(kx, ky)

∂kx
}(−ẑ)

Fk = Re{ iẑ

D(ε0ωn)2
{2α11α12β11 + (|α11|2+|α12|2)β12}}. (136)
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If we consider propagation in k−space such that kz = 0 then the Chern number computed over the infinite
surface is

C =
1

2π
=

∫ kx=+∞

kx=−∞

∫ ky=+∞

ky=−∞
dkxdky · Fk =

1

2π

∫ φ=2π

φ=0

∫ k=∞

k=0

kdkdφ · Fk

C = (δ(k))
k=∞
k=0 =

(
Re{ i

D(ε0ωn)2

1

2
{2α11α12β11 + (|α11|2+|α12|2)β12}}

)k=∞

k=0

(137)

which leads to (126) with δ(k) = An(φ = 0)k in (135). Therefore the Chern number computed as an infinite
surface integral is the same as computed via the line integral near the north and south poles of the Riemann
sphere, as shown in [3].

3.2.2 Low frequency band of the TM-mode, material model (118)

For material model (118), we will denote the lower curve in Fig. 13 as the low frequency band of the TM-
mode. When k → ∞ from the TM-dispersion relation (119), then ωn should tend to the zero of ε11, which is
ωn =

√
ω2

0 + ω0ωe. Since

k2 =
ε211 + ε212

ε11

(ωn
c

)2

=
ω2

0 − ω2 + 2ω0ωe + ω2
e

ω2
0 − ω2 + ω0ωe

(ωn
c

)2

, TM mode, (138)

in the limit k →∞ we obtain ε11 = 0, α11 = 0 and (k/ωn)2 →∞. So, for An(φ = 0) we get

An(φ = 0)k =
Re i|k|2

(ε0ωn)2 {|α12|2β12}
|k|2

(ε0ωn)2 {|α12|2β11}+ µ0

=
Re i|k|2

(ε0ωn)2 {|
1
ε12
|2β12}

|k|2
(ε0ωn)2 {|

1
ε12
|2β11}+ µ0

(139)

such that

β11 = ε0(1 + ω0ωe
ω2

0 + ω2

(ω2
0 − ω2)2

), β12 = −iε0ωe
2ωω2

0

(ω2
0 − ω2)2

. (140)

For ωn =
√
ω2

0 + ω0ωe we have β11 = 2ε0(1 + ω0

ωe
) and β12 = − (2ε0i/ωe)

√
ω2

0 + ω0ωe. Finally, taking the limit
k →∞ ,

lim
k→∞

An(φ = 0)k =

√
ω2

0 + ω0ωe/ωe
(1 + ω0

ωe
)

=
|ω0|

√
1 + ωe

ω0

ω0(1 + ωe
ω0

)
=

sgn(ω0)√
1 + ωe

ω0

=
sgn(ωe)√
1 + |ωeω0

|
(141)

When k → 0, the lower band of TM-mode tends to the light line (which means ωn → 0). Therefore ε12 = 0
and β12 = 0, which leads to lim

k→0
An(φ = 0)k = 0. Eventually, for Chern number we obtain

Cn=1 = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) =
sgn(ωe)√
1 + |ωeω0

|
. (142)

The fact that this Chern number is not an integer will be addressed below, and the solution of this issue is a
fundamental contribution of [3].

3.2.3 High frequency band of the TM-mode, material model (118)

For material model (118), denoting the upper curve in Fig. 13) as the high-frequency band, from the dispersion
relation (119),

k2 =
ω2

0 − ω2 + 2ω0ωe + ω2
e

ω2
0 − ω2 + ω0ωe

(ωn
c

)2

→ 0 if ωn = 0, ωn = |ω0 + ωe| . (143)

If ωn = 0, then

ε11 = 1 +
ωe
ω0
, ε12 = 0, α11 =

1

1 + ωe/ω0
, α12 = 0, β11 = 1 + ωe/ω0, β12 = 0,

(
k

ωn

)2

=
1

c2

(
1 +

ωe
ω0

)2

(144)
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so for the numerator of An(φ = 0)k we have 2α11α12β11 + (|α11|2 + |α12|2)β12 = 0. Therefore there is no
contribution for the eigenfrequency ωn = 0 as k → 0. In fact it is obvious that ωn = 0 has no contribution
because this eigenfrequency as k → 0 belongs to the TM low frequency band and it has no effect on the high
frequency TM band.

If ωn = |ω0 + ωe|, it can be shown that

ε12 = iε11sgn(ωe), α11 =
ε11

ε211 + ε212

→∞, α12 =
−ε12

ε211 + ε212

→∞, β12 = iβ11sgn(ωe),

(
k

ωn

)2

=
1

c2
ε211 + ε212

ε11
→ 0

(145)
and by carefully treating the limit lim

k→0
An(φ = 0)k and considering the fact that for ωn = |ω0 + ωe| we have

ε11 =
(
ω2
e + ω0ωe

)
/
(
ω2
e + 2ω0ωe

)
> 0 then it can be shown that

lim
k→0

An(φ = 0)k = sgn(ωe). (146)

When k → ∞ then the high-frequency mode tends to the light line, so that lim
k→∞

An(φ = 0)k = 0. Eventually

for the high frequency TM-band we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = −sgn(ωe). (147)

3.2.4 TE-Mode

Using same procedure as above, it is straightforward to show that for the TE-Mode we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = 0. (148)

3.2.5 Material model (117)

Considering material model (117), from the dispersion equation (119),

k2 =
ω2(ω2 − ω2

c )− 2ω2ω2
p + ω4

p

ω2 − ω2
c − ω2

p

1

c2
. (149)

As k →∞ and regarding Fig. (13) we have ωn →∞ for the high frequency band, and, for the low frequency

band, ω2 − ω2
c − ω2

p = 0, such that ωn =
√
ω2
c + ω2

p.

For the TM mode if k → 0 we have

ω2(ω2 − ω2
c )− 2ω2ω2

p + ω4
p = 0 →

ω
2
n =

ω2
h

2

{
1 +

√
1− 4(

ωp
ωh

)4
}
, for high frequency TM

ω2
n =

ω2
h

2

{
1−

√
1− 4(

ωp
ωh

)4
}
, for low frequency TM

where ω2
h = ω2

c + 2ω2
p.

The Chern number is (126) with (135), and

β11 = 1 + ω2
p

ω2 + ω2
c

(ω2 − ω2
c )2

, β12 = 2iωcω
2
p

ω

(ω2 − ω2
c )2

. (150)

For the low frequency TM band when k →∞ (ωn =
√
ω2
c + ω2

p), ε11 = 0 and α11 = 0. Therefore,

lim
k→∞

(An,φ=0k) = Re

{
iβ12

β11

}
ωn=
√
ω2
c+ω2

p

= − sgn(ωc)√
1 + (

ωp
ωc

)2
(151)
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For the case of k → 0, we have ω2
n =

ω2
h

2

{
1−

√
1− 4

(
ωp
ωh

)4
}

which is the pole of α11 and α12, so α11 →∞,

α12 →∞. Then,

lim
k→0

(An,φ=0k) = lim
k→0

Re( i
(ε0c)2α11

{2α11α12β11 + (|α11|2 + |α12|2)β12})
1

(ε0c)2α11
{(|α11|2 + |α12|2)β11 − 2α11α12β12}+ µ0

=

Re( i
(ε0c)2

{2α12

α11
β11 + (1 + |α12|2

α2
11

)β12})
1

(ε0c)2
{(1 + |α12|2

α2
11

)β11 − 2α12

α11
β12}


ω2
n=

ω2
h
2

{
1−
√

1−4
(
ωp
ωh

)4

} = 1, (152)

and the Chern number of the low frequency band is

Cn = − sgn(ωc)√
1 + (

ωp
ωc

)2
− 1. (153)

For the high frequency band when k →∞ we have ωn →∞, ε11 = 1, ε12 = 0, α11 = 1, α12 = 0 and β12 = 0,

so limk→∞(An,φ=0k) = 0 and for the case of k → 0 we have ω2
n =

ω2
h

2

{
1 +

√
1− 4(

ωp
ωh

)4
}

, which is a pole of

α11 and α12 so α11 →∞, α12 →∞. Then,

lim
k→0

(An,φ=0k) =

Re( i
(ε0c)2

{2α12

α11
β11 + (1 + |α12|2

α2
11

)β12})
1

(ε0c)2
{(1 + |α12|2

α2
11

)β11 − 2α12

α11
β12}


ω2
n=

ω2
h
2

{
1+
√

1−4(
ωp
ωh

)4
} = −1,

and so for the high frequency band the Chern number is

Cn = 0− (−1) = 1.

It can be seen that generally the Chern number of the high frequency band is an integer, but that of the
low frequency TM band is not (as was found for the material model (117)). In both material models, when
off-diagonal permittivity elements in (116) are set to zero, all Chern numbers are Cn = 0.

3.2.6 Integer Chern numbers and wave vector cutoff for magneto-optic material response

The non-integer Chern numbers for the low TM band for both material models, (142) and (153), arise from
the continuum nature of the material [3], associated with the Hamiltonian not being sufficiently well-behaved
at infinity (mapped to the north pole of the Riemann sphere). The problem is thoroughly discussed in [3], and
here we merely repeat the solution therein. The issue can be solved by introducing a high-frequency spatial
cutoff by defining a nonlocal material

Mreg(ω, k) = M∞ +
1

1 + k2/k2
max

[M(ω)−M∞] (154)

where M∞ = lim
ω→∞

M(ω). This material response tends to the local response as kmax →∞15 By considering a

wave vector cutoff for, e.g., the material model (118), the non-local parameters of the material are

ε11 = ε22 = 1 +
1

1 + k2/k2
max

ω0ωe
ω2

0 − ω2
, ε12 = −ε21 =

−i
1 + k2/k2

max

ωeω

ω2
0 − ω2

, ε33 = 1, µ = diag{µ, µ, µ} (156)

For the low frequency TM-band we have

k2 =
ω2

0 − ω2 + 2γω0ωe + γ2ω2
e

ω2
0 − ω2 + γω0ωe

(
ω

c
)2 (157)

15Noting the Fourier transform pair
1

1 + k2/k2max

↔
kmax

2
e−kmaxr (155)

and as kmax →∞ we have limkmax→∞
kmax

2
e−kmaxr = δ(r), which indicates locality.
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such that γ = 1
1+k2/k2max

describes the non-locality. If k →∞ then γ → 0 and ωn → |ω0|, which is a zero of ε11

in the limit of k →∞. Therefore for the case of k →∞ we have

ε11 = 0, α11 = 0, β11 = γω0ωe
2ω2

(ω2
0 − ω2)2

, β12 = −iγωe
2ωω2

0

(ω2
0 − ω2)2

. (158)

It can be shown that

lim
k→∞

An(φ = 0)k =
i|α12|2β12

|α12|2β11
=
iβ12

β11
=

ω0

|ω0|
= sgn(ω0) = sgn(ωe), (159)

and for the case that k → 0 the low frequency band of the TM-mode tends to the light line and so lim
k→0

An(φ =

0)k = 0. Eventually for the Chern number of the low frequency TM band we obtain

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = sgn(ωe), (160)

the desired integer.
For the high frequency TM-band nothing changes from the previous development because the contribution

to Chern number comes from k → 0, and in this limit the non-local response turn into local response and the
Chern number is the same as previously obtained. So, for high frequency TM-band we have

Cn = lim
k→∞

(An,φ=0k)− lim
k→0+

(An,φ=0k) = −sgn(ωe) (161)

Introducing the wave number cutoff has no effect on the TE-mode because ε33 does not change, and so the
Chern number of this mode remains the same as in the previous section (Cn = 0).

Therefore, we have Chern numbers Chigh = sgn(ωe) and Clow = sgn(ωe) for the higher and lower band,
respectively, so that the sum of the Chern numbers is zero. The band dispersion and integer Chern numbers
are shown in Fig. 13.
Biased Plasma Case

For the material model (118), the permittivity tensor components become

ε11 = ε22 = 1− γ
ω2
p

ω2 − ω2
c

, ε12 = −ε21 = −iγ
ωcω

2
p

ω(ω2 − ω2
c )

(162)

such that γ = 1/(1 + k2/k2
max).

For this case, the dispersion equation is

k2 =
ε11(k)2 + ε12(k)2

ε11(k)
(
ω

c
)2. (163)

We have k → ∞ if ε11(k) = 0 and ε12(k) 6= 0, or ωn → ∞, or ωn = ωc. The eigen frequency of the higher TM
band is ωn →∞ and that of lower frequency band comes from the zero of ε11(k),

ε11(k) = 1− γ
ω2
p

ω2 − ω2
c

= 0→ ωn =
√
ω2
c + γω2

p.

When k →∞ then γ → 0 so for the low frequency band the eigenfrequency is ωn = lim
γ→0

√
ω2
c + γω2

p = |ωc|.
For k →∞, ωn = |ωc|, we have ε11(k) = 0, α11(k) = 0 and so

lim
k→∞

(An,φ=0k) = Re

{
iβ12(k)

β11(k)

}
ωn=|ωc|

(164)

such that β11(k) = 1 + γω2
p

ω2+ω2
c

(ω2−ω2
c)2 , β12 = 2iγωcω

2
p

ω
(ω2−ω2

c)2 so the contribution form k →∞ in low frequency

TM band is

lim
k→∞, γ→0

(An,φ=0k) = Re

{
iβ12(k)

β11(k)

}
ωn=|ωc|

= −1. (165)
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For the case of k → 0 ( γ → 1) and we have same dispersion equation as when there is no wave vector cut-off,
and so that limit remains the same as before, limk→0(An,φ=0k) = 1. Therefore, for the low frequency band we
obtain

Cn = −1− 1 = −2.

For the high frequency TM band as k → ∞ (γ → 0), limk→∞(An,φ=0k) = 0 and when k → 0 (γ → 1),
limk→0(An,φ=0k) = −1 (as before), and so for the high frequency band the Chern number is

Cn = 0− (−1) = +1.

The sum of the Chern numbers is -1. However, in addition to needing a wavenumber cutoff to obtain integer
Chern numbers, the continuum model presents another complication. As detailed in [47], to predict edge states
in general for continuum media, one should compute Chern numbers for an ”‘interpolated material response”’.
This means, for example, that to see bulk-edge correspondence for the magnetized plasma and a Drude metal
interface, we should define a function ε(τ) where τ varies from 0 to 1, such that when τ = 0 we obtain the
permittivity of the magnetized plasma, and when τ = 1 we obtain the Drude metal. Then, one needs to compute
the topological numbers for τ = 1− and τ = 0+. With this model, we obtain one additional low frequency band
for the magnetized plasma, very near ω = 0, having Chern number 1. In this case, all band Chern numbers are
integers and sum to zero.

3.2.7 Full-wave simulation of one-way propagation

We first consider a 2D structure. A 2D dipole (i.e., a line source) is at the interface between a simple plasma (up-
per region) having ε = −5 (this specific value relatively is unimportant; we simply need a negative-permittivity
material such as a metal) and a magnetoplasma (lower region) having permittivity (117). Fig. 14 shows the
electric field profile for three cases, unbiased, biased but operating outside the band gap, and biased operating
within the bandgap. It can be seen that in the unbiased (reciprocal) case energy flows in both directions, in
the biased (non-reciprocal) case operating outside the gap we have one-way propagation but energy can leak
into the lower region, and in the biased case operating within the bandgap energy just flows in one direction, is
well-contained at the interface, and goes around discontinuities.

Figure 14: Electric field due to a 2D vertical dipole and ωp/2π = 9.7 THz for three cases: left: unbiased
(reciprocal) case that respects TR symmetry, ωc = 0, at 10 THz (λ = 30µ m), center: biased with ωc/2π = 1.73
THz at 12 THz, outside of the band gap (ω/ωc = 6.93), and right: biased with ωc/2π = 1.73 THz inside the
bandgap at 10 THz, (ω/ωc = 5.78).

Fig. 15 shows a 3D simulation for a 420x120x90 um rectangular block of magnetoplasma with an ε = −5
plasma on the top surface and vacuum on all other sides: a (top) shows the electric field profile in the reciprocal
case, ωc = 0, at 10 THz. Fig. 15b (lower) shows the non-reciprocal case at 10 THz (in the bandgap). It can be
seen that in the reciprocal case energy flows in both directions, whereas in the non-reciprocal case energy just
flows to the right.
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Figure 15: Electric field at 10 THz for a 3D vertical dipole at a magnetoplasma–plasma interface (top interface is
between the magnetoplasma and the ε = −5 simple plasma, all other interfaces are between the magnetoplasma
and vacuum). Top: unbiased (ωc = 0, reciprocal) case. Bottom: non-reciprocal case when ωc/2π = 1.73 THz
inside the bandgap (ω/ωc = 5.78).

Figure 16 shows the non-reciprocal case when an obstacle (a half-sphere) is hollowed out of each material
at the interface, forming a spherical vacuum obstacle having radius 30µm (1λ) in the SPP path. It can be seen
that the wave goes past the obstacle without backscattering.

Figure 16: Electric field near a magnetoplasma–plasma interface, as in Fig. 15, in the non-reciprocal case when
a large (1λ) spherical vacuum obstacle is placed in the SPP path.

Finally, Figs. 17 and 18 show the power density for the case of an interface with a step discontinuity in
height. The step height is 30 µm (1λ). For Fig. 17, as in Figs. 15 and 16, the top interface is with the ε = −5
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simple plasma, all other interfaces are between the magnetoplasma and vacuum. A vertical dipole source is
located on the left side as indicated. Fig. 17a shows the side view of the power density in the reciprocal case,
and Fig. 17b shows the non-reciprocal case. It can be seen that in the reciprocal case energy flows in both
directions as well as interacting with and reflecting from the step, whereas in the non-reciprocal case energy
just flows to the right, and doesn’t scatter off of the step discontinuity. In Fig. 18 we surround all sides of the
magnetoplasma with ε = −5 plasma. In this case energy circulates around the entire structure.

Figure 17: Side view of power density due to a vertical point dipole source at the interface between a
magnetoplasma–plasma interface (top surface, all other sides interface with vacuum). a. Power density in
the reciprocal case. b. Non-reciprocal case.

Figure 18: Side view of power density due to a vertical point dipole source at the interface between a
magnetoplasma–plasma interface. a. Power density in the reciprocal case. b. Non-reciprocal case.

The dispersion relation for the surface mode is [1]√
k2
x − k2

0εs
εs

+

√
k2
x − k2

0εeff
εeff

= − ε12ikx
ε11εeff

(166)

where εs is the top material permittivity and

εeff =
ε2

11 + ε2
12

ε11
(167)

where εα,β are the magnetoplasma permittivity components.
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3.2.8 Numerical Computation of the Chern Number

In these continuum examples the Chern number can be found analytically. However, often this will not be
the case, and numerical methods must be used (as in the photonic crystal example in Section 3.1). As dis-
cussed previously, the Berry potential (12) and associated Chern computation (43) may not be convenient for
numerical computations since it involves derivatives of the eigenfunctions, which generally need to be taken
numerically. The curvature form (30) and associated Chern number (44) provide a convenient method, since
only the Hamiltonian matrix needs to be differentiated.

In the non-dispersive case the formulation in Section 2 suffices, the classical Hamiltonian Hcl = M−1N is
Hermitian under the indicated inner product, the eigenvalue problem Hcl · fn = ωnfn is a standard eigenvalue
problem, and the 6-vector of natural modes fn = [E H]

T
from (82) from a complete set of eigenfunctions. In

principle, either the formulation (43) or (44) can be used to compute the Chern number.
In the dispersive case this does not hold, but, nevertheless, only the natural modes fn are need to compute

the Berry curvature (84) [3]. However, these modes are not appropriate for the form (44), in particular, since
the eigenmodes depend on frequency and (44) involves terms with different eigenmodes. Furthermore, in the
dispersive case the Hamiltonian Hcl = M−1N does not admit a complete set of eigenvectors, which, in principle,
is needed in the computation (44). Moreover, the 6-vector of natural modes (if one is going to use (43)) is not so
easily computed in practice, since Hcl (ωn) · fn = ωnfn is a non-standard eigenvalue problem, and eigenvalues
would generally need to be found via a root search or similar method.

In [5] (and other works, see, e.g., [46]) the non-standard eigenvalue problem in the dispersive case is avoided
by introducing auxiliary variables (additional degrees of freedom), and in [3] this approach is extended to allow
for both temporal and spatial dispersion of general linear media. The resulting standard Hermitian eigenvalue
problem to be solved is (

M−1
g · L

)
Q = ωQ, (168)

where, in block-matrix form (all elements in Mg and L are 6x6 blocks),

Mg =


M∞ 0 0 · · ·
0 I 0 · · ·
0 0 I · · ·
...

...
...

. . .

 , M∞ = lim
ω→∞

M (ω,k) , (169)

and

L =


N +

∑
α sgn (ωp,α) A2

α |ωp,1|1/2 A1 |ωp,2|1/2 A2 · · ·
|ωp,1|1/2 A1 ωp,1I 0 · · ·
|ωp,2|1/2 A2 0 ωp,2I · · ·

...
...

...
. . .

 , (170)

N =

(
0 −k× I3×3

k× I3×3 0

)
=


0 0 0 0 kz −ky
0 0 0 −kz 0 kx
0 0 0 ky −kx 0
0 −kz ky 0 0 0
kz 0 −kx 0 0 0
−ky kx 0 0 0 0

 , (171)

where Mg and L are independent of frequency, Q = [f Q1 Q2 ...] where each element in Q is 6x1, and f is
defined as before. The elements Aα are the 6x6 residues of the material matrix, A2

α = −sgn (ωp,α) Res (M)α,
and ωp,α is the αth pole of M . More details are available in [3], and here we focus on the specific material
example (118)considered above.

Given the permittivity form (118), the material matrix has two poles, at ω = ±ω0. Therefore, L is an 18x18
matrix, Mg is the diagonal matrix (ε0, ε0, ε0, µ0, µ0, µ0, 1, 1, 1...1) and

A2
1 =


ε0
ωe
2 −iε0

ωe
2 0 0 0 0

iε0
ωe
2 ε0

ωe
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , A2
2 =


ε0
ωe
2 iε0

ωe
2 0 0 0 0

−iε0
ωe
2 ε0

ωe
2 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (172)
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Setting kz = 0, the final Hamiltonian matrix is

H = M−1
g L =



0 −iω′e 0 0 0 −k
′
y

ε0
−α iα 0 0 0 0 −α −iα 0 0 0 0

iω′e 0 0 0 0
k′x
ε0

−iα −α 0 0 0 0 iα −α 0 0 0 0

0 0 0
k′y
ε0
−k
′
x

ε0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
k′y
µ0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −k
′
x

µ0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− k
′
y

µ0

kx
µ0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−β iβ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
−iβ −β 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
−β −iβ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
iβ −β 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(173)

where α = 1
2

√
ω′e/ε0, β = 1

2

√
ε0ω′e, ω

′
e = ωe/ω0, k′x,y = kx,y/ω0.

From (173) the eigenvalues and associated eigenvectors can easily be found numerically (or symbolically),
and the Chern number computed from (44). Of the 18 branches, two are the positive-frequency TM modes and
one is the positive-frequency TE mode described previously. In addition to static-like (longitudinal) modes,
there are dispersionless dark modes with E = H = 0 which don’t contribute to the Chern number. For each
TM band, the other TM band and, to a lesser extent, the TE band, provide the most important contributions
to the Chern number calculation (44).
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