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The exchange splitting and resulting electromagnetic response of graphene in a monolayer chromium triiodide
(CrI3)–graphene van der Waals heterostructure are considered using a combination of density-functional theory
and electromagnetic calculations. Although the effective exchange fields are in the hundreds of Tesla, for the
equilibrium separation nonreciprocal effects are found to be weak compared to those for a comparable external
magnetic bias. For nonequilibrium separations, nonreciprocal effects can be substantial.
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I. INTRODUCTION

Graphite consists of parallel atomic layers of carbon atoms,
the layers being weakly bound together by van der Waals
(vdW) forces. As such, graphite is easily cleaved to form
few layer materials, or even monolayers (graphene). Since
its experimental isolation in 2004 [1], graphene has been an
object of considerable study for both scientific and industrial
investigators. Graphene’s most notable feature is its atomic
hexagonal lattice, which results in linear electronic dispersion
and the presence of Dirac points at the Fermi level. As a
result, electrons behave as massless particles in the vicinity
of the Dirac point, leading to extraordinary electrical and
mechanical properties [2].

Bulk chromium triiodide, CrI3, also is a layered vdW
material that can be easily cleaved, and is relatively stable in
ambient conditions [3]. Bulk CrI3 is a ferromagnetic (FM)
insulator with a relatively high Curie temperature of Tc =
61 K [3]. The two-dimensional (2D)/monolayer form of CrI3

consists of Cr3+ ions and I− ions that form edge-sharing
octahedra arranged in a hexagonal honeycomb lattice with
an approximate thickness of 0.6 nm. Like its bulk form,
monolayer CrI3 is also a FM insulator, with an out-of-plane
easy axis and somewhat reduced Tc of 45 K [4].

The controlled growth/deposition of 2D materials can
lead to vdW heterostructures that result in exceedingly thin
structures with enhanced functionality. Here, we exploit the
proximity exchange between a 2D ferromagnet and graphene.
In its monolayer form, CrI3 exhibits massive local Cr mag-
netic moments of 3μB, which potentially can induce large
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exchange splittings in adjacent layers of a heterostructure.
Since 2D CrI3 has a hexagonal structure, it is well lattice-
matched with graphene. Magnetic order in CrI3 has been
studied experimentally in [4–8], and in other 2D magnets,
such as MnSe2 [9,10] and CrGeTe3 [11,12]. In all cases, these
2D magnets have out of the plane magnetization. In some
cases, magnetic effects can be controlled via electrostatic
gating [7,8], or strain [13,14].

Enormous pseudomagnetic fields (on the order of hundreds
of Tesla) and associated pseudo-Landau levels (LLs) have
been predicted in strained systems [15]. Such fields do not
break time-reversal (TR) symmetry, and cannot lead to nonre-
ciprocal behavior. Importantly, the exchanged-induced fields
described here do break TR: The effective Hamiltonians for
both an external magnetic field and a ferro-/antiferromagnetic
system contain terms that explicitly couple to the spin that
are not invariant under time reversal; in contrast, the pseudo-
magnetic fields in strained graphene couple to charge only,
and hence preserve time-reversal symmetry. Exchange inter-
actions in similar vdW heterostructures have been considered,
e.g., Cr2Ge2Te6-graphene [16], where equilibrium exchange
splittings were calculated to be approximately 5 meV, and
EuS-graphene [17]. A Chern insulating state can be realized
in graphene in proximity to CrI3, via the magnetic exchange
field and Rashba spin-orbit coupling [14,18]. However, to
achieve this, the heterostructure needs to be compressed from
its equilibrium state which increases the effective field [18].

In this work, we use first-principles density functional the-
ory (DFT) calculations to show that the proximity exchange
in graphene due to monolayer CrI3 can result in an enormous
exchange field, and then we investigate the conductivity of
graphene due to the CrI3 exchange field, and the behavior
of bulk and nonreciprocal edge surface-plasmon polaritons
(SPPs). A comparison is made with the conductivity and
SPP properties of graphene in an external magnetic field,
and significant differences are found in the two cases. We
also examine Faraday rotation (FR) of graphene [19,20]. In
Ref. [21] the graphene CrI3 interface is also investigated using
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DFT, and in Ref. [22] surface polaritons on graphene coupled
to a bulk antiferromagnetic insulator were considered.

The principal findings of this work are (1) the equilibrium
(minimum energy) separation between the CrI3 and graphene
is approximately 3.75 Å, at which point the exchange splitting
is 21 meV, corresponding to an effective exchange field of
100 T and a chemical potential of μ = −0.3 eV, which self-
biases the graphene. Referring to graphene’s conductivity in
the CrI3-graphene heterostructure, (2) LLs, which are the
most prominent feature of the graphene conductivity in a
strong external field, are absent in the case of the exchange
field. (3) In the far-infrared considered here, the intraband
conductivity is dominant, with diagonal element values that
are approximately the same as isolated graphene with no
applied magnetic bias and μ = −0.3 eV, whereas the off-
diagonal elements are similar in magnitude to those in the
external bias case. (4) Because of the large diagonal conduc-
tivity response compared to having an external bias (in which
case most of the Drude weight is transferred to the Landau
levels), the resulting nonreciprocity due to the exchange field
is considerably less then for an external magnetic field of
the same strength. For smaller separation (achievable through,
e.g., strain), nonreciprocal effects in Faraday rotation are still
rather modest, but a unidirectional edge SPP can be found.

The article is organized as follows. In Sec. II the density
functional calculations are presented, and results for exchange
splittings and the corresponding effective exchange fields
are given. In Sec. III the exchange-field-induced graphene
conductivity is discussed, and compared with that arising from
an external bias, and bulk and edge surface plasmons are
considered. The edge SPPs for the exchange field are slightly
nonreciprocal for the equilibrium separation, whereas for the
external bias case they are highly nonreciprocal (unidirec-
tional), tightly confined, long-lasting, and robust to material
discontinuities. In Sec. IV, FR is shown for both the exchange
and external bias fields, where, again, the exchange field is
shown to produce modest FR. The Supplemental Material [23]
contains further results from the DFT calculations, and the
derivation of the edge plasmon dispersion. In the following,
the suppressed time dependence is e−iωt .

II. DENSITY FUNCTIONAL CALCULATIONS

Density functional calculations for graphene on CrI3 have
been reported previously, [14], with an emphasis on the topo-
logical aspects of the compressed system. Here the focus is
on the effect of the induced exchange field on the graphene
electronic structure, and the implications for the calculation
of optical properties discussed later; detailed first-principles
calculations of the optical properties of the CrI3 itself have
also been reported previously [29].

To model the composite system, we consider 5 × 5
graphene on a free-standing

√
3 × √

3 CrI3 monolayer,
Fig. 1(a), which has a small lattice mismatch of ∼1%. (Ad-
ditional calculations for

√
31 × √

31 graphene on 2 × 2CrI3

are done to address the dependence on the relative twist of the
layers and are discussed in the Supplemental Material [23].)

Because graphene and CrI3 are both layered van der Waals
materials, the results presented below are only very weakly
dependent on the horizontal registry between the two, as

FIG. 1. (a) Top and (c) side views of the (
√

3 × √
3) CrI3–

(5 × 5) graphene structure (C: yellow; Cr: blue; I: green), with the
commensurate supercell given in black. (b) The Brillouin zones of
the supercell (black; first Brillouin zone in yellow), (1 × 1) CrI3

(blue), and (1 × 1) graphene (red). The green circles (and enclosed
lines) denote the portion of k space where the graphene Dirac points
occur.

verified by considering two different less symmetric registries.
The supercell Brillouin zone, which is a factor of 25 (3) times
smaller than that of graphene (CrI3), is shown in Fig. 1(b).
The interlayer separation is varied between 2.5 and 4.5 Å.

The calculations were performed using the Vienna Ab
initio Simulation Package [30] within the generalized gradient
approximation (GGA)+U rotationally invariant approxima-
tion [31], with the choice of U = 1 eV, J=0. (As shown in
Ref. [29], the CrI3 gap decreases with increasing U , contrary
to normal expectations. This choice of parameters provides
a reasonable starting point for the CrI3 electronic structure.)
In addition, van der Waals DFT-D3 corrections [32] were
included. The projector-augmented wave functions were ex-
panded in plane waves up to 400 eV, the repeated slab geome-
try included a vacuum region of at least 20 Å, and a 27 × 27 ×
1 k-point mesh in the supercell was used for self-consistency,
corresponding to a 135 × 135 × 1 mesh for graphene; this
mesh was sufficient for placing the Fermi level and for the
optical conductivity calculations. Spin-orbit was included for
some calculations (see Supplemental Material [23]) using the
same parameters.

Each ferromagnetically coupled Cr has a magnetic moment
of 3 μB, and the moments are calculated (∼0.4 meV/Cr) to
be orientated perpendicular to the plane. The spin-polarized
k-projected [33,34] bands of graphene around the K point and
of CrI3 at the calculated equilibrium graphene-CrI3 separation
of 3.75 Å are shown in Figs. 2(a) and 2(b), respectively. (The
range of separations discussed here may be experimentally
accessible: the calculated pressures are 1.4, 3.7, and 13.5 GPa
for separations of 3.25, 3.0, and 2.5 Å, respectively.)

The top of the CrI3 valence band and the lowest set of
conduction bands are of majority spin (blue curves). The
graphene Dirac point lies above the Fermi level in the con-
duction band of CrI3, and opens up a gap in the CrI3 bands
along �-M [red circle in Fig. 2(b)]. The relative position of
the graphene and CrI3 bands varies with interlayer separation
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FIG. 2. k-projected bands of the graphene–CrI3 magnetic sys-
tem. Blue (orange) denote the majority (minority) spin of the CrI3,
and the size of the circles represents the relative weight. (a) Graphene
k-projected bands around the K point (± 1

4 ) along �-K of the (1 × 1)
Brillouin zone, and (b) CrI3 k-projected bands along the high sym-
metry directions of the (1 × 1) structure, both for a graphene–CrI3

separation of 3.75 Å. (c) Close-ups of the graphene k-projected bands
bands within ± 1

40 of K for different separations. The gray bands are
(“folded” and CrI3) bands with small weights. The green lines and
red ovals show where the exchange splittings above and below the
Dirac point, respectively, are measured.

(Fig. 2(c) and Supplemental Material Fig. S2 [23]): for sep-
arations of less than ∼3.2 Å, the graphene Dirac point is in
the gap and then crosses into the CrI3 conduction band. This
behavior can be understood by noting that the calculated work
functions and CrI3 gap place the graphene Dirac point within
the CrI3 conduction band, for both the present GGA+U cal-
culations and for hybrid Heyd–Scuseria–Ernzerhof functional
calculations [14]. However, GW calculations for CrI3 [29]
increase the size of the gap, so that at the equilibrium sepa-
ration the Dirac point may still be within the gap. Regardless,
the present results can provide insight into the difference in
expected behavior with the relative placement of the two sets
of bands.

For all separations, Fig. 2(c), the minority (“spin 2”)
graphene bands maintain their linear dispersions, even includ-
ing spin-orbit interaction (c.f., Figs. S3 and S4). The majority
bands, on the other hand, interact and hybridize with the
(majority spin) conduction band states even for smaller sep-
arations where the Dirac point is in the CrI3 gap. Importantly,
because of the proximity of the graphene to the ferromagnetic
CrI3, there are induced exchange splittings of the graphene
bands. For larger separations, the majority graphene bands
that overlap the GrI3 conduction bands are strongly modified,
whereas the minority bands retain the characteristic graphene
dispersions.

FIG. 3. (a) Exchange splittings (meV) and effective field (T), of
the graphene states around K for different separations determined at
the positions shown in Fig. 2(c) [above and below the Dirac point
indicates the green line and red ovals, respectively, in Fig. 2(c)].
(b) The chemical potentials of graphene for each spin relative to the
respective Dirac points.

The calculated splittings of the Dirac point and the bands
above (below) measured at the indicated positions are given in
Fig. 3(a). These splittings are large compared to the Zeeman
splittings induced by an external field: the effective fields are
in the range of 100 T. When the Dirac point is in the gap, the
exchange splittings are normal in the sense that the majority
states are deeper in energy than the minority. However, the
exchange splitting of the Dirac point and the bands above
reverse as the Fermi level of the combined system moves into
the CrI3 conduction band.

Because of the exchange splitting and the relative positions
of the bands, the graphene is effectively doped, which can
be described by spin-dependent chemical potentials, μ±, as
shown in Fig. 3. For smaller separations with the Dirac points
in the gap, μ± are approximately equal and of opposite
sign, i.e., no net doping. For larger separations, including
the equilibrium one, the graphene becomes hole doped with
μ± ∼ 0.3 eV. The result is that for smaller separations when
the Fermi level is in the gap, the position of the (minority)
Dirac cone is closer to the Fermi level and determined by
the size of the exchange splitting, while for larger separations
doping determines the position; that the chemical potentials
are approximately equal and much larger than the exchange
splittings is physically related to the fact that local magnetic
moments formation in graphene sheets is not favorable.

For graphene in external magnetic fields and nonzero
chemical potential, the intraband contributions to σxx domi-
nate over interband ones in the far-infrared optical conductiv-
ity, and the formation of Landau levels provide an explanation
of the Hall conductivity σxy. Although the effective fields
due to the proximity-induced exchange splittings are large,
these do not create LLs; the formations of the minibands in
the majority bands seen in Fig. 2(c) are due to interactions
and hybridization with the CrI3. The LLs formed in graphene
in the presence of external magnetic fields or strain-induced
pseudomagnetic fields [35] are both more localized in energy
and have their broad momentum distribution peaked around
K. Similar to LLs, however, these minibands change the
dispersion and hence will modify the optical transitions.
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FIG. 4. (a), (b) Two-dimensional conductivity of graphene in
the presence of the CrI3 exchange field for separations d ∈
{2.5 Å, 3.25 Å, 3.75 Å}. Also shown for comparison is the conduc-
tivity of isolated graphene (Iso-GR) computed assuming an external
field of 100 T with chemical potential μ = −0.3 eV [36], and the
zero external field case using the spin dependent chemical potentials
that correspond to each of the afformentioned separations (in both of
the latter computations, � = 2 × 1012 s−1 and T = 40 K). (c) Off–
diagonal element vs CrI3-graphene separation compared with the
isolated-graphene external bias case [where for each separation the
value of effective field below the Dirac point from Fig. 3(a) was
assumed. (d) The off-diagonal element normalized by the frequency
average of the diagonal element. In (c), (d), the overbar indicates
frequency average, as explained in the text. G0 = 2e2/h.

III. GRAPHENE CONDUCTIVITY AND SURFACE
AND EDGE PLASMON POLARITONS DUE

TO CrI3 EXCHANGE FIELD

The computation of the intra- and interband contributions
to graphene’s conductivity in the presence of the CrI3 ex-
change field is briefly described in the Supplemental Mate-
rial [23]. Figure 4 shows the computed conductivity in the
far-infrared and, for comparison, the conductivity computed
(i) assuming isolated graphene in an external bias of 100 T
and μ = −0.3eV [36], the effective equilibrium exchange
field and potential as described above; (ii) isolated graphene
B = 0 T using μ± plotted in Fig. 3(b) for separations d ∈
{2.5 Å, 3.25 Å, 3.75 Å}; and (iii) the calculated CrI3 conduc-
tivity [29], which is negligible at the considered frequen-
cies. Figures 4(a) and 4(b) show the diagonal elements vs
frequency, and Fig. 4(c) shows the off-diagonal element vs
CrI3-graphene separation (which are nondispersive in our
calculation). For the external bias case, Fig. 4(c), the effective
fields (“below the DP” values) for each “separation” from
Fig. 3 were assumed. In Figs. 4(c) and 4(d), we show the
mean conductivity for 0 to 5 THz. As an example, for the
CrI3-graphene data (for a separation of 3.75 Å), this mean

is 33 G0, and for isolated biased graphene ( B0 = 100 T),
0.03488 G0.

The diagonal elements of the conductivity are dominated
by the Drude intraband contribution at the considered frequen-
cies (σ 2D−Drude

xx = i�/(ω + 2i�), with the Drude weights �

shown in Fig. S6), and resemble very closely the conductivity
for isolated graphene with no magnetic bias, but with the
exchange-field induced spin-dependent values of chemical
potential μ±. Because of transfer of the Drude weight to the
Landau levels in the case of an external bias, the exchange
field diagonal conductivity is several orders of magnitude
larger than the equivalent external field conductivity, i.e.,
for the external bias case, the formation of Landau levels
depresses the diagonal conductivity away from the Landau
level, while forcing the off-diagonal elements to be nonzero
due to cyclotron motion of the charge carriers. This results in
relatively large ratios of the off-diagonal to diagonal elements
for the external bias, in contrast to the exchange bias case
where the diagonal elements are relatively unaffected and
hence the ratios are smaller.

For some separations (c.f., Fig. 3) the chemical potential
is quite different for the two spins, as is the effective bias
field. Therefore, for the external bias computation, we adjust
the spins accordingly and sum over the two spins. For the
off-diagonal elements, the exchange field values are similar in
magnitude to the external bias case having the same effective
field. Figure 4(d) shows the off-diagonal values of the con-
ductivity normalized by the frequency average of the diagonal
element since this ratio is an indication of the nonreciprocity
of the material. Notably, the nonreciprocity of the exchange
field case is much weaker than for the external field bias.

From Fig. 4, the CrI3 conductivity is much smaller in mag-
nitude than that of graphene. Since these effectively combine
in parallel from an electromagnetic standpoint, we can ignore
the presence of the CrI3 in the electromagnetic calculations.
This was confirmed by computing the dispersion of the CrI3-
graphene system including both conductivities, as in Ref. [37].

A. Bulk (Surface) SPPs

For the case of graphene having an arbitrary conductivity
tensor and residing in a homogeneous medium characterized
by μ0 and ε, SPPs of an infinite 2D sheet satisfy a dispersion
equation of the form D(kx, ky) = 0 [38], where

D(kx, ky) = kxky(σyx + σxy) + (
k2

y − k2
1

)
σyy + (

k2
x − k2

1

)
σxx

− 2ipεω
(
1 + 1

4η2(σxxσyy − σxyσyx )
)
, (1)

p =
√

k2 − k2
1 , k = |k| is the in-plane wave number, and

k1 = ω
√

μ0ε. The square root in p leads to a two-sheeted
Riemann surface in the q plane, and associated branch cuts.
The standard hyperbolic branch cuts [39] separate the proper
(where Re(p) > 0, such that the radiation condition as |z| →
∞ is satisfied) and improper sheets.

In the presence of the exchange field, or an external mag-
netostatic bias, the conductivity tensor elements are

σxx = σyy = σd ,

σxy = −σyx = σo. (2)
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In this case, Eq. (1) reduces to

D(k) = (
p2 − k2

1

)
sd − ipk1

(
1 + s2

d + s2
o

)
, (3)

where sd = ησd/2, so = ησo/2, and η = √
μ0/ε, and D(k) =

0 can be solved to yield

k± = k1

[
1

22s2
d

( − is2 ±
√

4s2
d − s4

)2 + 1

]1/2

, (4)

where s2 = s2
d + s2

o + 1. For so = 0, Eq. (4) becomes

k+ = kT M = k1

√
1 − 1

s2
d

, k− = kT E = k1

√
1 − s2

d , (5)

for the transverse-magnetic (TM) and transverse-electric (TE)
cases, respectively, where transverse is defined with respect
to the radial coordinate. For isolated and unbiased graphene
characterized by isotropic complex surface conductivity, σ =
σ ′ + iσ ′′, a proper TE surface wave exists if and only if
σ ′′ < 0, and a proper TM surface wave exists for σ ′′ > 0. If
μ 	= 0, pure TM and TE modes do not exist in the presence
of a magnetic bias, although usually the modes retain similar
characteristics (quasi-TM/TE).

B. Edge Surface Plasmon Polaritons

Assuming an out-of-plane magnetic bias and symmetry,
bulk SPPs have reciprocal dispersion; breaking symmetry, for
example, by introducing an interface, allows for plasmons
with asymmetrical dispersion [40]. Specifically, here we in-
troduce a graphene half-space, and consider the quasistatic
modes that may propagate on the edge. This is a well-studied
problem [41,42], and here we consider the exchange field
case and, for comparison, the external bias case. Two dif-
ferent methods of analysis are presented in the Supplemental
Material [23], and a new approximate solution for SPP edge
dispersion is given there [Eq. (56)].

Figure 5 shows the bulk and edge dispersions for a
graphene half-space due to the exchange fields corresponding
to separations of 3.0 Å, Fig. 5(a), and 3.75 Å, Fig. 5(b).
For 3-Å separation, the right-going edge mode exists until
approximately 3 THz, above which the edge mode leaks into
the bulk SPP (mathematically, it crosses onto an improper
Riemann sheet through a branch point associated with the
bulk mode wave number); the leaky mode (not shown) then
approximately follows the bulk dispersion, with slightly lower
wave number. In this case, the edge mode is strongly nonrecip-
rocal (unidirectional). However, for the equilibrium separation
of 3.75 Å separation, the edge mode is essentially reciprocal.

The bulk and edge dispersions for graphene in an external
magnetic bias field are shown in Fig. 6. The edge modes flip
directions upon reversing the bias field. Although the results
were computed assuming B = 100 T, due to the normaliza-
tion, the dispersion diagrams are essentially independent of B
for |B| � 1 T. For the external bias case, the Landau levels are
given by

Mn =
√

2nv2
F |eB|h̄ ≈ 36.3 meV

√
n|B|, (6)

where vF � 106 m/s is the graphene electron Fermi velocity.

FIG. 5. Bulk (solid red) and edge (dots) TM-like dispersion of
graphene modes in an exchange field for two CrI3-graphene separa-
tions. VAC indicates vacuum dispersion.

For the exchange field (Fig. 5), the bulk SPPs are not
gapped, whereas for the external bias case (Fig. 6) the bulk
SPPs are strongly gapped. This is a result of the behavior of
Im(σ ): Since TM and quasi-TM modes require Im(σ ) > 0
for a proper surface wave, gaps appear for Im(σ ) < 0, which
does not occur for the exchange case in the far-infrared, where
the conductivity dispersion is Drude-like. In the external bias
case, the formation of LLs causes this sign change at lower
frequencies, resulting in the TM gap shown in Fig. 6.

Figures 7(a) and (7b) show edge SPP propagation length
and guided wavelength on the graphene layer as a function
of CrI3-graphene separation. The SPP propagation length
1/2 Im(ky) generally increases with separation, and decreases
with increasing frequency. The SPP wavelength is quite long,
LSPP/λSPP � 1, and so the SPP seems not to be very useful.

The corresponding edge SPP propagation length and wave-
length on the graphene layer in an external field as a function
of the external bias are shown in Figs. 7(c) and 7(d). As the
magnetic bias increases, the SPP propagation length increases,
and LSPP/λSPP > 1; for large magnetic bias, LSPP/λSPP ≈ 6 −
8. For μ = −0.3 eV, the results are the same as shown in
Fig. 7 for B > 80 T, since for larger chemical potentials the
SPP is not well-formed and is not quasi-TM below a critical
bias [43].

Figure 8 shows the edge SPP on the exchange-field bi-
ased graphene due to a dipole source in the vicinity of
the graphene-vacuum edge, computed using COMSOL. In
correspondence with the dispersion shown in Fig. 5, for the
equilibrium separation of 3.75 Å the SPP is essentially recip-
rocal, as it is at 2.5 THz for separation 3 Å. However, for 3
Å and 4 THz, the SPP is unidirectional. However, because
LSPP/λSPP is short, the SPP does not propagate well.
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FIG. 6. Bulk (dashed red) and edge (dots) TM-like dispersion
and bulk TE-like modes (solid red) for graphene in an external bias.
The shaded region indicates the bulk band gap, ωB = 526.2 × 1012 is
the frequency of the first Landau level, μ = −0.3 eV, T = 40 K, � =
2 × 1012 s−1, B = 100 T, and lB = √

h̄/eB = 2.6 nm is the magnetic
length.

FIG. 7. (a) Edge SPP propagation length (left branch of Fig. 5)
and (b) SPP wavelength on graphene in an exchange field as CrI3-
graphene separation varies. (c) Edge SPP propagation length and
(d) SPP wavelength on graphene in an external bias for different
frequencies. μ = 0.05 eV, T = 40 K, � = 2 × 1012 s−1. For (c) and
(d), the first LL occurs at 8.8

√|B|, well beyond the considered
frequencies. For comparison, from Fig. 3, for the separations 2.5,
3, 3.5, and 4 Å, the effective bias fields are 750, 600, 450, and 90 T,
respectively.

FIG. 8. Edge SPP launched by a dipole source near the graphene-
vacuum edge for the exchange field magnetic bias corresponding to
two CrI3-graphene separations.

In contrast to Fig. 8, Fig. 9 shows the edge SPP on
externally biased graphene due to a dipole source in the
vicinity of the edge, computed using COMSOL. The size of
the discontinuity is on the order of λSPP (e.g., the length of the
discontinuity contour in the second panel is 5λSPP). It is clear
that as the magnetic bias increases, the SPP propagates fur-
ther, in agreement with Fig. 7, while its wavelength increases.
The edge SPP is clearly robust, and propagates around the
discontinuity. Although there appears to be a weak field to the
left of the source, it is due to the imperfect boundary condition
at the edge of the computational domain. (Converting to the
time domain shows that the field to the left of the source is
actually traveling towards the right.)

IV. FARADAY ROTATION

Faraday rotation on magnetically biased graphene has been
studied in [19,44], among other works. As discussed above,

FIG. 9. Edge SPP launched by a dipole source near the graphene
edge for several values of external magnetic bias. f = 13.87 THz,
μ = 0.05 eV, T = 40 K, � = 2 × 1012 s−1.
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FIG. 10. (a) Faraday rotation and (b) ellipticity of the CrI3-
graphene heterostructure as a function of frequency for different sep-
arations. The dotted curve shows FR for externally-biased graphene
using the effective field strengths from Fig. 3.

since the conductivity of the CrI3 is much smaller than the
conductivity of graphene at the considered frequencies, we
can neglect the Faraday rotation contribution of the CrI3, and
only consider the FR of graphene under the influence of the
exchange field. The Faraday rotation is computed as [45]

θFR = 1

2
arg

(
tpp − itps

tpp + itps

)
, (7)

and the ellipticity as

δ = |tpp − itps|2 − |tpp + itps|2
|tpp − itps|2 + |tpp + itps|2 , (8)

where tpp = Et
p/Ei

p, tps = Et
s/Ei

p; p = x, y, s = x, y, s 	= p;
and the superscripts indicate incident (i) or transmitted (t)
fields. For graphene in a homogeneous medium, the transmis-
sion coefficients are

txx = 4/η + 2σxx

4σxx + η
(
σ 2

xx + σ 2
xy

) + 4/η
, (9)

txy = 2σxy

4σxx + η
(
σ 2

xx + σ 2
xy

) + 4/η
, (10)

where η = √
μ/ε.

Faraday rotations for the exchange field case are shown
in Fig. 10 for various CrI3-graphene separations. For closer-
than-equilibrium separations, modest Faraday rotations are
observed, but for the equilibrium separation, FR is negligi-
ble since σxy/σxx is small. In contrast, for externally biased
graphene, Fig. 11, large Faraday rotations can be obtained.
As B increases, the FR resonance first blueshifts [Fig. 11(a)],
and eventually stabilizes in frequency [Fig. 11(b)] at the first
LL, but the peak FR continues to increase with increasing B.
Ellipticity behaves in a similar manner as FR.

FIG. 11. (a),(b) Faraday rotation and (c),(d) ellipticity of
graphene as a function of frequency for different external bias values,
and (e),( f) density plots of Faraday rotation. ωB is the frequency
of the first Landau level for each bias. μ = 0.2 eV, T = 40 K, and
� = 2 THz.

V. CONCLUSIONS

We have examined exchange splitting in a monolayer
chromium triiodide (CrI3)–graphene vdW heterostructure us-
ing density-functional theory where effective exchange fields
of hundreds of Tesla are predicted. These enormous fields
serve as the magnetic bias for the graphene layer. Graphene
conductivity and SPP properties for the exchange field were
considered, and compared with the external bias case. Since
no LLs occur for the exchange field, the resulting nonre-
ciprocity is found to be considerably weaker than for an
equivalent external field bias (where strongly nonreciprocal
electromagnetic edge modes that are tightly confined, robust,
and unidirectional are shown to exist). Faraday rotation due to
the exchange field was also shown to be modest compared to
the external bias case.
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I. GRAPHENE BANDS

A. Separation dependence

The spin-resolved DOS around the Fermi level of the
combined system as a function of graphene-CrI3 separa-
tion is shown in Fig. S1. The majority DOS has a large
peak above the Fermi level arising from the CrI3 con-
duction bands, as well as the graphene bands. For sep-
arations greater than ∼3.25 Å, the minority DOS show
the characteristic V-shape due to the linear dispersion of
the graphene bands around K, and similarly the majority
DOS show the linear behavior in the gaps on either side
of the CrI3 peak. For closer approaches, however, the
graphene contributions to the DOS of both spins are sig-
nificantly distorted despite the fact that the Dirac point
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FIG. S1. Spin-resolved (majority: blue; minority: orange)
density of states for the combined graphene-CrI3 for different
separations obtained by broadening each eigenvalue by the
derivative of the Fermi function with kBT=0.040 eV. The
Fermi level is set to zero.
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FIG. S2. k-projected bands of graphene around the K along
(± 1

40
) Γ-K of the (1×1) Brillouin zone (c.f., Fig. 1 of the main

text) for different graphene–CrI3 separations. Blue (orange)
denote the majority (minority) spin of the CrI3, and the size of
the circles represents the relative weight; gray symbols denote
bands with small graphene weight. The yellow lines in the 2.5
and 2.75 Å plots are the isolated graphene bands shifted so
the Dirac point coincides with that of the minority bands.

lies in the CrI3 band gap.

The k-projected graphene bands for separations ∆d
in addition to Fig. 2(c) of the main text are shown in
Fig. S2. For ∆d=2.5 Å, the Fermi level is in the CrI3
gap. The bands are strongly exchanged split and, in or-
der to maintain charge neutrality, the majority states are
electron-doped while the minority states are hole-doped.
The majority – but not the minority – bands are strongly
split, 18.5 meV, at the Dirac point due to interactions
with the CrI3 substrate. (The minority Dirac point has
a small 0.3 meV gap.) This different behavior, which is
noticeable at all separations, is a consequence of the fact
that the nearby CrI3 states are of majority character. In
addition, although the dispersion of the minority bands is
linear, the slope is noticeably smaller, with the difference
decreasing as the separation increases.

As the graphene and CrI3 move apart, the Fermi level
moves into the CrI3 (majority spin) conduction band.
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FIG. S3. k-projected bands of graphene around the various
K points of the (1×1) Brillouin zone as in Fig. 1(b) of the
main text (± 1

40
along Γ-K) for the equilibrium separation of

3.75 Å: (a) No spin-orbit; and including spin-orbit with the
Cr magnetic moments oriented along the z -axis: for (b) K, (c)
−K=K’, and (d) the K’ rotated by 60o. Blue (orange) symbols
denote majority (minority) spins in (a) and projection along
±ẑ in (b)-(d), with the size corresponding to relative weight;
gray symbols are for are states with small projected weights.
The exchange splittings away from the Dirac points are given
in green; for the Dirac points,“gap” refers to the splitting
in the majority/s+z bands, the two values of “splittings” are
with respect to the Dirac point of the minority/s−z states, and
“shift” in (c) and (d) is relative (b).

As a consequence, the dispersions of the majority states
below the Dirac point are modified via interactions and
hybridization with the substrate bands, forming mini-
bands in the graphene and CrI3 bands. These mini-bands
continue to exist even to quite large separations (e.g.,
4.25 Å), and thus will affect the optical properties..

B. Spin-orbit effects

Without spin-orbit, the majority and minority bands

separately are symmetric under the transformation ~k →
−~k, i.e., the states at K and −K=K are degenerate. For
a system with spin-orbit and magnetism (broken time-
reversal symmetry), however, the these degeneracies no
longer need to hold. In Fig. S3 the projected bands are
shown for moments oriented along the z -axis, the calcu-
lated preferred direction. The bands at K, Fig. S3(b)
differ from those at −K and K’, Fig. S3(c,d), in the
splittings and in the size and shape of the mini-bands.
(There are also smaller differences between −K and K’.)
These differences open the possibility of non-reciprocal
valleytronic effects.

The direction of the magnetic moments causes notice-
able effects on the dispersions. The results for moments
oriented along the x -axis are shown in Fig. S4. As be-
fore, the graphene bands are essentially fully polarized
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FIG. S4. As in Fig. S3 except the Cr moments are aligned
along the x -axis.

along the axis of the Cr moments. The various splittings
and the mini-bands change compared to those in for the
moments along the z -axis.

C. Twist and Registry Dependence

The (5×5) graphene/(
√

3×
√

3) CrI3 lattices have a rel-
ative orientation of 30◦. Since twist angles of van der
Waals materials are known to sometimes significantly af-
fect the properties, we also considered a larger (2×2)

CrI3–(
√

31×
√

31) graphene supercell, Fig. S5(a), which
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FIG. S5. (a) Top view of the (2×2) CrI3–(
√

31×
√

31)
graphene structure (C: yellow; Cr: blue; I: green), with the
commensurate supercell given in black. k-projected graphene
bands within ± 1

40
of the graphene K point and total density

of states for (b) 3.25 Å and (c) 3.75 Å separation.
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also has good lattice matching, albeit requiring slight
changes in the relative lattice constants. The graphene
lattice is twisted relative to the CrI3 by ∼17.9◦, or equiv-
alently twisted by ∼12.1◦ compared to the other case.
This twist will change where the graphene K point falls
in the CrI3 BZ, and thus which are the dominant CrI3
states that the graphene Dirac states will interact with.

These calculations where limited to separations of 3.75
Å, which is near the equilibrium separation, and 3.25
Å, which is near where the Dirac point goes into the
conduction band and the properties are rapidly changing.
The calculations were done using the same parameters as
the others, except a 21×21 k-point mesh was used.

The k-projected graphene bands around K are shown
in Figs. S5(b,c). The overall density of states look simi-
lar to the previous cases, with the minority Dirac point
near the band edge for 3.25 Å, and inside the conduc-
tion band for 3.75 Å. Because of the twist, the CrI3
bands that coincide with the graphene K point have dif-
ferent dispersion, both being narrower and with different
gaps between bands. The interaction with different CrI3
states are responsible for the upturn in the minority DOS
around +1 eV due to hybridization with higher lying mi-
nority CrI3 bands.

For 3.25 Å, the Dirac points are below the conduction
band edge in this part of reciprocal space, in contrast
to the situation shown in Fig. 2. The exchange splitting
of 17 meV of the Dirac point is smaller, but falls near
the line in Fig. 3 since this is in the range where the
exchange splitting is switching from positive to negative.
Similar to the previous case, the majority band forms
gaps and forms bind-bands with the interaction with the
CrI3 states. For the larger separation of 3.75 Å there are
again formation of mini-bands, although the number are
smaller because of the different number and grouping of
bands in the relevant energy range.

That there are differences because of twist is not sur-
prising since the energies and dispersions of the CrI3
states (c.f., Fig. 2(b)) that will interact with the graphene
Dirac states vary. Despite these changes, the qualitative
behavior such as the formation of mini-bands remains, as
do many of the other properties.

D. Optical Conductivity

The 2D optical conductivity for graphene-CrI3 and iso-
lated graphene were calculated within the independent
particle approximation [1] and shown in Fig. S6. For
graphene, with its linearly dispersing bands, the real part

of the interband contribution of σxx2D(ω) goes to e2

4~ for low
frequencies; the calculated conductivity correctly obeys
this limit, suggesting that the computational parame-
ters (particularly k-point sampling) are adequate for the
present purposes. For the composite system, the inter-
band contribution

The intraband Drude-like contribution to the 2D con-
ductivity tensor, σDrude

2D , is given in terms of the plasma
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Layer Separation (Å)

0

1

2

3

4

5

6

7

Ω
D

ru
d
e
 (

1
0

-3
 S

-T
H

z
)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

σ
2
D
 (

1
0

-4
 S

)

AHE

interband

intraband/
Drude

FIG. S6. Calculated 2D contributions to the optical proper-
ties: Drude intraband contribution, ΩDrude (blue); anomalous
Hall, σ2D

xy (red); and interband, σ2D
xx (green). The open dia-

monds at 3.25 and 3.75 Å correspond to the twisted (2×2)
CrI3–(

√
31×
√

31) graphene calculations.

frequency tensor ω2
p

(
ω2
p

)
αβ
∼
∑
nk

fnk
∂2εnk
∂kα∂kβ

(1)

by

σDrude
2D =

L

4π

(~ωp)2

(~ω)2 + (~γ)2
(γ + iω) (2)

≡ ΩDrude
γν + iν

ν2 + γ2ν
, (3)

where ω = 2πν and γν = 2πγ. As expected, ΩDrude

increases as the as the Fermi level crosses into the CrI3
conduction band; the values for the twisted systems show
similar behavior, although are calculated to be slightly
smaller. (Only the xx component is appreciable.) For
reasonable values of ~γ of a few THz, the intraband dom-
inates the interband contribution to σxx.

Because of the exchange field due to the CrI3, there
is a small contribution to σxy, but the largest contribu-
tion (within the present approximations) comes from the
anomalous Hall effect (AHE),

σAHE
xy ∼ Im

∑
nm

(fn− fm)〈um|
d

dkx
un〉〈um|

d

dky
un〉∗ . (4)

This term grows, and is large, as the graphene Dirac point
and Fermi level approach the bottom of the CrI3 conduc-
tion band, and then a sudden collapse as the Fermi level
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crosses into the CrI3. Thus, for the equilibrium spacing,
this contribution is again small. If the large value of σxy
is due to the proximity of the Fermi level near the bot-
tom of the CrI3 conduction band – and the existence of
mini-bands in the graphene majority bands – it is pos-
sible that a GW or hybrid functional calculation that
increases the gap might show a large AHE contribution
at the equilibrium separation.

E. Graphene Conductivity in an External Bias

For the graphene conductivity in an external magnetic
bias, we use the expressions in [2]. A prominent feature
in strong external bias fields is the occurrence of Landau
levels, whereas, as described in the main text, LLs are
absent for the exchange field. It should be noted that in
[2] spin splitting is ignored, so that summation over spin
states just gives a multiplicative factor of 2. Here, spin
splitting can be significant. At the equilibrium separation
between graphene and CrI3, the effective chemical poten-
tials of the two spins are similar in magnitude, and have
the same sign (main text, Fig. 3b). In this case, sum-
ming the conductivity in [2] over these two spins gives
approximately the same result as the simple factor of 2.
In the event of a strained system having smaller separa-
tion, the chemical potentials of the two spins can have
opposite sign (main text, Fig. 3b). In that case, the two
spin contributions can partially cancel, decreasing the
magneto-optical conductivity terms.

II. EDGE MODE MODEL I: ELECTROSTATIC
POTENTIAL

The following derivation loosely follows [3]. We also
obtain a new approximate dispersion solution for the fun-
damental edge mode.

A. Electrostatic Green Function for a
Homogeneous Single Interface Structure

Consider the dielectric interface structure in Fig. S7.
For a charge distribution assumed to be in Region I (z <
0), Poisson’s equation relates the electrostatic potential

ϵ1
ϵ2

z=0

x^y^

z^

FIG. S7. Schematic of a two layer, laterally-infinite, dielectric
medium.

to the net charge density as

∇2

{
Φ1 (r)
Φ2 (r)

}
=

{
−ρ (r) /ε1

0

}
, (5)

subject to the boundary conditions at the interface

Φ1 (r)|z=0 = Φ2 (r)|z=0 , (6)

ε1
∂

∂z
Φ1 (r)

∣∣∣∣
z=0

= ε2
∂

∂z
Φ2 (r)

∣∣∣∣
z=0

. (7)

The associated Green function for each region then sat-
isfies

∇2

{
G1 (r, r′)
G2 (r, r′)

}
=

{
−δ (r− r′) /ε1

0

}
, (8)

subject to the same boundary conditions. The electro-
static potential in the ith region may then be written
as

Φi (r) =

∫
Gi (r, r′) ρ (r′) d3r′ . (9)

In the spacial transform domain, it is easy to show that
the particular solution of (8) in Region I is

Gp1 (k, r′) = Gp1 (k) e−ik·r
′
, (10)

where GP1 (k) = 1/ε1 |k|2. The principal Green function
in Region I, is then given by the inverse spacial transform
of (10) with respect to z,

Gp1 (q, z, z′) =
1

2π

∫ ∞
−∞

dkzG
p (k) eikz(z−z′) (11)

=
1

2ε1q
e−q|z−z

′|, (12)

where q ≡ x̂kx + ŷky and q ≡ ||q|| =
√
k2x + k2y. In

addition to the principal Green function in Region I,
we add a homogeneous contribution GH1 (q, z) satisfying
∇2GH1 = 0. Since there is no source terms in Region II,
the Green function there consists only of a homogeneous
term, G1 (q, z, z′) = GH2 (q, z) where GH2 (q, z) satisfies
∇2GH2 = 0. It is easy to show that

GH1 = A (q) eqz, (13)

GH2 = B (q) e−qz, (14)

where A (q) and B (q) are determined by applying the
boundary conditions (6)-(7) at the interface. For z′ ≤ 0,
it follows that

G1 (q, z, z′) = Gp1 (q, z, z′) +A (q) eqz, (15)

G2 (q, z, z′) = B (q) e−qz, (16)

where

A (q) =
1

2ε1

ε1 − ε2
ε1 + ε2

eqz
′

q
, (17)

B (q) =
1

ε1 + ε2

eqz
′

q
. (18)
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In the limit z′ → 0, we obtain the Green function for a
source positioned at the interface,

G (q, z, 0) =
1

2ε̄

e−q|z|

q
, (19)

where ε̄ ≡ (ε1 + ε2) /2. This Green function accounts for
the background structure that will host the graphene.

B. Charge Density on Semi-Infinite Graphene

In this section, we consider a 2D charge density on
graphene localized at z = 0. The graphene exists for
x < 0, invariant with respect to y. The charge density is
given by

ρ (r) = ρs (x) δ (z) eikyy, (20)

where ρs (x) denotes the surface charge density at the
interface. Because the electrostatic potential is also in-
variant with respect to y, we write Φ (r) = Φ (x, z) eikyy.
Application of (9) leads to

Φ (x, z) =

∫ ∞
−∞

dx′G (x, x′, z, 0) ρs (x′) , (21)

where

G (x, x′, z, 0) =
1

2ε̄

∫ ∞
−∞

dkx
2π

e−q|z|

q
eikx(x−x′) (22)

=
1

2πε̄
K0

(
|ky|

√
(x− x′)2 + z2

)
, (23)

with K0 denoting the zero-order modified Bessel function
of the second kind. The absolute value |ky| arises from

having q =
√
k2x + k2y.

The continuity equation relates the surface charge den-
sity to the surface current at the interface by iωρs (x) =
∇ ·Js (x) where Js (x) = Θ (−x) σ̄ · −∇Φ (x, z)|z=0. The
components of the current expand to

Jsx (x) = −Θ (−x)

[
ikyσxy + σxx

d

dx

]
Φ (x, 0) , (24)

Jsy (x) = −Θ (−x)

[
ikyσyy + σyx

d

dx

]
Φ (x, 0) , (25)

which are used in the continuity equation to obtain
ρs (x) ≡ δ (−x) ρe (x) + Θ (−x) ρb (x), where

ρe (x) ≡ D̂e (x) Φ (x, 0) , (26)

ρb (x) ≡ D̂b (x) Φ (x, 0) , (27)

such that

D̂e (x) ≡ kyχxy + ηxx
d

dx
, (28)

D̂b (x) ≡ k2yηyy − ky (χxy + χyx)
d

dx
− ηxx

d2

dx2
, (29)

where we define ηαα ≡ σαα/iω and χαβ ≡ σαβ/ω for
α, β ∈ {x, y}. Substituting (26)-(27) into (9), we have

Φ (x, z) =

∫ ∞
−∞

G (x, x′, z, 0) ρs (x′) (30)

= G (x, 0, z, 0) ρe (0) +

∫ 0

−∞
dx′G (x, x′, z, 0) ρb (x′) ,

(31)

where ρe (0) and ρb (x) should be interpreted as the
charge density at the edge (x = 0) and in the bulk re-
gion (x < 0), respectively. Setting z = 0, we obtain an
integro-differential equation for the potential in the plane
of the interface,

φ (x) = g (x, 0) ρe (0) +

∫ 0

−∞
dx′g (x, x′) ρb (x′) , (32)

where φ (x) ≡ Φ (x, 0) and g (x, x′) ≡ G (x, x′, 0, 0).
We now expand the potential in terms of Laguerre

polynomials,

φ (x) = e|ky|x
∞∑
n=0

cnLn (−2 |ky|x) , (33)

for which we have the orthogonality condition∫ 0

−∞
e2|ky|xLm (−2 |ky|x)Ln (−2 |ky|x) dx =

δnm
2 |ky|

.

(34)
Exploiting orthogonality by multiplying both sides

sides of (32) by e|ky|xLm (−2 |ky|x) and integrating over
x from 0 to ∞ leads to the dispersion relation

cm
2 |ky|

=

∞∑
n=0

cnAmn , (35)

where

Amn ≡ Jmn + ηxx (2n+ 1) Im + sgn (qy)χxyIm, (36)

with

Im ≡ |ky|
∫ 0

−∞
dxe|ky|xLm (−2 |ky|x) g (x, 0) , (37)

Jmn ≡
∫ 0

−∞

∫ 0

−∞
dxdx′G (x, x′) D̂b (x′) e|ky|(x+x

′) (38)

× Lm (−2 |ky|x)Ln (−2 |ky|x′) .

Making the change of variable y ≡ |ky|x, reduces (37)-
(38) to

Im =

∫ 0

−∞
dyG (y, 0) eyLm (−2y) , (39)

Jmn =

∫ 0

−∞

∫ 0

−∞
dydy′G (y, y′) D̂b (y′) e(y+y

′) (40)

× Lm (−2y)Ln (−2y′) .
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where

G (y, y′) =
1

2πε̄
K0 (|y − y′|) , (41)

D̂b (y′) = ηyy − sgn (qy) (χxy + χyx)
d

dy
− ηxx

d2

dy2
.

(42)

Note that in this work, we assume σxx = σyy and σxy =
−σyx, which significantly reduces (40) to

Jmn =− ηxxŜ (y, y′)G (y, y′) e(y+y
′)

× Lm (−2y)
d2

dy′2
Ln+1 (−2y′) , (43)

which is straight forward to derive obtain using the re-
cursive formulas

e−y
′ d

dy′
ey
′
Ln (−2y′) =

d

dy′
Ln+1 (−2y′)− Ln (−2y′) ,

(44)

e−y
′ d2

dy′2
ey
′
Ln (−2y′) =

d2

dy′2
Ln+1 (−2y′) + Ln (−2y′) .

(45)

Truncating the expansion to N + 1 terms allows us to
cast (35) as a standard eigenvalue equation

A00 A01 · · · A0N

A10 A11 · · · A1N

...
...

. . .
...

AN0 AN1 · · · ANN



c0
c1
...
cN

 = λ


c0
c1
...
cN

 , (46)

where λ ≡ 1/2 |ky|.

C. Surface Charge Density

Once the eigenvalue equation is solved for {cn}, one
can obtain numerical solutions for the potential and the
surface charge density. Using (26), (27), and (33), it can
be shown that

ρe (y) = |ky| ey
∞∑
n=0

cn [(sgn (ky)χxy − ηxx)Ln (−2y)

+ηxx
d

dy
Ln+1 (−2y)

]
(47)

ρb (y) = k2ye
y
∞∑
n=0

cn [(ηyy − ηxx + sgn (qy) (χxy + χyx))

× Ln (−2y)− sgn (qy) (χxy + χyx)
d

dy
Ln+1 (−2y)

−ηxx
d2

dy2
Ln+1 (−2y)

]
(48)

Then, using Ln (0) = 1 and L′n (0) = −n, we obtain

ρe (0) ≡ |ky|
∞∑
n=0

cn [sgn (ky)χxy + (2n+ 1) ηxx] . (49)

Assuming σxx = σyy and σxy = −σyx,

ρb (y) = −ηxxk2yey
∞∑
n=0

cn
d2

dy2
Ln+1 (−2y) (50)

Figure S8 shows bulk and edge charge density at sev-
eral values of external magnetic bias.

D. Approximating the Dispersion Relation

To a good approximation, the edge dispersion within
the first TM band gap is obtained by considering only the
n = 0 term in the expansion (33). With the assumption
that σxx = σyy and σxy = −σyx, we find J00 = 0, leading
to

|ky| = [2I0 (ηxx ± χxy)]
−1
, (51)

where

I0 = |ky|
∫ 0

−∞
dxe|ky|xg (x, 0) , (52)

such that

g (x, 0) =
1

2ε̄

∫ ∞
−∞

dkx
2π

1

q
eikxx, (53)

which we approximate by expanding q =
√
k2x + k2y about

kx = 0, √
k2x + k2y ' |ky|+

k2x
2 |ky|

. (54)

This leads to the closed form approximate solution of
(53)

g (x, 0) ' g0 (x, 0) ≡ 1

2ε̄
√

2
e−
√
2|ky||x|, (55)

FIG. S8. (a) Bulk and (b) edge charge density for graphene
in an external magnetic field. ρ̃bulk is the bulk charge density
normalized by ρbulk at kxx = −1, and ρ̃edge is the edge charge
density normalized by ρedge at B = 10T. µ = −0.3eV, T =
40K, and Γ = 2× 1012/s.
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FIG. S9. Decay of edge plasmon, comparing perturbative
solution for introducing loss (using (46)), and full solution of
Maxwell’s equations (COMSOL) for graphene in an external
magnetic field. Frequency is 14 THz and µ = 0.05 eV, T =
40K, Γ = 2× 1012 rad/s.

which we use in (58), simplifying the dispersion relation
to

|ky| = ε̄
1 +
√

2

ηxx ± χxy
. (56)

We find this result better approximates the exact edge
mode dispersion than that used in previous works [4], [5],

|ky| = ε̄
3ηxx − sgn (ky) 2

√
2χxy

η2xx − χ2
xy

. (57)

E. Material Loss

In statics, there is no concept of loss. However, our
interest is in the quasi-static regime, such that we can
perturb the system slightly by introducing a non-zero
scattering rate Γ in the conductivity. Then, we can make
the replacement

|ky| → ky =

{
+Re (ky) + iIm (ky) Re (ky) , Im (ky) > 0
−Re (ky)− iIm (ky) Re (ky) , Im (ky) < 0

(58)
which ensures that the wave decays in the case of
both forward and backward propagation. This results
in complex-valued wavenumbers for the edge dispersion
from both the exact method (46) and from the approxi-
mate value (56). As a check, we compared decay rates of
the edge SPP generated using this perturbative approach
and the result found via COMSOL. Figure S9 shows good
agreement between the two methods for graphene in an
external magnetic field.

Figure S10 shows the bulk and edge dispersion for
graphene in an external magnetic bias field. The edge
modes were computed using the exact quasi-static anal-
ysis (Eq. (46)), and a comparison between the exact and
approximate edge dispersion solutions is also shown. Al-
though the results were computed assuming B = 100T,

due to the normalization the dispersion diagrams are es-
sentially independent of B for |B| ' 1 T.

III. EDGE MODE MODEL: CHARGE DENSITY
APPROACH

The edge dispersion can be determined via an alterna-
tive method using the charge density.

A. 2D Bulk Mode

The quasi-static edge mode is obtained using an expan-
sion of the charge density, rather than the potential, in
Laguerre polynomials. Starting with a 2D conductivity
tensor

σ =

[
σxx σxy
σyx σyy

]
(59)

with σxx = σyy and σyx = −σxy, it is assumed that
the total electron density can be represented by n0 + n,
where n0 is the ground state electron density and n is the
corresponding fluctuation (|n| � |n0|). The electron fluid
is confined to the z = 0 plane. From charge conservation,
∇ · j = −ieωn, and j = σ ·E,

n =
1

−ieω

[
σxx

(
− ∂2

∂y2
− ∂2

∂x2

)
φ− ∂σxx

∂x

∂φ

∂x
− ∂σxy

∂x

∂φ

∂y

]
(60)

FIG. S10. Bulk (pink) and edge dispersion of graphene modes
for real-part (a) and imaginary part (b)-(c) of wavenumber for
graphene in an external magnetic field. The shaded region
indicates the bulk band gap, and ωB is the frequency of the
first Landau level. Approx. 1 is using (56) and Approx. 2 is
using (57); µ = −0.3eV, T = 40K, Γ = 2×1012/s, B = 100T.

lB =
√

}/eB is the magnetic length.
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where φ is the electrostatic potential, related to the elec-
tric field by E = −∇φ.

We first solve for the bulk modes of a laterally-infinite
2D electron fluid. In this case, Poisson’s equation is

∇2φ =
ne

ε0
δ(z). (61)

We assume plane wave solutions proportional to
ei(q·r−ωt), where q is the in-plane wavevector, and where
the potential amplitude φ(z) depends on the distance
from the plane as well as on the in-plane wavevector.
It is straightforward to show that the solution has the
form

φq(z) = − nqe
2ε0q

e−q|z|, (62)

where nq is the corresponding amplitude for the electron
density fluctuation. Note that in the quasi-static case
the in-plane wavenumber q also serves to govern vertical
decay. Assuming no disruption in the conductivity in the
x− y plane, ∂σij/∂x = 0, and Eq. (60) can be simplified
as n = (σxx/ieω)∇2φ. Replacing φ by Eq. (62) yields
the equation for the 2D quasi-static bulk SPP modes,

ωε0 +
iqσxx

2
= 0. (63)

B. 2D Edge Mode

Here we suppose the 2D electron fluid is confined to
z = 0 and occupies the half-plane on the negative side of
the x-axis. From Eq. (60) we obtain

ieωn =σxx∇2φ− σxxδ(x)
∂φ

∂x
− σxyδ(x)

∂φ

∂y

=σxx∇2φ+ jxδ(x), (64)

where from j = σ ·E we obtain jx = −σxx∂xφ−σxy∂yφ;
the delta functions arise from derivatives of σi,j =
σi,jU(−x), where U(x) is the unit step function. The
above equation represents a singularity for the current
along the x-axis at the edge, suggesting nonzero charge
accumulation at the edge, n = nb(x)+neδ(x) where nb(x)
is the fluctuation in the bulk and ne represents the accu-
mulation at x = 0. Replacing n by nb(x) + neδ(x) in the
above equation,

ieω(nb + neδ(x)) = σxx∇2φ− σxxδ(x)
∂φ

∂x
− σxyδ(x)

∂φ

∂y
.

Equating the non-singular terms on the left and right
hand sides of the above equation leads to(

∂2

∂x2
− q2

)
φ =

ieω

σxx
nb(x), (65)

where q = qy here and below. Equating the singular
terms leads to[(

∂

∂x
+ iq

σxy
σxx

)
φ

]
x=0−

= − ieω
σxx

ne, (66)

which can serve as a boundary condition (the left side in
the above equation is jx(x = 0)). This boundary con-
dition relates the charge accumulation ne to the normal
component of the current at the edge. A Green function
approach can be used to solve the above equation [6]. We
define a Green function as(

∂2

∂x2
− q2

)
G(x, x′) = −δ(x− x′) (67)

valid for x, x′ < 0 and subject to the following boundary
condition [(

∂

∂x
+ iq

σxy
σxx

)
G(x, x′)

]
x=0−

= 0, (68)

assuming the above homogeneous boundary condition at
x = 0−, a bounded response at x→ −∞, and the follow-
ing jump condition at x = x′,(

∂G(x, x′)

∂x

)
x=x′+

−
(
∂G(x, x′)

∂x

)
x=x′−

= −1. (69)

The solution for the Green function is

G(x, x′) =
σxx − iσxy

2q(σxx + iσxy)
eq(x+x

′) +
1

2q
e−q|x−x

′|, (70)

and using Green’s second theorem the potential can be
obtained as

φ(x) =− ieω

σxx

∫ 0

x′=−∞
G(x, x′)nb(x

′)dx′

+G(x, 0)

[(
∂

∂x
− iq σxy

σxx

)
φ(x)

]
x=0

. (71)

The edge charge accumulation in Eq. (66) is in terms
of φ(x = 0) and ∂xφ|x=0. These parameters can be found
using the above equation as

φ(0) =

(
− ieω

σxx

∫ 0

x′=−∞
G(0, x′)nb(x

′)dx′ +

G(0, 0)

[
∂φ

∂x

]
0−

)
×
[
1− iqG(0, 0)σxy

σxx

]−1
(72)

[
∂φ(x)

∂x

]
x=0

=

(
− ieω

σxx

∫ 0

x′=−∞

∂G(x, x′)

∂x
nb(x

′)dx′

+

(
∂G(x, 0)

∂x

)
x=0

iq
σxy
σxx

φ(x = 0)

)

×
[
1−

(
∂G(x, 0)

∂x

)
x=0

]−1
(73)

and simultaneously solving equation 72 and 73 for φ(x =
0) and ∂xφ|x=0 gives
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∂φ(x)

∂x

]
x=0

=
1

αγ −XG(0, 0)

(
−ieω
σxx

)∫ 0

x′=−∞

[
α

(
∂G(x, x′)

∂x

)
x=0

+XG(0, x′)

]
nb(x

′)dx′ (74)

φ(x = 0) =
−ieω
σxx

∫ 0

x′=−∞

[(
1

α
+

G(0, 0)X

α (αγ −XG(0, 0))

)
G(0, x′) +

G(0, 0)X

αγ −XG(0, 0)

(
∂G(x, x′)

∂x

)
x=0

]
nb(x

′)dx′ (75)

where

α = 1−G(0, 0)iq
σxy
σxx

, γ = 1−
(
∂G(x, 0)

∂x

)
x=0

X =

(
∂G(x, 0)

∂x

)
x=0

iq
σxy
σxx

. (76)

Inserting φ(x = 0) and ∂xφ|x=0 in (66) gives ne in terms
of the Green function as

ne =

∫ 0

x′=−∞

[(
Aα+Biq

σxy
σxx

)
a− 1

2
eqx
′
+

(
AX + Ciq

σxy
σxx

)
a+ 1

2q
eqx
′
]
nb(x

′)dx′, (77)

where

a =
σxx − iσxy
σxx + iσxy

, A =
1

αγ −XG(0, 0)

B =
XG(0, 0)

αγ −XG(0, 0)
, C =

1

α
+

G(0, 0)X

α (αγ −XG(0, 0))
.

(78)

It is shown below that the potential satisfies the integro-
differential equation

φ(x, z = 0) =− e

ε0

∫ 0

x′=−∞
dx′L(x, x′)nb(x

′)

− e

ε0
L(x, 0)ne (79)

where

L(x, x′) =

∫ +∞

k=−∞

dk

2π

eik(x−x
′)

2
√
k2 + q2

. (80)

Alternatively, one may use the approximate expression

L0(x, x′) = 2−3/2e−
√
2q|x−x′|[4, 7]. Replacing the poten-

tial by the expression of potential in Eq. (71) gives

iωε0
σxx

∫ 0

x′=−∞
G(x, x′)nb(x

′)dx′ −
∫ 0

x′=−∞
dx′L(x, x′)nb(x

′)

+

(
G(x, 0)

iωε0
σxx

− L(x, 0)

)
ne = 0, (81)

where ne (charge accumulation at the edge) is given by
Eq. (77). We expand the bulk charge fluctuation nb in
terms of Laguerre polynomials [3, 8]

nb =

∞∑
j=0

bje
qxlj(−2qx) (82)

subject to the orthogonality relation

∫ 0

x=−∞
(eqxli(−2qx))× (eqxlj(−2qx))dx =

δij
2
. (83)

The integral equation in (81) can be written in a matrix
form in terms of unknown constants bj and ne,

∞∑
j=0

[
iωε0
σxx

Gij − Lij +Neij

]
bj = 0 (84)

where
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Gij =

∫ 0

x=−∞

∫ 0

x′=−∞
dxdx′eqxeqx

′
li(−2qx)G(x, x′)lj(−2qx′)

Lij =

∫ 0

x=−∞

∫ 0

x′=−∞
dxdx′eqxeqx

′
li(−2qx)L(x, x′)lj(−2qx′)

Neij =

∫ 0

x=−∞

∫ 0

x′=−∞
dxdx′eqxeqx

′
li(−2qx)Λ

(
iωε0
σxx

a+ 1

2q
eq(x+x

′) − L(x, 0)eqx
′
)
lj(−2qx′)

Λ =
a− 1

2

(
Aα+Biq

σxy
σxx

)
+
a+ 1

2q

(
AX + Ciq

σxy
σxx

)
. (85)

Finally, forcing the determinant of (84) to be zero leads
to the edge mode dispersion equation.

Derivation of IE: The Poisson’s equation considering
edge mode propagating along the y-axis as eiqyy, qy = q,
is (

∂2

∂x2
+

∂2

∂z2
− q2

)
φ =

ne

ε0
δ(z)Θ(−x), (86)

and taking a Fourier transform along the x-axis leads to[
∂2

∂z2
−
(
k2 + q2

)]
φ =

e

ε0
δ(z)n(k), (87)

where n(k) is the Fourier transform of nΘ(−x). The
potential takes the form

φ(k, z) = − e

2ε0

∫ 0

x′=−∞
n(x′)e−ikx

′
dx′

1√
k2 + q2

e−
√
k2+q2|z|.

(88)

By defining the function kernel L(x) as

L(x) =

∫ +∞

k=−∞

dk

2π

eikx

2
√
k2 + q2

, (89)

then the potential function on the surface of the 2D elec-
tron fluid becomes

φ(x, z = 0) = − e

ε0

∫ 0

x′=−∞
dx′L(x− x′)n(x′). (90)

Replacing n(x) by nb(x) + neδ(x) gives

φ(x, z = 0) =− e

ε0

∫ 0

x′=−∞
dx′L(x, x′) [nb(x

′) + neδ(x
′)]

− e

ε0

∫ 0

x′=−∞
dx′L(x, x′)nb(x

′)− e

ε0
L(x, 0)ne,

(91)

and substituting ne from the boundary condition equa-
tion leads to (79).
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