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ABSTRACT

It is well known that the natural frequencies of an object are important
distinguishing features which can be used in target detection and discrimination
schemes. These natural frequencies are governed by the size, shape, and
material composition of the object, as well as the environment in which the
object resides. Since a given object of interest may reside in many different
environments, it is of interest to relate the natural frequencies of an object when
in free-space to the natural frequencies of the same object when immersed in a
non-homogeneous environment. In this paper a perturbation formula is
developed which relates the free-space natural frequencies of an object to those
of the same object in the presence of a planarly layered medium. The
perturbation formula is valid for intermediate spacing between the object and the
nearest planar interface. Numerical results are shown for the natural frequencies
of a wire in the presence of a layered medium.

1. INTRODUCTION

Determination of the natural frequencies of an object is important in
target detection and discrimination methods, scattering analyses, and in other
applications. The natural frequencies of an object are of paramount importance
in the singularity expansion method (SEM) (Baum, 1971), and are generally
recognized as aiding in the physical interpretation of electromagnetic interaction
data. While traditionally natural frequencies have been computed for finite-sized
objects in free-space, recently there has been some attention devoted to the
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determination of the natural frequencies of an object in the presence of a layered
medium (Rothwell and Cloud, 1996), (Vitebskiy and Carin, 1996). Such efforts
have been directed towards accounting for realistic environments such as an air-
sea or air-ground interface in target detection and identification schemes.

Early in the development of SEM it was shown that for an integral
equation (IE) treatment of finite-sized objects in free-space, the operator inverse
to the integral operator is a meromorphic function in the complex frequency
plane (Marin and Latham, 1972), leading to the occurrence of only pole-
singularities in the current density response of the object (perhaps with the
addition of an entire function term depending on the chosen time-space origin for
the problem (Baum, 1992)). With this in mind, some early work on the natural
frequencies of thin wire scatterers in free-space was described in (Tesche, 1973).
A short time later the natural system frequencies of coupled wires were studied
(Umashankar et al., 1975), (Shumpert and Galloway, 1978). It was found that
the natural system frequencies of the two-wire configuration exhibited some
interesting characteristics as wire separation was varied. In particular, for certain
configurations the natural frequencies of two identical coupled wires tended to
spiral about the natural frequency of the isolated wire as spacing between the
wires was varied over some intermediate distance (Ross et al., 1994). As
separation was further increased, the system resonances moved off towards the
origin in the complex frequency plane, and other system modes moved in to take
their place, again spiraling around the dominant isolated natural frequency.

Since the natural frequencies of a coupled system are rigorously obtained
from a complicated (usually integral) system of equations, simple approximate
formulas which describe the natural system resonance behavior as a function of
body separation are of interest. For intermediate separations, perturbation
formulas have been obtained which relate the natural system frequencies of two
or more objects to the natural frequencies of the same objects when isolated.
Two related classes of perturbation solution have been obtained, both based upon
the exact integral-operator description of the coupled system. The first method
yields a quasi-analytic formula for the system frequencies of an object and a
mirror object, separated by some intermediate distance. The resulting formula
involves a numerically computed coefficient which only depends upon the
isolated object’s characteristics, multiplied by an exponential term which is a
function of the separation between the objects (Baum et al., 1989). The second
method is more numerical in nature, yet represents a considerable simplification
of the exact IEs and is applicable to a more general system of coupled bodies
(Chuang and Nyquist, 1984). That formulation was subsequently applied to a
variety of coupled objects (Ross et al., 1994), (Yuan and Nyquist, 1990),
(Hanson and Nyquist, 1992). For the case of large separation between coupled
objects, the system frequencies tend towards the origin in the complex frequency
plane. An asymptotic formulation for this situation was described in (Hanson
and Baum, 1997).

Although the previously described perturbation formulations have been
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developed for the natural frequencies of two or more coupled objects, the
described spiraling behavior is not limited to coupling between finite-sized objects
in homogeneous space. For instance, in (Rothwell and Cloud, 1996) it was
observed that the lowest-order natural frequency of a wire ring over a lossy
dielectric half-space exhibited a similar behavior, as spacing between the wire
and material interface was varied. Similar findings were reported in (Vitebskiy
and Carin, 1996) for a straight wire embedded in a lossy ground in the vicinity
of the air-ground interface, and early work in (Riggs and Shumpert, 1979)
describes results for a wire above a lossy ground. In this paper we develop a
perturbation formula for the natural frequencies of an object over multi-layered
media. This perturbation formula is based on an exact integral equation
formulation. Subsequent approximations are then made to yield a useful formula
which relates the natural frequencies of an object over a multi-layered medium
to the natural frequencies of an object when in free-space. The perturbation
formula is applied to several configurations of wires in the vicinity of material
interfaces, and a discussion of the formula’s applicability is provided.

It should be noted that for a finite-sized object embedded in a laterally
infinite layered environment, the operator inverse to the integral operator is not
a meromorphic function in the complex frequency plane (Hanson, 1997).
Branch-point singularities also exist, which are associated with the propagation
of surface waves in the layered medium. Although an SEM expansion for the
current density response then includes branch-cut as well as pole singularity
terms, the natural frequencies of such objects are still very important, and
associated pole singularities may be expected to dominant the response for a wide
variety of environments.

2. INTEGRAL EQUATION FORMULATION

Consider an object in the presence of a planarly layered medium, as
depicted in Fig. 1. For a specified impressed field, an integral equation (IE) can
be formed which leads to the determination of the current induced on/in the
object. For generality, the object will be considered to either have a perfectly
conducting surface, leading to a surface IE, or be composed of a lossy dielectric

(e =€,) , leading most simply to a volume IE. In either case, an electric field
integral equation (EFIE) can be formed as

(BT P, 8] LT, )y=E¥ {7, 5) (1)

where the bracket notation indicates a real inner product over common spatial
coordinates. For perfectly conducting objects the surface IE is enforced over the
surface of the body, whereas for dielectric objects the volume IE is enforced over
the volume of the body.

The kernel for either IE can be written as
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Gh(z|2!,s) =PV[1-y2VV]- Gr(Z|E/, s) +y2L(D) 8 (F-T)

-1
+y‘2(§3 -1) 18 (F-71)
(4)
Ge(z|t!,s) =[1-y2VV]-§(F|T/, s) (5)

where the last term in (4) only occurs for the volume IE. For a perfectly

conducting object (surface IE), the last term in (4) is omitted. In (4), Lisa
depolarizing dyadic (Yaghjian, 1980), the contribution from which is removed
by the transverse dyad for the surface IE, but remains for the volume IE. The
PV notation indicates that the corresponding term be integrated in a principal
value sense by removing from the integration a small patch (surface IE) or small

volume (volume IE) centered at =7".
In (4),(5), the potential Green’s terms are

shiz|7l o) =f. 8 18
r\r',s) =1

grl | ) AR

- . (6)

=ff 1 o-plz-z!) gik(#-2) g2,
‘7 2(2m)?p
for a homogeneous space in either spatial or spectral form, and

§5( f F(A,s) o-plzezh g3k (2-21 g2)  (7)

2(2=w)?%p

for the scattered part. In the above, Y=s/po€., R=|Z-T’|,

X=1,k,+1,k,, d?A=dk,dk,, A?=kZ+k;, and p=y/AZ+y?. The :
wavenumber parameter p (A) is multivalued, necessitating the definition of an
appropriate branch cut in the complex A-plane. Unless otherwise specified,
we’ll consider the permittivity parameter to be generally complex, i.e.,
e=¢e'®+g/s, with (€*®,0) the real-valued permittivity and conductivity,
respectively.
In the scattered Greens’ function, (A, s) is an amplitude dyadic which
is obtained by matching boundary conditions at the layering interfaces. For the
configuration depicted in Fig. 1, this term can be expressed as
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- — — —

F(A,s) =(1,1,+1,1)R,(A,5) +1,1,R, (A, s) (8)

zZ="z 'n

+1,(1, 7k, +1,7k,)R.(A, s)

where R, , R, , R, are given in (Bagby and Nyquist, 1987) for the tri-layered
environment shown. Note that the presence of additional layering below the
object, i.e., more than three layers, only affects the coefficients By Biv R
and not the general form of (8).

Associated with (1) are natural mode solutions which exist in the absence
of an excitation (Baum, 1971). These modes (natural frequencies and
corresponding natural current distributions) satisfy the homogeneous form of (1),

(Z(Z|2',s,) T, (£))=0 (9)

where s, is the natural frequency, and J, is the associated natural current
distribution (surface or volume). Equation (9) can be cast as a scalar relation by
dot multiplication on the left by the natural mode current, leading to

—

(Jo (D)1 Z(£]2',5,) ;T (EN)=0. (10)

It is convenient to define a local coordinate system centered at some
appropriate point in V as shown in Fig. 2, such that Pl +5,,

S
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FIGURE 2. Local coordinate system used in development of perturbation
formula.
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For simplicity, assume Z_=1,b/2. The integral relation (10) can be
expressed in terms of the local coordinate system as

(Tu(£)) I Z(E)|F], 5,.b) T, () )=0. (11)

In (11), the spectral forms for the Green’s functions have become

§h(f1|_'1f,8) =ff———i e'P(zl'z{’ejx'(fff‘,)dzl
7 2(2n)%p (12)

G5 |2l 5,b) = [ [Fr8) gpogpiaad stz g2y
* 2(2m)?%p

with an associated change of coordinates in (4), (5).

3. PERTURBATION THEORY

In this section we will consider the case when the material layering has
a sufficiently small effect on the object’s natural frequency that it may be treated
as a perturbation of the homogeneous space result. First, define the appropriate
relationship for the situation €,=€_=€_ (object in homogeneous space), such

that Z =0, and (11) becomes
(TMED LM 2], s TR E))=0. (13)

For later purposes, define the special case of the homogeneous space being free-
space as

(Je (£)) 1 Z2°(2,| 2], s3) 1322 )=0. (14)

Returning to (11), under certain conditions, & ®|l<|& 2| (for some appropriately

defined norm), and Z ° can be treated as a small perturbation of Z % in (2). One
such situation would be ‘b large (large separation between the object and the
nearest material interface), but this is not necessary if the material parameters of
the layers differ only slightly from the material parameters of the half-space in
which the object resides. If we can assume S¢=S¢b+ASa, where s,;h is the
o th natural frequency of the object when in a homogeneous space characterized
by (pq.€.) and As, represents a small perturbation, then we may expect that

the natural mode currents may be expressed as J,=J”+AJ,. With the above
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; . , . h
assumption, expand the kernel in a Taylor’s series about s,

7|2, s,) =2 (2|2, s2) +73%2‘(f1|f{,sf) As, +O(As?)

(15)

where O(As;) indicates terms which are at least quadratically small. It is
understood in the second term that s=s; is substituted after the frequency

derivative is evaluated. Insertion of the two-term approximation for (J,, S,)
into (11) and retaining the first non-vanishing term leads to the perturbation
equation

<J”(r )03

7|2 s As +Z5(2, |2, sE, b) ; uf(f{’)>=0
(16)

The above can be solved for the first-order perturbation in natural frequency due
to the planar layering as

(T2 [ E5(2,02, s, b) ,TE(E]))

As,=-
<3;(f1);

While (17) may be computationally accurate under the assumption
||gS|[<||gh]| and represents an efficient formulation compared to the exact
expression (10), in its present form it does not provide much physical insight into
the effect of planar layering on the natural frequencies of an object.
Accordingly, further restrictions may be stated to simplify (17). Let us assume
that the separation ‘b* between the object and the nearest interface is sufficiently
large relative to dimensions of the object. For this case (12) can be reorganized
as

s(fllfl’,s,b)=ff{2i(%% paezl) 3% (2, - f,} .
(18)

where the term in brackets is slowly varying compared to e "P? for ‘b* large.
The largest contribution to the integral will come from the point in thek, -k,
plane where the phase of the rapidly varying exponential is stationary, i.e.,
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d -
5 (Pb) =0
(19)
i(pb) =0
dk,

leading to k,,=k,,=0 (A=0). Replacing the slowly varying part of the
integrand with its value at A=0, results in

F - vz! r - + 2
§5(2, |2, 5, b) = 08 gvtmed [ oVl eviogey,

2(2®) %y 4
(20)
Converting the integral to polar form
) w27
I=[[eVkh o gay o[ [ oV ) dB
- 00 (21)
=2n [eVF Y LdA
Q
the last integral can be easily evaluated in closed form to yield
1 »
T=2n|X -2 |evb, (22)
( Y bz)e
Retaining the leading term for ‘b‘ large results in
-yb !
§5(Z, |2, 5,b) =F(0, 5) S VAR 23
ge( 1| 1 ) (0, s) it h e (23)

With A=0, the amplitude coefficient for the scattered term becomes

F(o,s) =(1,1,+I,I)Rr.(0,s) +I,I,R,(0,s) (24)
where the contribution from the coupling term associated with R_ in (8) has
vanished.

The IE kernel for the scattered term in (17) then becomes




342 G. W. HANSON AND C. E. BAUM

Z(£,|2],s,b) =sp e '? I/sy
1 ®4mb (v)

- 4= = 02
1 _Y 1212 2
oz,

+F(0,s) e_“zﬂzb}"]‘.(S)

-yb /
F= St | - +z/) =
e Yz, +2, s

" Sho anth V)

(25)
Defining
s s S (26)
leads to
Bk A A N s W e

As,= —sfpoe———R,_.(O, s;’)
amb FH(Z) a—if"’(fllfi'. sk ﬁ;"(f{))

(27)

where yﬂ =N (S,,h) = Sah Ho€. is the propagation constant in the cover
evaluated at the natural frequency of the object when in a homogeneous space.
Note that the dyadic triple dot product in (25) becomes iz: for both the surface
and volume IE formulation. For the volume IE, this follows simply from the
fact that I,(F) =1. For the surface IE, the knowledge that the natural mode
currents are tangential reduces the triple dot product accordingly. Defining
1 - + 7y e R —
A AT i, 30E)
Thy=y. O
Jhz);
< « (Z3) ds

vi(sk =

(28)

A G AT ;if(fb)

which is exactly the same coefficient utilized in (Baum et al., 1989) (although
there the homogeneous space was specifically free-space), the perturbation
formula becomes
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o~Yeb

L hy h,_h (29)
= R.10,8:)vilse) »

_ h
As,=-s5. 1,

This formula is identical to that obtained in (Baum et al., 1989) (Eq. (34) of that
paper), except for the multiplicative term R, and the fact that the perturbation
term is evaluated at s,h rather than s:. If e.=€,, €e,=€_==-7Jo,
implementing free-space over a perfectly conducting ground plane, R, = -1, and

(29) reduces to the result in (Baum et al., 1989) for the antisymmetric mode of
two coupled objects in free-space, as expected. For the case of a perfect

magnetic conductor, R, =1, and (29) reduces to the solution for the symmetric
mode of two coupled objects in a homogeneous space.

4. SCALING RELATIONS

The perturbation formula (29) involves the natural frequencies s, of an
object embedded in a homogeneous space characterized by (p,,€.) . As
detailed in (Umashankar and Wilton, 1974), (Giri and Tesche, 1981), (Baum,
1993), scaling relations exist which relate the natural modes of an object in a
lossy, homogeneous environment to those of the same object when in free-space.
The relevant scaling relationship for natural frequency is

2
h__ 9 Oc €y /.0\2 (30)
S re +\J ( ® re(s“)

2ec’ €x

where (o, €2°) are real-valued parameters of the homogeneous space, which

are written in terms of a single complex (effective) permittivity as €_= €z’ + %’ :
Note that in the case of a lossless homogeneous space, the scaling relationship
becomes simply sg=s’/ J€cr, with €., being the relative permittivity,
€.,=€c /€,. The scaling relationship (30) comes from equality of the

propagation constants, Yf,’ (s =yg (Ss2) . The natural modes scale as

3h_ 50 (31)

o o

and the coefficient (28) scales as (Baum, 1993)
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becomes

(37)

which for A=0 is

R, = \/Er—\/—e_s (38)
Vec

a familiar interfacial reflection coefficient.

5. RESULTS AND DISCUSSION

As a check on the accuracy of perturbation formula (35), the example of
a straight wire of length L in the vicinity of the interface between two differing
media will be considered. Results are provided for a wire in air above a lossless
and lossy half-space, and for a wire embedded in a lossy half-space near the

interface with air. In all cases, numerical values of yg, , and vy 1 are obtained
from tables in (Baum et al., 1989), leading to the coefficient (34). The subscriptee=1,1
indicates the lowest order mode in the first layer of the complex plane (Tesche,
1973), which is the dominant natural frequency. In the following all results
correspond to =1, 1, the perturbation of the dominant natural frequency of the
isolated wire.

The first example considered is a wire in air (€_,=1, 6.=0) over a
dielectric half-space (€,,=15, 6_,=0) , depicted in the insert of Fig. 3(a). The
wire has length L and radius a, with L/a=200. Since the wire is in air, s #=5°,

and the perturbation formula becomes simplyAs; ,=-R.(0, 8y 1 A8 5
with R, computed from (38).

Results of the perturbation formula are shown in Fig. 3(a), where the
separation parameter is varied from b/L=0.5 to 3.0. Results from an integral
equation solution (Riggs and Shumpert, 1979) are shown in Fig. 3(b), where

generally good agreement is found between the two methods for the range of b/L
values examined.

The second example is depicted in the insert of Fig. 4(a), which shows
a wire in air (€, ,=1,0.=0) over a lossy dielectric half-space
(€,,=15,0,L=120S5) with L/a=200. The perturbation formula is the same
as for the geometry considered in Fig. 3, although the substrate permittivity is
now complex-walued in the coefficient R.. Results of the perturbation formula
are shown in Fig. 4(a), where the separation parameter is again varied from
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Note that the value of conductivity taken in (Riggs and Shumpert, 1979)
is very large, and so the results of Fig. 4 ditfer only slightly from those of a wire
above a perfectly conducting ground plane. Comparing Fig.’s 3 and 4, it can be
seen that the difference in results for a wire in air above a ground plane and

above a lossless dielectric is governed by the coefficient R, (0, s;h) , which is -
0.5896 for (€_.=15,0,=0) . Thus, the radius of the spiral for the wire above
the lossless dielectric is about one-half that of the wire above a ground plane.
The geometry for the last example is depicted in the insert of Fig. 5(a).
For this situation, the wire is in a lossy ground near the interface with an air
half-space. The permittivity of the ground is €.=(5.62-71. 31) €, from
Fig. 3 of (Vitebskiy and Carin, 1996), leading to (€, =5.62,
6.L=0.0039 S) at f=65.36 MHz for an L=0.825 m wire. The wire has

radius 0.00556 m, resulting in L/a=148. The coefficient v1° 1 was taken from
(Baum et al., 1989) for L/a=200, since values were not provided for smaller L/a
ratios. The wire is inclined at a 45° angle to the planar interface, and separation
between the end of the wire nearest to the interface and the interface is varied
over the range specified in (Vitebskiy and Carin, 1996), i.e., from d=0.1L to
3L. Fig. 5(a) shows the perturbation formula results, while Fig. 5(b) shows the
IE results from (Vitebskiy and Carin, 1996). Good agreement is found between
the two methods except for small d/L values, which is expected.

115 - : 1.15
0.2L
d=0.1L 0.3L
114 4114
113 ~ 143 —~
o (5]
~ ~
-t -4
Lo o
3 {12 E 3 d=0.5L 4112 E
g, =1
9=0.......
£,=5.5 ]d 1.1 1.1
ol=0.0039 o
A
. . 110 L 1 1.10
-0.26 -0.25 -0.24 -0.23 -0.26 -0.25 -0.24 -0.23
Re(sL/c) Re(sL/c)
(a) (b)

FIGURE 5. (a) Results of perturbation formula (35) for the natural frequencies
of an inclined wire (45 degrees) in a lossy ground below an air half-space.
Triangle denotes the natural frequency for a wire in a homogeneous-space (lossy
ground). (b) IE results (Vitebskiy and Carin, 1996) for the natural frequencies
of an inclined wire (45 degrees) in a lossy ground below an air half-space.
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two wire configuration did not spiral about, but perhaps interacted with, the
isolated wire resonance before tending towards the origin for large spacing. It
was also shown in (Vitebskiy and Carin, 1996) that for a fat cylinder in the
vicinity of an air-ground interface, the spiraling behavior seemed to be absent.
While the perturbation formula seems to be applicable for wires and loops/rings
in layered media as examined in (Rothwell and Cloud, 1996), (Vitebskiy and
Carin, 1996) at this point it is not clear as to what larger class of objects this
formula may apply.

6. CONCLUSION

In this paper a perturbation formula is developed which relates the free-
space natural frequencies of an object to those of the same object in the presence
of a planarly layered medium. The resulting formula involves a numerically
computed coefficient which only depends upon the isolated object’s
characteristics, multiplied by an exponential term which is a function of the
separation between the object and the nearest planar interface. The perturbation
formula is valid for intermediate spacing between the object and the nearest
planar interface. Numerical results are shown for the natural frequencies of a
wire in the presence of a layered medium, for several different geometries.
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