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Fano resonances in nested wire media
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We study the interaction of electromagnetic waves with two nested parallel metallic wire arrays, such that the
unit cell of the structure has two inequivalent parallel wires. We develop a formalism to solve scattering problems
using effective medium methods and prove that the electromagnetic coupling of the two sets of wires may result
in the emergence of sharp Fano resonances.
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I. INTRODUCTION

The uniaxial wire medium consists of a set of infinitely
long wires oriented along the same axis and embedded in a
dielectric medium.1,2 Nanowire materials have been recently
in focus due to their unusual electromagnetic properties,
namely the hyperbolic dispersion of the photonic states,3

which among other things can provide for a negative refraction
of light.4,5 Moreover, this type of artificial medium is gaining
an increasing importance because it has proven to be useful
in many applications in the microwave through mid-terahertz
frequency band.6–12

The wire medium is well known for its nonlocal (spatially
dispersive) response, even in the quasistatic limit.13,14 Several
modifications of the classical wire medium configuration
(e.g., the periodic insertion of metallic plates in the metallic
wires) that aim to reduce the spatially dispersive effects have
been proposed15 and developed further in Refs. 16–19. The
homogenization of double and triple perpendicular arrays
of connected and nonconnected wire media has also been
discussed in the literature.20–24 In particular, it has been shown
that double-wire media may support highly confined interlaced
plasmons.11,21

Even though wire media formed by two nonconnected
perpendicular wire arrays has been studied previously,21 the
case wherein the two wire arrays are parallel, so that each
unit cell of the material contains two parallel wires, remains
an open problem. The solution of this problem is not trivial
because the interaction between the nested wire arrays leads
to the hybridization of the modes supported by the individual
arrays, and in particular, the number of natural modes (plane
waves) supported by the metamaterial (within an effective
medium description) increases. We prove that if there is some
structural asymmetry in the system (e.g., each subarray is made
of a different metal or the subarrays are terminated differently
at the interfaces), the electromagnetic coupling of the two
subarrays may result in strong Fano-type resonances. The Fano
resonance was originally discovered by Ugo Fano in his studies
of autoionizing states of atoms,25,26 but because it results from
the interference of two or more oscillators, it can in general be
observed in quite distinct physical systems. In particular, Fano
resonances have been recently demonstrated in plasmonic
structures and metamaterials.26–29 Because of its narrow line-
shape, Fano resonances have promising applications in sensing
(e.g., in the development of novel chemical or biosensors). It
should be mentioned that related wire media formed by triple

arrays of connected wires have been studied in Ref. 24, but in a
different context; namely a drift-diffusion transport model was
developed to characterize the electrodynamics of such media.

This paper is organized as follows. In Sec. II we propose an
effective medium model for the bulk uniaxial wire medium
formed by two nested sets of parallel wires. In Sec. III
we introduce the boundary conditions required to solve the
homogenization problem. In Sec. IV we present numerical
calculations that validate our model and highlight the emer-
gence of Fano resonances due to the interaction between the
wire arrays. Finally, in Sec. V the conclusions are drawn.

II. EFFECTIVE PERMITTIVITY OF THE NESTED
DOUBLE-WIRE MEDIUM

The standard wire medium is formed by a set of infinitely
long metallic wires arranged in a periodic square lattice.
Assuming that the wires are oriented along the z direction,
it is known from previous studies13,14 that the wire medium is
characterized by the effective permittivity tensor

¯̄εeff (ω,kz) = εh {εt (x̂x̂ + ŷŷ) + εzzẑẑ} , (1)

where εh is the permittivity of the dielectric, εzz = 1 +
[ εh

(εm−εh)fV
− β2

h−k2
z

k2
p

]−1, βh = ω
√

εhμ0 is the wave number in

the dielectric host medium, fV = π (r/a)2 is the volume frac-
tion of the metal, εm is the complex permittivity of the metallic
wires, and kp is a structural parameter with the physical mean-
ing of plasma wave number. Within a thin wire approximation,
we may state that (kpa)2 ≈ 2π [0.5275 + ln( a

2πR
)]−1 and

the transverse permittivity satisfies εt ≈ 1.13,14 The explicit
dependence of the dielectric function on the wave vector
kz ↔ −i d

dz
implies a strong nonlocal behavior.13,14

Here, we want to characterize the effective response of two
nested sets of wires (denoted by A and B), such that the unit
cell of the bulk material contains two metallic wires (Fig. 1). As
discussed in Ref. 24, provided the two subarrays are not very
strongly coupled in the near field, so that the influence of one
array on the other can be regarded as a macroscopic excitation,
the contribution of each array to the electric polarization is
related to the macroscopic electric field as

Pl =
[

¯̄εeff,l

(
ω, − i

d

dz

)
− εh

¯̄I
]

· E, l = A,B, (2)

where ¯̄εeff,A and ¯̄εeff,B are defined as in Eq. (1), with pertinent
structural parameters that depend on the considered subarray.
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FIG. 1. (Color online) Geometry of the two nested wire media
(denoted by A and B). The two arrays are arranged in a periodic
square lattice with period a and the wires are embedded in a dielectric
host material with permittivity εh.

The requirement that the two subarrays interact with one
another as macroscopic sources is better satisfied if the two
wires in the unit cell are as far apart as possible, which is the
case represented in Fig. 1.

The effective dielectric function of the two nested arrays
is supposed to describe the response of the total polarization
vector PA + PB to the macroscopic electric field. Thus, it must
satisfy

¯̄εeff,A+B (ω,kz) = ¯̄εeff,A (ω,kz) + ¯̄εeff,B (ω,kz) − εh
¯̄I. (3)

This permittivity tensor is also of the form of Eq. (1) with the
following zz component:

εzz = 1 +
[

εh

(εm,A − εh)fV,A

− β2
h − k2

z

k2
p,A

]−1

+
[

εh

(εm,B − εh)fV,B

− β2
h − k2

z

k2
p,B

]−1

. (4)

For simplicity, in this paper we restrict our attention to
the case wherein the metal can be described by a (lossless)
Drude dispersion model such that εm (ω) = ε0

(
1 − ω2

m/ω2
)
,

in which ωm the plasma frequency of the electron gas
within the metal. In such a case, one can write εh

(εm−εh)fV
≈

− εh

ε0fV

ω2

ω2
m

= − β2
h

fV k2
m

with km = ωm

√
μ0ε0. Hence, after simple

mathematical manipulations, it is found that

εzz (ω,kz) = εzz,A (ω,kz) + εzz,B (ω,kz) − 1, (5a)

εzz,l (ω,kz) = 1 − k2
ef,l

β2
h − k2

z /n2
l

, (l = A,B), (5b)

where n2
l = 1 + k2

p,l

fV,lk
2
m,l

is the so-called slow-wave factor18 that

characterizes the plasmonic behavior of the wires, and k2
ef,l =

k2
p,l/n2

l is the effective plasma wave number of each array
that takes into account both the geometry of the cell and the
permittivity of the metallic wires. In case the metal can be
modeled as a perfect electrical conductor (PEC), the slow-wave
factor is equal to unity (i.e., n2

l = 1), and therefore k2
ef,l = k2

p,l .

In Appendix A, we show that the macroscopic response
(5) of the nested wire array can be understood in terms of an

equivalent drift-diffusion model such that two different species
of carriers contribute to the current.

The characteristic equation for the photonic modes can
be obtained if we substitute the permittivity tensor given
by Eq. (3) into the Maxwell equations and calculate the
plane wave solutions (eigenmodes) with a spatial variation
of the form eik·r, where k = kt + kzẑ and kt = kx x̂ + ky ŷ.

This yields the dispersion relation for transverse magnetic
(TM)–polarized eigenwaves

k2
z = β2

h − k2
x + k2

y

1 − k2
ef,A

β2
h−k2

z /n2
A

− k2
ef,B

β2
h−k2

z /n2
B

, (6)

and k2
z = β2

h − k2
x − k2

y for the transverse electric (TE) polar-
ized waves. For a given value of the transverse part of the
wave vector, the dispersion relation (6) corresponds to a cubic
equation that yields three different solutions, corresponding to
three different propagating eigenmodes: two quasi–transverse
electromagnetic (q-TEM) modes and a TM mode. We desig-
nate these qT1, qT2, and TM modes. This property contrasts
with the standard wire medium that only supports two distinct
extraordinary waves, the q-TEM mode and the TM mode.14,18

Each q-TEM mode is clearly associated with a different array
of wires.14,18,24 This result can in principle be generalized,
and we expect that in a material formed by N different wires
arrays, such that the influence of each array on the others can be
regarded as a macroscopic excitation, there will be N different
propagating q-TEM waves.

III. SCATTERING PROBLEM AND ADDITIONAL
BOUNDARY CONDITIONS

In what follows, we apply the theory developed in the
previous section to characterize the scattering of electromag-
netic waves by a finite thickness slab of the nested wire
media of thickness h. A representative system geometry is
sketched in Fig. 2. We consider that the incoming plane wave
is TM polarized (magnetic field is along the y direction)
so that the plane of incidence is the xoz plane. The angle
of incidence is θinc, and the relevant field components are
Hy, Ex, and Ez. This monochromatic incoming wave can
excite plane waves in the wire medium with transverse wave

E

H

k
x

z

y

h h

inc

a
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FIG. 2. (Color online) Geometry of the wire-medium slab formed
by two nested sets of parallel wire arrays. (a) Side view: the cells are
arranged in a periodic square lattice with period a. Both sets of wires
are severed at the interfaces. The wires are embedded in a dielectric
with permittivity εh and thickness h. The structure is illuminated by
a TM-polarized plane wave with angle of incidence θinc. (b) Top view
of the unit cell of a 2D lattice of a wire-medium slab with the one
wire with radius RA in the middle and another wire with radius RB

placed in the corners of the cell.
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vector kt = kx x̂ + ky ŷ such that kx = k0 sin θinc and ky = 0.

Therefore, six plane waves can be excited in the wire medium:
two counter-propagating waves (propagating along +z and −z

directions, respectively) associated with each of the qT1, qT2,
and TM modes. Thus, the magnetic field distribution in the
whole space can be written as:

Hy (z,ω) = eikxx
Einc

η0

⎧⎨
⎩

(eγ0z − Re−γ0z) z > 0
C1e

γT M (z+h) + C2e
−γT M (z+h) + B1e

γqT 2(z+h) + B2e
−γqT 2(z+h) + A1e

γqT 1(z+h) + A2e
−γqT 1(z+h) −h < z < 0

T eγ0(z+h) z < −h

.

(7a)

Using E = 1
−iω

[ε(ω, − i d
dz

)]−1 · ∇ × H, it is found that the electric field satisfies

Ex (z,ω) = eikxx
Einc

η0

1

iωε0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ0
(
eγ0z + Re−γ0z

)
z > 0,

ε0
εh

γT M

(
C1e

γT M (z+h) − C2e
−γT M (z+h)

) + ε0
εh

γqT 2
(
B1e

γqT 2(z+h) − B2e
−γqT 2(z+h)

)
+ ε0

εh
γqT 1

(
A1e

γqT 1(z+h) − A2e
−γqT 1(z+h)

) −h < z < 0

γ0T eγ0(z+h) z < −h

,

(7b)

Ez (z,ω) = −eikxx
Einc

η0

kx

ωε0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eγ0z − Re−γ0z z > 0
ε0

εT M
zz

(
C1e

γT M (z+h) + C2e
−γT M (z+h)

) + ε0

ε
qT 2
zz

(
B1e

γqT 2(z+h) + B2e
−γqT 2(z+h)

)
+ ε0

ε
qT 1
zz

(
A1e

γqT 1(z+h) + A2e
−γqT 1(z+h)

) −h < z < 0

T eγ0(z+h) z < −h

. (7c)

In the above, A1,2 and B1,2 stand for the amplitude of the
q-TEM modes, and C1,2 stands for the amplitude of the TM
modes in the nested wire media. The reflection and trans-
mission coefficients are R and T , and γ0 =

√
k2
t − ω2μ0ε0

is the free-space propagation constant along the z direc-
tion. The propagation constants along z in the metamaterial
(γ 2 = −k2

z with γ = γqT 1,γqT 2,γqT M ) are obtained from the
solution of the dispersion characteristic Eq. (6) with k =
kt + kzẑ and kt = kx x̂. We put εT M

zz = εhεzz(ω,i γT M ), ε
qT 1
zz =

εhεzz(ω,i γqT 1), and ε
qT 2
zz = εhεzz(ω,i γqT 2), where εzz(ω,kz)

is given by Eq. (5a).
To determine the unknowns A1,2, B1,2, C1,2, R, and T , we

need to impose suitable boundary conditions at the interfaces
with the air regions. The boundary conditions depend on the
manner in which the metallic wires are terminated at the
interfaces. Here, we admit two possibilities: either the wires
are cut at the interfaces, or alternatively, they are connected
to square metallic patches. We suppose that all the wires
in the same subarray are terminated in the same manner at
the interface, but wires in different arrays can be terminated
differently.

The classical boundary conditions establish a relation be-
tween the tangential components of the electric and magnetic
fields at the interfaces. In the structure under consideration, the
tangential electric field is continuous at the interface because
there is no effective surface magnetization (or higher order
surface multipole densities) at the interface. On the other
hand, the tangential magnetic field may be discontinuous when
an electric surface current is allowed. This can happen when
one (or both) of the wire arrays are terminated with metallic
patches. Therefore, we can write

�Ex�z=0,−h = 0, (8a)

�Hy�z=0,−h = −YgEx |z=0,−h, (8b)

where �F �z=z0
= Fz=z+

0
− Fz=z−

0
stands for the field dis-

continuity of F at the pertinent interface, and Yg is the
grid admittance, which relates the induced surface current
with the tangential electric field. In the case in which both
sets of wires are cut at the pertinent interface, Yg = 0.

An array of wires terminated with metallic patches sepa-
rated by a gap g contributes to Yg with the addend Yg =
−i (εh + 1) (k0a/η0π ) log [csc (πg/2a)] .18

It is well established that because of the strong spatial
dispersion property, additional boundary conditions must be
specified at the interfaces.19,30–33 Here, because we have
two independent arrays of wires, two additional boundary
conditions are required at each interface. Based on the ideas
of Ref. 24, it is straightforward to formulate such boundary
conditions.

Indeed, let us suppose first that the wires associated with a
given subarray l are cut at the interface. Then, the microscopic
current flowing on the metallic wires, Il , should vanish at
the interface. But, because the contribution Pl of the subarray
l to the total polarization vector is related to the current as
Pl = 1

−iω

Il

a2 ẑ, it follows that the boundary condition Il = 0 at
z = z0 is equivalent to

Pl · ẑ|z=z0
= 0 (when subarray l is cut at z = z0). (8c)

On the other hand, let us suppose next that the wires of
subarray l′ are connected to metallic patches at the pertinent
interface. For simplicity, we suppose that the metallic patches
are large enough and the gap between the neighboring patches
is small enough so that the effective patch capacitance19

Cpatch → ∞, and the average electric charge per unit of
length of wire σl′ = 1

iω

dIl′
dz

may be assumed negligible at the
connection point (as discussed in Refs. 19,31). In these cir-
cumstances, the boundary condition σl′ = 0 must be enforced
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at the interface, or equivalently:

dPl′

dz
· ẑ

∣∣∣∣
z=z0

= 0 (when subarray l′ is connected

to large patches at z = z0). (8d)

If we impose the boundary conditions (8a) and (8b) and the
suitable ABC [either 8(c) or 8(d)] for the each of the subarrays
(l = A,B) at the top and bottom interfaces, we obtain a set of
eight linear equations for the eight unknowns. Note that from
Eq. (2), we may rewrite Eqs. 8(c) and 8(d) as[

εzz,l

(
ω, − i

d

dz

)
− 1

]
Ez

∣∣∣∣
z=z0

= 0, (8c′)

[
εzz,l′

(
ω, − i

d

dz

)
− 1

]
dEz

dz

∣∣∣∣
z=z0

= 0, (8d′)

where εzz,l is defined by Eq. (5b), and Ez is given by (7c).
In Appendix B we show that for lossless structures, these

boundary conditions are consistent with the conservation of
energy and with the continuity of the real part of the Poynting
vector component normal to the interfaces.22

It is worth mentioning that when the wires of the two
subarrays are made of an ideal PEC material, the propagation
constants associated with the two q-TEM modes become
identical, such that γqT 1 = γqT 2 = −iβh. As a consequence,
it is clear that ε

qT 1
zz = ε

qT 2
zz = ∞, and hence the system of

equations associated with the effective medium model be-
comes ill defined. This difficulty can be circumvented simply
by slightly numerically perturbing the complex permittivity
of the materials to lift the singularities. In general, one may
need to adopt this perturbation approach when the propagation
constants of the two q-TEM modes are identical. We checked
both numerically and analytically that this approach leads to
consistent results, independent of the considered perturbation.

IV. FANO RESONANCES

In order to demonstrate the validity of the proposed model
and prove that the coupling of the wire arrays results in
the emergence of Fano resonances, next we calculate the
transmission and reflection properties of nested wire media
with different structural parameters.

A. Nested wire media severed at both interfaces

To begin, we consider a configuration wherein the wires of
both subarrays are cut at the interfaces (terminated in an open
circuit). The wires are embedded in a dielectric medium with
thickness h and permittivity εh. The wires of subarray A have
radius RA, whereas the wires of subarray B have radius RB.

The geometry is shown in Fig. 2.
In the first example, we consider that the slab has thickness

h = 3a and that the wires stand in air. The wire radii are
RA = 0.05a and RB = 0.025a for each of the subarrays.
Moreover, the metal is modeled as a PEC material, and the
slab is illuminated by an incident TM-polarized plane wave
with incidence angle θinc = 60◦.

Because the two arrays are made of a PEC material, the
system of equations of the effective medium model is ill

defined, as discussed previously. In practice this problem is
solved by introducing a slight numerical perturbation in the
slow-wave factor of the arrays such that n2

A,B = 1 + δA,B,

where δA,B � 1. The reflection/transmission coefficients con-
verge to the same result independent of the form of the
perturbation when δA,B → 0. In panels (a) and (b) of Fig. 3,
we compare the results obtained with our homogenization
model and the ones obtained using the commercial full-wave
electromagnetic simulator Microwave Studio.34

One can see that there is a good agreement between the
results obtained using the homogenization model and the full-
wave simulations, indicating that our effective medium theory
correctly describes the electromagnetic response of the nested
wire media.

In the next example, we investigate the response of the
structured slab when the permittivity of the metals is described
by the Drude dispersion model. We consider that the wires of
array B are made of a material such that km,Ba = 10.0, which
for a lattice period of 273μm is consistent with the plasma
frequency of 0.92 �cm p-type doped silicon.35 On the other
hand, we assume that the wires of array A have a plasma
frequency that satisfies km,Aa = 19.5, which corresponds to
the plasma frequency of indium antimonide at 225 K.36 As
in the previous example, h = 3a, RA = 0.05a, and RB =
0.025a. A comparison between the results obtained with the
homogenization model and full wave simulation is shown in
panels (c) and (d) of Fig. 3. Apart from a frequency shift,
the results show reasonable agreement, further validating our
theory when the metallic wires are made of distinct materials.

Moreover, the plots reveal the presence of a sharp reso-
nance in the transmission and reflection parameters near the
normalized frequency hω/c ≈ 1.0, whose asymmetric shape
is consistent with a Fano-type resonance and differs markedly
from the more common Lorentzian resonance.25,26 The phys-
ical origin of this resonance is related to the interference
between a narrow quadrupole-type resonance, and a broad
dipole-type resonance.29 Indeed, short (subwavelength) wires
behave to a first approximation as electric dipoles, such that
their scattering strength typically increases with frequency.
Hence, the scattering of the wire arrays is dominated by the
strongly radiative collective dipolar mode resulting from the
in-phase interference of the fields scattered by the two arrays,
and in particular (for long wavelengths) the transmissivity
of the structure tends to decrease as the frequency increases
[see Figs. 3(a), 3(c)]. However, when the unit cell has two
nested wires, the electromagnetic coupling of the nested
wires may result in a narrow antibonding mode, such that
the current in the wires of one of the subarrays flips sign
over a narrow frequency range. At the frequency wherein
the dipole moments of each array oscillate out of phase, the
net dipole moment is zero, resulting in a subradiant mode,
and in nearly 100% transmission of the incoming wave (the
Fano resonance). For a frequency slightly smaller than that
associated with the Fano resonance, the subarrays have a very
strong dipolar response and the corresponding currents do
not oscillate in opposition of phase, and this explains the
dip in the transmission characteristic. This is illustrated in
panel (a) of Fig. 4, where we show the phase and normalized
amplitude of the z component of the polarization vector of
each subarray of wires (defined by Eq. (2)) as a function of
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FIG. 3. (Color online) (a, b) Amplitude (blue curves) and phase (red curves) of the transmission and reflection coefficients for PEC wires
and an incident TM-polarized wave with θinc = 60◦ as a function of the normalized frequency hω/c. (c, d) Same as in the previous panels,
but when the wires of subarrays A and B are made of metals such that for a lattice period of a = 273 μm, the normalized plasma frequencies
satisfy km,Aa = 19.5 and km,Ba = 10.0. The solid lines represent the results calculated using the homogenization model, and the dashed lines
represent the full wave results obtained with Microwave Studio.

frequency calculated at the midpoint of the wire-medium slab.
In panel (b) of Fig. 4 we depict Pz,A and Pz,B inside the
wire-medium slab at fixed frequencies. For the normalized
frequency hω/c ≈ 1.0, which corresponds to the peak of
transmission at the Fano resonance, we see that not only are the
polarization vectors out of phase, but they have nearly the same
amplitude, confirming that the net polarization vector vanishes
at the Fano resonance. For slightly different frequencies, the
amplitudes of the polarization vectors are not the same, causing
the dips in the amplitude transmission coefficient. Curiously,
Fig. 4(a) shows that for frequencies smaller than hω/c ≈ 1.0
this occurs because the amplitude of the polarization vector is
larger in the subarray of wires with smaller radius, whereas

at frequencies slightly above hω/c ≈ 1.0 the amplitude of the
polarization vector is larger in the subarray of wires with larger
radius.

Note that because the currents in the two wire arrays
are out of phase, the narrow antibonding mode is related to
quadrupole/magnetic resonances. Thus, at the Fano resonance
the nested wires slab may mimic an array of magnetic dipoles
that oscillate along the y direction. Moreover, because the
Fano resonance results from the interaction of an electric-type
resonance and magnetic-type resonance (more rigorously, a
mix of magnetic and quadrupolar resonances), the nested wire
medium may be roughly pictured as a material with an effective
permittivity and an effective permeability that resonate at

,
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FIG. 4. (Color online) (a) Phase (solid curves) and normalized amplitude (dashed curves) of the z component of the macroscopic polarization
vector of each subarray of wires at the middle of the slab as a function of the normalized frequency: polarization vector of submesh A (blue
curves) and polarization vector of submesh B (red curves). The amplitude of the incident wave is constant. (b) Phase and normalized amplitude
of the z component of the macroscopic polarization vector of each subarray of wires inside the wire-medium slab at hω/c ≈ 1.0 (solid blue
curves for submesh A and long dashed red curves for submesh B) and at hω/c ≈ 0.987 (green dotted curves for submesh A and dot-dashed
brown curves for submesh B).
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FIG. 5. (Color online) Similar to Fig. 2 but for a nested wire-
medium slab terminated asymmetrically. (a) Side view: the cells are
arranged in a periodic square lattice with period a, and one set of
wires is terminated with patches. The separation between consecutive
patches is g. (b) Top view of one cell of a 2D lattice of a wire-medium
slab with one wire with radius RA terminated with a patch and another
wire with radius RB placed at the corners of the cell and terminated
with an open circuit.

nearby frequencies. In our system the Fano resonance results
from the interaction of two different resonators (two different
wire arrays), but there are examples in the literature wherein
the Fano resonance is due to the interaction of different modes
of the same resonator.29,37

B. Nested wire media terminated asymmetrically

The emergence of the Fano resonance requires some
asymmetry in the system, such that the antibonding resonance
can be excited with a slow varying in space incoming wave.
In the previous subsection, the asymmetry is provided by the
different dielectric responses of the metals from which the
wires are made of. Based on these ideas, one may expect that
the Fano resonance can be more pronounced in systems with
increased asymmetry.

To investigate this, next we calculate the transmission and
reflection properties in a scenario wherein the wires of one
of the subarrays (subarray B) are cut at both interfaces, and
the wires of the other subarray (subarray A) are connected to
metallic patches at both interfaces (Fig. 5). Hence, the two wire
arrays are terminated asymmetrically. The spacing between
adjacent patches is g, and the nested arrays are embedded
in a dielectric with thickness h and permittivity εh. It should
be mentioned that arrays of wires terminated with metallic

h c

T

R

FIG. 7. (Color online) Amplitude of the transmission coefficient
(red curves) and reflection coefficient (blue curves) of the nested wire-
medium slab (solid curves), two-sided mushroom structure (dashed
curves), and wire-medium slab (dotted curves) under the excitation
of a TM-polarized wave with the angle of incidence θinc = 60◦ as a
function of the normalized frequency hω/c.

patches have been widely studied in the context of high-
impedance surfaces in the so-called mushroom configuration
(e.g., Refs. 6,16,17,38).

In the first example, it is supposed that the slab has
thickness h = 3a and the wires stand in a vacuum. The distance
between adjacent patches is g = 0.1a, and the wire radius is
RA = 0.05a and RB = 0.025a for each of the subarrays. The
metal is modeled as a PEC material, and the slab is illuminated
by an incident TM-polarized plane wave with incidence angle
θinc = 60◦. Because the wires are assumed to be PEC, it
is again necessary to slightly perturb the slow-wave factors
n2

A,B = 1 + δA,B with δA,B ≈ 0 to obtain a well-defined system
of equations in the effective medium model. The computed
results are shown in Fig. 6.

As expected, as the angle of incidence of the plane
wave approaches 90◦ (Fig. 6(b) for the normalized frequency
hω/c = 1), the structured slab tends to reflect all incident
power because of the strong electromagnetic coupling between
the incident waves and the wires.

The results in Fig. 6(a) show the signature of a sharp Fano
resonance close to the normalized frequency hω/c ≈ 2.4. In

T T

ºinch c
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º] 

-a
rg

(T
) [

º] 

(a) (b)

FIG. 6. (Color online) (a) Amplitude (blue curves) and phase (red curves) of the transmission coefficient under the excitation of a
TM-polarized wave with the angle of incidence θinc = 60◦ as a function of the normalized frequency hω/c. (b) Amplitude (blue curves) and
phase (red curves) of the transmission coefficient for a fixed normalized frequency hω/c = 1 as a function of the incidence angle. The solid
lines represent the results calculated using the homogenization model, and the dashed lines represent the results obtained with Microwave
Studio.34

045130-6



FANO RESONANCES IN NESTED WIRE MEDIA PHYSICAL REVIEW B 88, 045130 (2013)

h c

T

R

(a) (b)
T

R

h c

FIG. 8. (Color online) Amplitude of the transmission coefficient (red curves) and reflection coefficient (blue curves) as a function of the
normalized frequency hω/c, obtained with the effective medium model (solid curves) and Microwave Studio (dashed curves). The wires of
arrays A and B are made of metals such that for a lattice period of a = 14 μm, (a) km,Aa = 635.97 and km,Ba = 1 and (b) km,Aa = 635.97 and
km,Ba = 1043.9. The slab thickness is h = 3a, and the angle of incidence is θinc = 60◦.

contrast to the previous subsection, the Fano resonance can
appear even for PEC wires due to the asymmetry in the
termination of the wires.

To prove that the interaction of the two nested wire media is
crucial for the emergence of the Fano resonance, we calculated
the individual response of the arrays A and B in related
scenarios. Figure 7 shows the transmission characteristics for
a two-sided mushroom structure (only array A is present in the
structure), for a wire-medium slab (only array B is present in
the structure), and for the corresponding nested wire-medium
slab. A sharp Fano resonance at the normalized frequency
hω/c ≈ 2.4 is revealed only in the latter configuration. These
results were obtained based on the theories of previous
works.14,19,30–33

In order to investigate the effect of having metals with a
dielectric response described by the Drude dispersion model,
next we consider that the wires of array B are made of a metal
such that km,Ba = 1.0, which for a lattice period of 14 μm may
be consistent with the plasma frequency of indium antimonide
at 225 K.36 The wires of array A are assumed to be made
of silver, which for the same lattice period satisfies km,Aa =
635.97.39 In order to see the impact of using these materials

rather than a PEC material, we calculated the transmission
characteristics of the metamaterial slab using our effective
medium model [Fig. 8(a)], considering the same structural
parameters as in the previous example. The results agree again
quite well with full-wave simulations.

Comparing the results of panel (a) of Fig. 8 with panel
(a) of Fig. 6, where PEC wires were considered in both
arrays, it is seen that the resonant behavior near hω/c ≈
2.4 disappears, and the structure behaves more similar to
a two-sided mushroom wire-medium slab as shown in the
dashed curves of Fig. 7. The reason for this is simple: the
plasma frequency of the material associated with the subarray
B, km,Ba = 1, is considerably smaller than the frequency
hω/c ≈ 2.4 where the Fano resonance originally occurred,
and hence the material B does not have a typical metal-type
response at that frequency and behaves closer to a transparent
material.

Obviously if other metal is chosen with a large conductivity
in the pertinent range of frequencies the Fano resonance will
reappear. For instance, if the material of the wires of array B is
aluminum, we have km,Ba = 1043.939 for the same structural
parameters as before. In this case the calculated transmission

z

0zI I(a) (b)

(c)
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h
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kinc

0zI I

h
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B

 

FIG. 9. (Color online) Normalized microscopic current density distribution in a unit cell of the nested wire-medium structure for the
example of Fig. 8(b). The results are calculated for normalized frequencies (a) hω/c = 2.25 and (b) hω/c = 3.6. (c) Geometry of the unit cell.
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and reflection parameters are as shown in Fig. 8(b), and the
Fano resonance is evident.

To further confirm the nature of this resonance, in Fig. 9
we depict the normalized microscopic current density in the
wires in a unit cell, for the structure associated with panel (b)
of Fig. 8, at the normalized frequencies hω/c = 2.25 and at
hω/c = 3.6, which correspond to the peaks of transmission
calculated with Microwave Studio.34 Consistent with Fig. 4,
these results demonstrate that the narrowband Fano resonance
[hω/c = 2.25; Fig. 9(a)] is rooted in the counterflow of
microscopic currents in each set of wires, which originates
a subradiant mode and the total transmission of the incoming
wave. On the other hand, at the second resonance (hω/c = 3.6)
the currents do not flow along a single direction in each wire,
so the wires cannot be regarded as short dipoles.

V. CONCLUSION

In this paper we investigated the effective medium response
of two nested arrays of parallel metallic wires. We studied
the scattering of electromagnetic plane waves by a slab of
the metamaterial, allowing the two arrays to be terminated in
different manners. The results reveal that for wide incident
angles the two arrays can be strongly coupled, and the
currents in the two arrays may flow in opposite directions.
This enables the interference of a narrow quadrupole-type
resonance and a broad dipole-type resonance and results in
Fano-type phenomena that can be useful in sensing.
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APPENDIX A: DRIFT-DIFFUSION MODEL FOR THE
NESTED WIRE MEDIUM

In the following, we show that the spatially dispersive
response of the nested wire medium can be understood in
terms of a transport-based model and is related to diffusion
effects. Moreover, we show that, compared to the case of
a single wire array, the transport model for the nested
wire medium is such that there are two inequivalent charge
species (two independent channels) that contribute to the total
current density. The starting point is a drift-diffusion model
generalized for anisotropic media,

J(r) = σ 0 · E(r) − D0 · ∇ρ(r)

= σ 0 · E(r) − 1

iω
D0 · ∇∇ · J(r), (A1)

where σ 0 = σ 0 (ω) and D0 = D0 (ω) are the “local” conduc-
tivity and diffusion coefficient tensors that are assumed inde-
pendent of position. If we assume conduction and diffusion
only along the wire axis, then D0 = ẑẑDz and σ 0 = ẑẑσz, so

that from (A1) we have Jx = Jy = 0 and(
1 + Dz

iω

∂2

∂z2

)
Jz(r) = σzEz(r).

Fourier transformation z ↔ kz leads to

J (ρ,kz) = ẑẑ
σz

1 − Dz

iω
k2
z

· E (ρ,kz) = σ (kz) · E (ρ,kz) , (A2)

where ρ = x̂x + ŷy, and σ (kz) is now a nonlocal conductivity
tensor that accounts for both conduction and diffusion.

The response of the material is determined by the drift and
diffusion currents associated with the free carriers and by the
bound-charge contribution. In the following we will assume
that the polarization response is local but anisotropic, governed
by the permittivity tensor εb. From Ampere’s law,

∇kz
× H (ρ,kz) = −iω

(
εb + i

1

ω
σ (kz)

)
· E(ρ), (A3)

where ∇kz
= x̂∂/∂x + ŷ∂/∂y + ẑ(ikz), we obtain the com-

bined permittivity

¯̄ε (ω,kz) = εb + ẑẑ
σz

−iω + Dzk2
z

.

If we compare this response with the macroscopic response
of the standard wire medium (1), when the metal dielectric
function is described by the Drude model, we see that εb = ¯̄Iεh

and

σz = iωεh

k2
ef

β2
h

= iωεh

β2
h

(
1

k2
p

+ 1

k2
mfV

)−1

= Dzεhk
2
p (A4)

Dz = iω

β2
hn

2
A

= iω

β2
hk

2
p

(
1

k2
p

+ 1

k2
mfV

)−1

. (A5)

On the other hand, when the metal is described by a constant
conductivity model such that εm ≈ σm/ (−iω) we find from
Eq. (1) that the corresponding drift-diffusion model parameters
are

σz ≈ k2
p/μ0

−iω + τ−1
WM

, Dz ≈ v2
h

−iω + τ−1
WM

, (A6)

where τWM = σmfV μ0/k2
p is an equivalent relaxation time and

vh = 1/
√

μ0εh is the phase velocity in the host medium. Thus,
in general, the uniaxial wire-medium dielectric function can
be written in terms of an effective conductivity and diffusion
model as

¯̄ε (ω,kz) = ¯̄Iεh + ẑẑ
σz

−iω + Dzk2
z

. (A7)

As discussed in Ref. 24, for natural nonlocal materials
such as semiconductors, when two charge species A and B

(e.g., electrons and ions) are present, the spatial transform
permittivity has the form

¯̄ε (ω,k) = εh + i
1

ω
σA (k,ω) + i

1

ω
σB (k,ω) , (A8)

where the interactions among charge species comes from the
electric field E, being the self-consistent field. An isotropic
triple-wire array system leads to the same form for the
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permittivity,24 and for the two nested wire arrays considered,
we have:

¯̄ε (ω,k) = εh + ẑẑ
σz,A

−iω + Dz,Ak2
z

+ ẑẑ
σz,B

−iω + Dz,Bk2
z

, (A9)

where the lth current component satisfies(
1 + Dz,l

iω

∂2

∂z2

)
Jz,l(r) = σz,lEz(r), (A10)

wherein Ez is the z component of the self-consistent field
associated with Jz,A, Jz,B , and bound charge polarization
current Jp = −iω (εh − ε0) E.

The drift-diffusion approach has two important assets. One
is that it allows the definition of a Debye length for the lth wire
system (in this case along the wire axis),

k2
D,l = −iωεh + σl

Dlεh

, (A11)

that gives a measure of charge screening, as it does for natural
materials. It is found that the Debye length for wire media
is much larger than that for natural materials,24 attesting
to the strength of nonlocal effects. The second benefit of
the drift-diffusion model is for three-dimensional problems.
Solving equations of the form J(r) = ∫

σ (r − r′) · E(r′)d3r′
involves at least sixfold convolution integrals (three from the
convolution of σ and E, and three relating E to current, E(r) =∫ ¯̄G(r − r′) · J(r′)d3r′, and more if σ (r) is not determined
in closed form. However, the drift-diffusion form (A10)
involves only threefold integrals relating E and J by Green’s
dyadic ¯̄G. This has been shown to lead to a practical way
to model scattering from three-dimensional wire media.40,41

Double-nested wire arrays can be modeled in the same manner,
although that topic is beyond the scope of the present work.

APPENDIX B: ENERGY CONSERVATION AND POYNTING
VECTOR DEFINITION IN NESTED WIRE MEDIA

The definition of the Poynting vector in the standard
uniaxial wire medium has been studied in a previous work,
where it was demonstrated that it should be written not only
in terms of the macroscopic electromagnetic field, but also in
terms of the so-called additional potential ϕ and of the current
that travels along the wires I (Refs. 19,42). Specifically, one
has42

Sav = 1

2
Re

{
E × H∗ + ϕI ∗

Ac

ẑ
}

, (B1)

where Ac = a2. To generalize this result and formulate an
energy conservation theorem for the wire medium formed by
nested sets of wires, we start by writing the Maxwell equations
in the time domain as

∇ × E = −μ0
∂H
∂t

, (B2)

∇ × H = εh

∂E
∂t

+ Itot

Ac

ẑ + Jext, (B3)

where Jext is an hypothetical macroscopic (external) current
density and the total conduction current is given by summation
of the two currents along the wires: Itot = Itotẑ = ∑

l Il ẑ. In
our case, each array of wires is characterized by an additional

potential and microscopic current, which in the time domain
satisfy (see Ref. 42 for a related result):

∂Il

∂z
= −Cl

∂ϕl

∂t
, (B4)

∂ϕl

∂z
= −(Ll + Lw,l)

∂Il

∂t
− Rw,lIl + Ez, (B5)

with l = A,B, where Zw,l = −iωLw,l + Rw,l =
−1/iωπR2

l ε0
(
εm,l − 1

)
is the self-impedance of the

wires,18 Cl = 2πε0/ log
[
a2/4Rl (a − Rl)

]
is the effective

capacitance per unit of length (p.u.l.) of wire,18 and
Ll = log

[
a2/4Rl (a − Rl)

]
μ0/2π is the effective p.u.l.

inductance18 in each wire array.
Following a procedure analogous to that reported in Ref. 42

it is possible to calculate the instantaneous macroscopic
Poynting vector S in the wire medium, the instantaneous
density of stored energy W, the instantaneous density of power
transferred from the sources to the medium Pext, and the
instantaneous power loss density Ploss :

S = E × H +
∑

l

ϕlIl

Acell
ẑ, (B6)

W =
∑

l

(
(Ll + Lw,l)

2Ac

I 2
l + Clϕ

2
l

2Ac

)
+ μ0

2
H2 + εh

2
E2, (B7)

Ploss =
∑

l

Rw,lI
2
l , (B8)

Pext = Jext · E, (B9)

In the case of a time-harmonic electromagnetic field with
frequency of oscillation ω, the time-averaged Poynting vector
can be expressed as

Sav = 1

2
Re

{
E × H∗ +

∑
l

ϕlI
∗
l

Ac

ẑ

}
. (B10)

This formula extends the result of Ref. 42 and can be further
generalized to other systems of metallic wires that interact with
one another as macroscopic excitations.

Next, we demonstrate that in the lossless case, the boundary
conditions proposed in Sec. III guarantee the continuity of
the real part of the z component of the Poynting vector at a
generic interface, and hence the conservation of energy. Let us
consider, for instance, the top interface of a wire-medium slab
corresponding to the plane z = 0. At this plane the continuity
of Sz is equivalent to

Re

{
1

2

(
Ex,WMH ∗

y,WM |z=0 +
∑

l

ϕlI
∗
l,z

Ac

∣∣∣∣∣
z=0

)}

= Re

{
1

2
Ex,airH

∗
y,air|z=0

}
, (B11)

where the subscripts WM and air indicate at which side of the
interface the fields are evaluated. This equation is equivalent
to

Re{Ex,WM (H ∗
y,air − H ∗

y,WM )|z=0} = Re

{∑
l

ϕlI
∗
l,z

Ac

∣∣∣∣∣
z=0

}
.

(B12)
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We can easily identify (H ∗
y,air − H ∗

y,WM )|z=0 = �H ∗
y �z=0

as (−YgEx |z=0)∗ using the boundary condition (8b). In the
lossless case, the grid admittance is a pure imaginary number,
and hence,

Re{Ex,WM (H ∗
y,air − H ∗

y,WM )|z=0} = 0. (B13)

So the continuity of Sz reduces to

Re

{∑
l

ϕlI
∗
l,z

Ac

∣∣∣∣∣
z=0

}
= 0. (B14)

On the other hand, in general, it is possible to write that at
the interface,19

ϕl = Il

−iωCend,l

(l = A,B), (B15)

where Cend,l depends on the manner that the metallic wires
are terminated at the interface. For example, for cut wires,
Cend ≈ Ctip ≈ 0, whereas for wires connected to large metallic
patches, Cend ≈ Cpatch ≈ ∞ (Ref. 19). In any case, provided
Cend is a real number, we find that:

Re

{∑
l

ϕlI
∗
l,z

Ac

∣∣∣∣∣
z=0

}

= Re

{
IA

−iωCend,A

I ∗
A + IB

−iωCend,B

I ∗
B

∣∣∣∣
z=0

}
= 0 (B16)

and therefore Eq. (B15) is indeed satisfied, as we wanted to
prove.
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