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Abstract: Entanglement between two qubits (two level atoms) mediated
by surface plasmons in three-dimensional plasmonic waveguides is studied
using a quantum master equation formalism. Two types of waveguides, a
nanowire and a V-shaped channel cut in a flat metal plane, are considered.
The Green functions for the waveguides, which rigorously describes the
dissipative qubit environment, are calculated numerically using a direct
finite-difference time-domain (FDTD) solution of Maxwell’s equations.
Finite-length effects are shown to play a crucial role in enhancing entan-
glement, and resonant-length plasmonic waveguides can provide higher
entanglement between qubits than infinite-length waveguides. It is also
shown that coupling slots can improve entanglement via stronger qubit-
waveguide coupling, for both the infinite- and finite-waveguide cases. The
formalism used in the paper can be applied to a wide range of plasmonic
waveguides.
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1. Introduction

Generating, preserving and controlling entanglement between two quantum systems is of great
importance for quantum communications, teleportation, metrology, cryptology, computing and
other operations involving quantum bits (qubits) [1]. A fundamental problem facing practical
applications of entanglement is environment-induced dissipation of the quantum system. The
traditional view [2] holds that dissipation is necessarily detrimental as it leads to decoherence,
and thus to entanglement decay. However, recently it has been realized that dissipation may
have a positive effect as well. In particular, it has been demonstrated that by engineering dis-
sipation of the environment, quantum systems can be driven into the desired entangled steady
state (SS), encoding the outcome of quantum computations [3–5]. In this case, the depopulation
of the quantum system is compensated by constant pumping with an external electromagnetic
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field, and properties of the final states depend on the environment to which the systems are
coupled. Therefore, engineering of the environment seen by qubits is of crucial importance for
applications in quantum optics.

Of particular interest are “structured” photonic reservoirs, i.e. structures that have strongly
inhomogeneous spatial or spectral distributions of their photonic density of states, as they offer
an unprecedented level of control over emitter decay dynamics [6–10]. The efficient dissipative
generation of entanglement has been theoretically predicted and experimentally demonstrated
for qubits in optical cavities [11–13] and photonic crystal systems [14–16]. In particular, it
was reported [11] that dissipative preparation of entanglement between qubits in high-finesse
optical cavities offers significant advantages for fidelity improvement over the protocols based
on unitary dynamics; decreasing the error by an order of magnitude requires only an order
of magnitude increase of the cavity finesse in the former case, compared to a two order of
magnitude increase of the finesse required in the latter case. Preparation of entangled states
with fidelity (with respect to the Bell state Ψ+) exceeding 91.9% was experimentally demon-
strated [12]. Though offering strong potential for creating highly-entangled states, the small
size of optical cavities is a disadvantage when it comes to transferring quantum states over long
distances, which is important for applications in quantum communications. For long distance
entanglement, coupling of the qubits to reservoirs supporting propagating photonic modes, such
as photonic crystals, is useful. In particularly, efficient transfer of entanglement between two
quantum dots (QDs) placed inside a photonic crystal over a distance 100 times the wavelength
of vacuum radiation has been theoretically predicted [14].

Despite the success of using all-dielectric photonic reservoirs for preparation and transfer
of entanglement, the large size of such structures is a drawback for their use in nanophotonic
integrated circuits. In order to overcome this difficulty, significant attention has been recently
devoted to plasmonic waveguides as intermediaries for quantum state transfer. Nanoscale local-
ization of plasmonics modes, as well as their relatively long propagation lengths, makes them
good candidates for photonic circuits [17]. Efficient plasmon-mediated entanglement has been
predicted for emitters coupled to a metal or metamaterial slab [18], infinitely long V-shaped
waveguides cut in a flat metal plane [19, 20], infinitely long nanowires [20–23], and arrays of
metallic nanospheres [24]. Transfer of entanglement over distances far-exceeding the radiation
wavelength was reported [20].

One can ask if it is possible to optimize the geometry of a plasmonic waveguide in order to
achieve stronger plasmon mediated entanglement between qubits. Moreover, realistic waveg-
uides are never infinite, and can have discontinuities, accidental or by design. Therefore, it is
important to understand what role waveguide edges and inhomogeneities can play in entangle-
ment transfer, which is the subject of this paper. We consider two quantum emitters (modeled
as two-level systems) placed above 3D waveguides. Since there are a multitude of possible
plasmonic waveguide geometries that one can envision, here we restrict our consideration to
two waveguides that have been extensively studied in the literature, i.e. a metal nanowire and
a V-shaped channel cut in a flat metal plane (see Fig. 1). Regarding long-distance entangle-
ment, these waveguide geometries have been studied assuming that the nanowire and groove
are infinite in their axial directions [19, 20]. The main result of this work is to show that real-
istic finite-length nanowire and groove waveguides, with their associated discontinuities, play
a crucial role in the engineering of highly entangled states. We demonstrate that proper posi-
tioning of the emitters with respect to the waveguide edges can lead to a significant increase in
entanglement compared to the case of the emitter coupled to an infinite plasmonic waveguide.
Moreover, even for the infinite-length case, discontinuities in the waveguides do not always
play a detrimental role; an increase in entanglement compared to the unperturbed case can be
achieved by introducing coupling slots into the structure (which aid in qubit-waveguide cou-
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Fig. 1. Two identical two-level emitters (e.g., atoms or quantum dots) placed next to (a)
a metal nanowire (insert shows geometry of the nanowire with coupling slots; the slot
opening angle and width are 95◦ and 15 nm, respectively) and (b) a V-shaped channel cut
in a flat metal plane (if coupling slots are present, their length, width and depth are 70 nm,
15 nm, and 138 nm, respectively). We consider both infinite- and finite-length waveguides.

pling). In the following we demonstrate the effect of coupling slots for both finite-length and
infinite-length waveguides.

The paper is organized as follows. In Section 2 we present the theory describing dissipation-
induced entanglement between two emitters coupled to a plasmonic waveguide. We briefly
introduce the concept of the Green dyadic (Sec. 2.1) as an entity rigorously describing the spa-
tial and spectral distribution of plasmonic modes in the dissipative structured reservoir formed
by the waveguide. We then present quantum master equations (Sec. 2.2) that use the medium’s
Green function, which describe the evolution of the density matrix of two emitters, one of which
is initially in its excited state, placed near the lossy waveguide. We solve these equations nu-
merically and calculate the degree of entanglement induced by the plasmonic waveguide. The
entanglement presented in Sec. 2.2 is a transient one as it decays with time due to depopulation
of the emitters’ excited states. In order to obtain a steady entangled state, the emitters depopula-
tion has to be compensated by constant pumping with an external electromagnetic field, which
is the subject of Sec. 2.3. Numerical results for entanglement are presented in Sec. 3. Transient
entanglement between emitters coupled to a silver nanowire or a V-shaped channel waveguide
is studied in Sec. 3.1 and Sec. 3.2, respectively, and results for steady-state entanglement are
presented in Sec. 3.3.

2. Theory

In this section we introduce two concepts that are crucial for the theoretical description of
the evolution of quantum systems coupled to lossy environments, namely, the dyadic Green
function [25, 26] and the quantum master equation [20, 21]. We use these concepts in order
to describe behavior of two identical two-level emitters (qubits) placed above 3D plasmonic
waveguides (see Fig. 1 for the waveguide geometries).

2.1. Dyadic Green function

Even though the process of spontaneous decay is essentially non-classical, and thus requires
a full quantum description, the media the emitter is coupled to can be rigorously incorporated
into the quantum formalism through a classical quantity known as the dyadic Green function
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G [25, 26]. The electric field Green function is a 3-by-3 dyadic, each column of the dyadic
being the electric field produced by a classic electric dipole polarized along the corresponding
coordinate system axis. The Green dyadic satisfies

∇×∇×G(r,r′,ω)− k2
0ε(r,ω)G(r,r′,ω) = k2

0Iδ (r− r′), (1)

where r,r′ are the observation and source point vectors, respectively, k0 = ω/c is the vacuum
wavenumber, ω is angular frequency, c is the speed of light in vacuum, ε(r,ω) is relative
permittivity, and I is the unit 3-by-3 dyadic. The solution of Eq. (1) can be written as

G(r,r′,ω) = G(0)(r,r′,ω)+G(sc)(r,r′,ω), (2)

where

G(0)(r,r′,ω) =
(
k2

0 +∇⊗∇
) eik0|r−r′|

|r− r′| , (3)

is the free-space Green dyadic (i.e. the solution of Eq. (1) assuming ε(r,ω) = 1), ⊗ is the
dyadic product, and G(sc)(r,r′,ω) is the “scattered” Green function, which is the solution of
Eq. (1), accounting for the electric field scattered by the media, i.e. not including the free-space
medium contribution. It should be noted that although the real part of G(0)(r,r′,ω) is singular

when r = r′, the imaginary part is finite, with ImG(0)
j j (r,r,ω) = k3

0/6π , j = x,y,z. In contrast

to the free-space Green dyadic, the scattered Green dyadic G(sc)(r,r′,ω) does not have any
singularities. However, it depends both on the geometry and permittivity of objects filling the
space, and thus does not have a closed analytic form in the general case. In order to calculate
the Green dyadic G(r,r′,ω) for the metallic plasmonic waveguides presented in Fig. 1 we
numerically solved Maxwell’s equations (1) using a commercial finite-difference time-domain
method (FDTD) from Lumerical solutions [27].

The importance of the classical Green function is that it leads to the dissipative decay rate
and coherent coupling terms

Γαβ (ωα) =
2

ε0h̄
Imd ·G(rα ,rβ ,ωα) ·d, (4)

gαβ (ωα) =
1

ε0h̄
Red ·G(rα ,rβ ,ωα) ·d. (5)

Here d is the emitter transition dipole moment, Γαα and Γαβ (α �= β ) are the decay rates of
the emitter α due to its interaction with the reservoir (which includes the plasmonic system),
and plasmon mediated interactions with the emitter β , respectively. When the emitter itself is
in a lossless region of space (such as the space above the waveguide), ImG(rα ,rα ,ωα) does not
have any singularity and thus the decay rate is always finite. The emitters’ transition frequency
shift induced by dipole-dipole coupling is given by gαβ (α �= β ). We assume that the emitter
transition frequency ωα already accounts for the photonic Lamb shift which is defined by gαα .
In [20] it was shown that for an infinite waveguide the best entanglement was obtained when
Γαβ was large and gαβ was small (forming the dissipative regime). For the finite waveguide
case this classification does not hold exactly, which is discussed below.

In the following we consider two identical emitters located near one of the plasmonic waveg-
uides shown in Fig. 1 and assume that the waveguide material is silver, which ia relatively low
loss metal. We choose the dipole transition frequency of the emitters to be ωa/2π = ωb/2π =
500 THz (emission wavelength λ = 600 nm). The relative permittivity of silver at the dipole
transition frequency is −13.9+ i0.92 [28], and we fully account for the dispersive properties
of the metal. For the nanowire waveguide we choose the radius to be R = 35 nm, such that the
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surface plasmon wavelength in the nanowire is λspp = 425 nm, and the propagation length is
l = 1.7 μm, calculated analytically [29]. For the groove waveguide, the depth of the groove
is 138 nm and its opening angle is 20◦; these dimensions were chosen in [20] to yield almost
identical plasmonic wavelengths and propagation lengths for the rod and groove structures (for
the groove λspp = 423 nm and l = 1.7 μm), facilitating comparison between the waveguides.

The total emitter decay rate can be expressed as Γaa = Γrad +ΓJoule +Γpl, in terms of the
following emitter decay channels: (a) free-space radiation, Γrad, (b) Joule losses in the metal,
ΓJoule, and (c) excitation of surface plasmons, Γpl. Since radiative decay is not helpful for long-
distance entanglement, and Ohmic decay is obviously deleterious, it is clear that we want to
maximize the plasmon decay channel, which enhances qubit-qubit interaction. This requires
careful positioning of the emitter above the nanowire surface; if the emitter is too close to the
nanowire surface, Joule losses dominate the emitter decay (quenching). On the other hand, if the
emitter is too far away than it mostly radiates into free space. This problem was studied in [20]
where it was demonstrated that at λ = 600 nm the optimum distance between the surface of
an R = 35 nm infinitely-long silver nanowire and a tuned emitter is 20 nm (which maximizes
Γpl), with dipole moment perpendicular to the wire, and for the groove structure the optimum
emitter height is 12 nm above the surface of the metal, positioned over the central line of the
groove and polarized horizontally.

For the finite nanowire, the problem is more complicated and a unique definition of Γpl

is difficult (since plasmons reflect and refract from the nanowire edges). We expect that the
optimum distance should not be considerably different from the infinite-nanowire case, and we
here choose the separation between the emitter and waveguide to be the same as the optimum
height for the infinite structure, 20 nm for the nanowire and 12 nm for the groove. Although not
shown here, slight improvement in entanglement can be obtained by adjusting the qubit height
by a few nm.

Although a primary aim of this work is to examine the effect of a finite plasmonic waveg-
uide structure on entanglement, we first show that introducing discontinuities on an infinite
waveguide can enhance qubit-waveguide coupling (i.e., in the following we refer to these dis-
continuities as coupling slots), thereby enhancing entanglement. Results of calculation of Γab

and gab for emitters placed above an infinite-length nanowire are presented in Fig. 2. Here z is
the lateral separation between emitters, and

Γ0 =
2

ε0h̄
Imd ·G(0)(rα ,rα ,ωα) ·d =

ω3
0 d2

3πε0h̄c3 (6)

is a decay rate of the emitter in the vacuum. The Purcel factor (PF), the ratio between emitter
decay rates in the vicinity of nanowire and in the vacuum, is equal to Γab/Γ0 when z = 0. Thus
presence of coupling slots increases the PF (see Fig. 2(b)). In Fig. 2 one emitter is located
at z = 0, and the position of the other emitter varies from z = 0 to z = 1.5λspp = 637.5 nm.
Note that here, and in Fig. 3 below, we plot the rates based on the scattered Green function;
this term is dominate over the vacuum Green function for all cases of interest (otherwise the
plasmonic system would not affect the qubits much, such as, e.g., if the height of the qubits
was increased considerably), and it avoids the singularity in gaa associated with the vacuum
Lamb shift. However, in computing entanglement we use the full (scattered plus vacuum) Green
function.

Oscillatory behavior of Γab and gab as a function of qubit separation distance is evident in
Fig. 2, with the period of oscillation being approximately equal to the plasmon wavelength.
Moreover, the positions of the Γab maxima correspond to positions of gab minima. Thus coher-
ent and dissipative regimes become dominant at different separations between emitters [20]. For
the case of a nanowire with coupling slots, the slots are fixed at z=−40 nm and z= 1.5λspp+40
nm=677.5 nm (one slot is to the right of the right emitter, and the other to the left of the left
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Fig. 2. Normalized coupling strength gab and decay rate Γab as a function of distance
between emitters above an infinite-length silver nanowire with and without coupling slots
(based on scattered Green function). Γab is proportional to the Purcell factor when z=0 (i.e.
rα = rβ ). The position of one emitter is fixed at z = 0 and the second emitter position is
changing with z. Slot are located at z =−40 nm and z = 1.5λspp +40 nm = 677.5 nm.

emitter; z refers to emitter-emitter separation). Coupling slots can lead to enhancement of entan-
glement between the emitters by increasing the dissipative decay rate at the emitter positions,
as shown in the figure (for the effect of coupling slots on entanglement, see Fig. 4 below).
By adding judiciously-chosen coupling slots to the infinitely long nanowire we are increasing
emitter-waveguide coupling, similar to the improved field-plasmon coupling in the case of a
grating, and thereby increasing emitter decay rates Γaa and Γab into the plasmon channel. It
should be noted that coupling slots seem to affect only the dissipative regime, as the slot in-
duced modification of the coherent exchange rate seems to be insignificant (Fig. 2(a)). Also
note that the ratios Γab/Γ0 and gab/Γ0 do not depend on the emitter dipole moment d, since we
are in the weak coupling regime.

It is likely that further improvement in emitter-plasmon coupling (and, subsequently, entan-
glement) can be made by optimizing the slot geometry. In fact, qubit entanglement depends on
many parameters even if the dipole transition frequency and nanowire diameter are fixed. In
the case of an infinitely-long nanowire these parameters are the distance between emitters and
the nanowire surface, separation between emitters, and position and geometry of the coupling
slots. In the case of a finite-length nanowire we also have to consider the nanowire length, and
positions of the emitters and coupling slots relative to the nanowire ends. In theory, optimal
values of these parameters could be found though multi-variable optimization. However, in this
work we make no attempt to find optimal values; we merely show that reasonably-positioned
qubits and coupling slots can improve entanglement.

For the finite-length nanowire we choose the nanowire length to be 1.5λspp = 637.5 nm.
We assume one emitter is located above one end of the nanowire (z = 0 nm). If coupling slots
are present, they are placed 27 nm away from each end of the nanowire (this location leads to
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Fig. 3. (a) Absolute value of plasmon electric field intensity on a finite nanowire of length
1.5λspp. The plasmon mode is excited by the emitter positioned at z = 0 nm at a distance
20 nm above the nanowire surface. (b) geometry, (c)-(d) Normalized coupling strength gab
and decay rate Γab as a function of a distance between emitters above the nanowire with
and without coupling slots (based on scattered Green function). Slots are located at z = 27
nm and z = 1.5λspp −27 nm=610.5 nm.

enhanced Γab when qubits are at the nanowire ends). The spatial distribution of the electric field
intensity of the plasmon mode is shown in Fig. 3(a). In order to calculate this distribution we
assume a classical electric dipole at the first emitter’s position. We can see that the positioned
emitters experience maximum intensity of the plasmon electric field.

Figures. 3(b) and 3(c) show the dissipative and coherent rates as a function of emitter-emitter
separation for the finite-length nanowire. We can see that due to plasmon reflections from the
nanowire edges, positions of maximums of gab and Γab almost coincide with each other. Thus
we can not clearly separate the dissipative and coherent regimes in the emitter dynamics any-
more, unlike for the infinite-waveguide case. For emitters positioned over the nanowire ends,
the addition of coupling slots leads to an increase of coupling between emitters and surface plas-
mons. Moreover, in this case we observe a shift in the position of the maximums of the emitter
coupling rates (which does not occur for the infinite-length structure), as the slots change the
effective length of the nanowire. Although not showm, similar results and conclusions are ob-
tained for the groove waveguide.

2.2. Transient entanglement between two plasmon-coupled qubits

Let us consider two identical two-level emitters placed above the plasmonic waveguide (see
Fig. 1). Evolution of the system density matrix ρ is described by the Von Neumann equation,

∂tρ =− i
h̄
[H,ρ ] , (7)
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where H is the system Hamiltonian, including emitters and plasmonic reservoir degrees of
freedom, as well as coupling between them [20, 21],

H =
∫

dr
∫ +∞

0
dωλ h̄ωλ b†(r,ωλ ) ·b(r,ωλ )+ ∑

α=a,b

h̄ωα σ†
α σα

− ∑
α=a,b

(σα +σ†
α)d ·E(rα). (8)

Here the index α = a,b indicates the emitters, ωα and d are the frequency and transition
dipole moment between the emitter ground |g〉α and excited |e〉α states, σα = |g〉α 〈e|α and
σ†

α = |e〉α 〈g|α are the emitter lowering and raising operators, respectively. The operator of the
electromagnetic field in the presence of the plasmonic reservoir is [25, 26]

E(r) = i

√
h̄

πε0

∫ +∞

0
dωλ

∫ √
Im(ε(r′;ωλ )G(r,r′,ωλ ) ·b(r′,ωλ )dr′+H.c., (9)

where b(r′,ωλ ) are operators of elementary excitations of the reservoir, satisfying

bosonic commutation relations
[
bi(r,ωλ ),b

†
j(r

′,ωλ ′)
]
= δi jδ (ωλ − ωλ ′)δ (r − r′) and

[bi(r,ωλ ),b j(r′,ωλ ′)] = 0.
Tracing out the electromagnetic field degrees of freedom in Eq. (7) and using the Born,

Markov and rotating wave approximations, we obtain master equations for the reduced 4× 4
density matrix as

∂tρs(t) = K ρs(t), (10)

where

K ρs = ∑
α ,β=a,b

Γαβ (ωα)

2

(
2σα ρsσ†

β −σ†
α σβ ρs −ρsσ†

α σβ

)

+ i
[(

gab(ωα)σ†
a σb +gba(ωα)σ†

b σa

)
,ρs

]
, (11)

accounts for the interaction between the emitters and the plasmonic reservoir. Detailed deriva-
tion of Eq. (10) can be found in [16] (see supporting information). The validity of Born and
Markov approximations stems from the fact that decay rate of excitations in the plasmonic
reservoir is significantly higher than decay rate of the emitter excited state. For example, decay
rate of QD with dipole moment of 30 D for the case presented in Fig. 3(b) is around 1010 s−1.
On the other hand relaxation time of electrons in silver is τ = 3× 10−14 s [30], which gives
plasmon decay rate around 1013 s−1. It should be noted that we can study dynamics of two-level
systems coupled to the reservoir using Heisenberg equations of motion (HEM) for the reservoir
and two-level systems operators (see [14] for the details). The advantage of HEM is that we
do not need to employ Born and Markov approximations. However, this approach is limited to
weak external pump fields, allowing for only one photon to be present in the system at the give
time. Nevertheless, we used HEM in order to check results obtained using the master equations
in the absence of the external pump field and found excellent agreement. This further supports
validity of the Born and Markov approximation.

It should be noted that Eq. (10) accounts for the emitter decay due to its interaction with
the electromagnetic field of the plasmonic reservoir. However, depending on the nature of the
emitter, there can be other non-radiative channels for emitter decay. In particular, in the case of
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QDs, electron-phonon interaction leads to non-radiative quenching of emitter luminescence. In
order to account for these processes, we introduce pure dephasing phenomenologically, i.e.,

∂tρs(t) = K ρs(t)+L ρs(t), (12)

where

L ρs = ∑
α=a,b

γ ′(ωα)

2

[
2ςα ρsς†

α − ς†
α ςρ −ρς †

α ς
]
,

where γ ′ is a phenomenological pure-dephasing rate, and ςα = σ†
α σα . We show later that in the

case of a typical QDs above a plasmonic waveguide, the dephasing decay rate is generally small
compared to the radiative decay rate (at least at low temperatures) and thus its contribution to
QD decay dynamics is insubstantial. Unless specified otherwise, we assume it to be equal to
zero.

Equations (12) can be solved analytically in the basis |3〉 = |ea,eb〉, |0〉 = |ga,gb〉, |±〉 =
1√
2
(|ea,gb〉± |ga,eb〉). Particularly, if initially the only non-zero elements of the density matrix

are ρ++, ρ−−, ρ+−, ρ−+, than the system of master equations is reduced to

∂ρ++

∂ t
=−

(
Γaa +

γ ′

2
+Γab

)
ρ+++

γ ′

2
ρ−−, (13)

∂ρ−−
∂ t

=−
(

Γaa +
γ ′

2
−Γab

)
ρ−−+

γ ′

2
ρ++, (14)

∂ρ+−
∂ t

=−
(

Γaa +
γ ′

2
−2igab

)
ρ+−+

γ ′

2
ρ−+, (15)

∂ρ−+

∂ t
=−

(
Γaa +

γ ′

2
+2igab

)
ρ−++

γ ′

2
ρ+−. (16)

We consider case when only one of the emitters is initially excited, such that ρ++(0) =
ρ+−(0) = ρ−+(0) = ρ−−(0) = 1/2. In this case solution of the system takes form:

ρ++ =
e−(Γaa+γ ′/2)t

2

[
cosh

(√
Γ̃abt

)
− Γab − γ ′/2

Γ̃ab
sinh

(√
Γ̃abt

)]
, (17)

ρ−− =
e−(Γaa+γ ′/2)t

2

[
cosh

(√
Γ̃abt

)
+

Γab + γ ′/2

Γ̃ab
sinh

(√
Γ̃abt

)]
, (18)

ρ+− =
e−(Γaa+γ ′/2)t

2

[
cos

(
2
√

g̃abt
)
+

ig12 + γ ′/4
g̃ab

sin
(

2
√

g̃abt
)]

, (19)

where Γ̃ab =
√

Γ2
ab + γ ′2/4, g̃ab =

√
g2

ab − γ ′2/16.
In order to characterize entanglement between two emitters we use the concept of concur-

rence [1, 31], which is defined as

C = max(0,
√

u1 −√
u2 −√

u3 −√
u4), (20)

where ui are arranged in descending order of the eigenvalues of the matrix ρsρ̃s, where ρ̃s =
σy ⊗σyρ�

s σy ⊗σy is the spin-flip density matrix with σy being the Pauli matrix. Concurrence
may vary in the range between 0 (unentangled state) and 1 (completely entangled), such that
values between 0 and 1 correspond to different degrees of entanglement.
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If the only non-zero elements of the density matrix are defined by Eqs. (13) and (16), then
concurrence is given by the simplified expression

C(t) =
√
[ρ++−ρ−−]2 +4Im[ρ+−]2

=
e−(Γaa+γ ′/2)t

2

√(
Γab/Γ̃ab

)2(
e
√

Γ̃abt − e−
√

Γ̃abt
)2

+4(gab/g̃ab)
2 sin2

(
2
√

g̃abt
)
, (21)

where we again assumed that only one of the emitters is initially in the excited state.

2.3. Steady-state entanglement between two qubits

As one can see from Eq. (21), the entanglement between two emitters above a plasmonic waveg-
uide decays with time. In order to obtain a steady entangled state we need to compensate for the
depopulation of the emitters’ excited states (via coupling to the environment) by pumping with
an external laser field. Here we restrict our consideration to the case when the external pumps
are modeled by classical monochromatic waves of frequency ωL, Eα = E0αe−iωLt + c.c., and
assume that each of the emitters can be pumped individually (i.e., using focused beams). In this
case, the master equation takes the form

∂tρs(t) =−(i/h̄) [V,ρs(t)]+K ρs(t)+L ρs(t), (22)

where
V =−h̄ ∑

α=a,b

(
Ωαe−iΔα tσ†

α +Ω∗
αeiΔα tσα

)
, (23)

accounts for the interaction between the classical pump field and qubits, Ωα = d ·E0α/h̄ is the
effective Rabi frequency of the pump, and Δα = ωα −ωL is a detuning parameter. Here we
assume that E0α is a full field at the dipole position, i.e. it is the sum of the external pump field
and field scattered by the plasmonic waveguide. In the basis |ea,eb〉, |ea,gb〉, |eb,ga〉, |ga,gb〉,
we obtain a system of 16 coupled differential equations for the density matrix, which we solve
numerically. For the pumped case, Eq. (20) has to be used to calculate concurrence.

3. Numerical results

In order to calculate the transient concurrence we use the analytic Eq. (21). Steady-state concur-
rence is calculated using Eq. (20) and density matrix elements are obtained by solving numer-
ically the system of 16 differential equations. Unless specified otherwise, the pure dephasing
rate of the emitters, γa, is equal to zero.

3.1. Transient entanglement mediated by plasmons in a metallic nanowire

It was reported in [20], that entanglement between emitters coupled to an infinite length plas-
monic nanowire exceeds that between emitters in vacuum. As one can see from Fig. 4(a), en-
tanglement can be improved even further by introducing discontinuities (coupling slots) in the
nanowire, as described in Sec. 2.1. In particular, using an infinite nanowire with coupling slots
(see Fig. 1 and Sec. 2.1 for the details of the slot geometry) can considerably increase concur-
rence compared to the case with no slots, due to improved emitter-nanowire coupling.

Figure 4(a) also shows results for the concurrence of two qubits near a finite-length nanowire,
with length equal to 1.5λspp, forming a Fabry-Pérot (FP) cavity, with the qubits positioned
above the ends of the wire. It can be seen that by coupling into the FP nanowire resonances, we
can considerably improve entanglement compared to the infinite-length case. Fig. 4(b) shows
evolution of the emitters excited state population for the case of a finite nanowire with coupling
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Fig. 4. (a) Time dependence of transient concurrence between two emitters laterally sepa-
rated by 1.5λspp = 637.5nm. We assume that the emitters are in vacuum (solid green line),
near an infinite wire with (dashed brown line) and without (solid brown line) coupling slots,
near a finite wire of length of 1.5λspp with (solid red) and without (dashed blue line) cou-
pling slots. In the case of the finite wire, qubits are placed above the nanowire ends, and
slots are located 27 nm from each end. The normalization constant Γaa is the decay rate of
the emitter (Eq. (4)) for the given geometry. (b) Time dependence of the population of the
emitter initially in the excited, ρeg, and ground, ρge, states, for the case of a finite nanowire
with coupling slots.

slots. Here ρeg is the probability of the first qubit to be in the excited state and the second qubit
to be in ground state, and ρge is similarly defined. The initial state is ρeg = 1. We can see that
decay of the emitter initially in the excited state leads to excitations of the emitter initially in
the ground state, creating a transient entangled state, which is decaying with time.

3.2. Transient entanglement mediated by V-shaped groove waveguide

The concurrence of two qubits separated by a distance 1.5λspp = 634.5 nm is shown in Fig.
5(a) for an infinite groove, an infinite groove with coupling slots (slots are positioned as in the
nanowire case), and a 2λspp groove. Although the finite nanowire considered above had length
1.5λspp, for the finite groove the length is 2λspp because for the groove the modal field is not
strong at the groove ends (although not shown, the modal field distribution in the groove is
more cavity-like, with a node at the groove end-wall), and so a 2λspp groove allows the qubits
to be separated by 1.5λspp and also to be at the modal antinodes. Results for the finite-length
groove are shown without slots since for this case coupling slots did not improve concurrence
considerably; for the nanowire the modal field is strong at the wire ends (Fig. 3), but it is not
exactly a modal antinode because of strong end-diffraction. In this case, coupling slots serve to
shift the mode pattern slightly, enhancing qubit-plasmon coupling. If the qubits are positioned
exactly at a modal antinode, which is better defined away from the wire ends, coupling slots
have a weaker effect on improving concurrence. It can be seen that for the infinite groove,
the addition of coupling slots leads to improved concurrence, and the FP resonances of the
finite-length groove leads to further improvement. As reported in [20], for the chosen geometry
the groove waveguide leads to stronger entanglement compared to the nanowire (although this
conclusion is likely dependent on metal absorption and geometry). The population dynamics of
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Fig. 5. (a) Concurrence of two qubits separated by 1.5λspp. Vacuum case (dashed green
line), infinite groove (dotted black line), infinite groove with coupling slots (dashed blue
line) 40 nm laterally away from the qubits (outside the space between them), and finite
groove of length 2λspp (solid red line). (b) Time dependence of the population of the emitter
initially in the excited, ρeg, and ground, ρge, states.
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Fig. 6. Time dependence of the concurrence between two qubits including the effect of
pure dephasing (see Eq. (21)). Qubits are placed either above the ends of a finite-length
nanowire (Fig. 4(a)) or finite-length groove (Fig. 5(a)). The emitter coupling rates for the
case of the nanowire are Γaa = 6.5μeV, Γab =−1.2μeV, gab = 2.85μeV, while for the case
of the groove waveguide Γaa = 11.38μeV, Γab =−6.48μeV, gab = 5.8μeV. The QD pure
dephasing rate, γ ′, is equal to 1 μeV.

the qubits are also shown for the finite groove case in Fig. 5(b).
In order to study the effect of pure dephasing, we considered a QD with dipole moment 30

D as our model system. It was reported [16] that the dephasing rate, γa of the QD is equal to 1
μeV. We considered emitters placed either above a finite nanowire (Fig. 4(a)) or a finite groove
(Fig. 5(a)) without coupling slots. The emitter coupling rates for the case of the nanowire are
Γaa = 6.5μeV, Γab = −1.2μeV, gab = 2.85μeV, while for the case of the groove waveguide
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Γaa = 11.38μeV, Γab =−6.48μeV, gab = 5.8μeV. We can see that in general the pure dephas-
ing decay rate is smaller than the radiative decay rate. Even though it affects entanglement
detrimentally, the decrease in concurrence is rather small (see Fig. 6). Thus we otherwise ig-
nore pure dephasing in our results, although the validity of this assumption depends on the QD
system under consideration and the temperature.

3.3. Steady state entanglement under external pumping

Up to this point we have considered spontaneous (or vacuum-induced) decay which leads to
transient entanglement between two coupled qubits. Transient entanglement does not persist
due to depopulation of the excited state of the qubits. Thus, in order to obtain a steady entangled
state, depopulation has to be compensated by pumping qubits with an external laser pump in
resonance with the frequency of the qubits’ dipole transition. We assume the pump interacts
only with the qubits. In this case, the concurrence reaches a final, steady state (SS) value.
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Fig. 7. Time dependence of the concurrence between two qubits pumped by external elec-
tromagnetic fields. Qubits are placed above either a nanowire (left panel) or groove (right
panel). Qubit separation is 1.5λspp. The system geometry is the same as in Figs. 4,5.

Figure 7 shows the externally driven concurrence of qubits in the presence of a finite
nanowire with length 1.5λspp with qubits located at the nanowire ends (the same geometry
as in Fig. 4), a finite groove with length 2λspp, qubits located symmetrically above its surface
separated by 1.5λspp (the same geometry as in Fig. 5), and the infinite-length cases with the
same qubit spacings as in the finite case. Three different coherent pumps differing in the rela-
tive phase of the laser field on qubit 1 and 2 have been considered: symmetric pumping indicates
identical Rabi frequencies, Ω1 = Ω2, antisymmetric pumping corresponds to Ω1 = −Ω2 and
asymmetric pumping means Ω1 �= 0, Ω2 = 0.
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From Fig. 7, it is clear that the transient portion of the concurrence is intensity independent,
and that the infinite groove has a higher transient peak compared to the infinite nanowire for
all pumping regimes. Numerical experimentation shows that larger values of gab and Γab at
the positions of the qubits lead to larger transient concurrence peaks. For the geometries stud-
ied, these mutual rates are larger for the infinite groove than for the infinite nanowire, which
facilitates photon exchange between the qubits for the groove guide. We can also see that the
main advantage of a finite waveguide relative to an infinite one is significant improvement in
the transient concurrence peak, with more modest improvement in the final, steady-state value.
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Fig. 8. Steady state concurrence, C∞, as function of qubit separation normalized by the
modal wavelength, λspp. Qubits are placed either above a finite nanowire (right) or a finite
groove (left). The geometry is the same as in Figs. 4,5. Asymmetric, antisymmetric and
symmetric pumping have been considered.

The panels in Fig. 8 shows the SS value of concurrence, C∞, corresponding to different types
of pumping as a function of qubit separation normalized to the plasmon wavelength, λspp for
the finite nanowire (left panels) and finite groove (right panels). Numerical experimentation in-
dicates that for steady state concurrence the preferred case is when we have large Γab and small
gab, in agreement with [20] for the case of infinite waveguides. Therefore, the dissipative regime
leads to larger transient entanglement peaks for infinite-length waveguides, and larger values
of C∞ in general, and it is only for transient entanglement on finite-length waveguides that the
dissipative and coherent regimes becomes similar. Here, we can have steady state concurrence
close to the peak of the transient value for relatively weak pumping. For steady state concur-
rence, large gab and Γab are less ideal, because of the tendency to decrease SS concurrence.
Furthermore, pump strength can not be too large otherwise the qubits will interact mostly with
the pump and become decoupled from each other. Ideally, the pump should be strong enough to
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keep the system interacting, but small enough for the qubit interaction to dominate the dynam-
ics. As made clear in Fig. 8, pumping one qubit strongly (asymmetric pumping) is possible, but
pumping both qubits strongly (symmetric or antisymmetric pumping) reduces concurrence.

Population dynamics of the qubits are shown in Fig. 9 for the case when qubits are sepa-
rated by 1.5λspp and pumped either symmetrically, or only one qubit was pumped, for different
intensities. Four density matrix elements are ρgg, ρee, ρge, and ρeg which are respectively the
probability of both qubits to be in ground state, both qubits to be in excited state, the first qubit
to be in the ground state and the second to be in the excited state, vice versa. Moreover we have
assumed that initial state is a state when ρeg = 1.
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Fig. 9. Dynamics of the density matrix elements for qubits under external pumping. Qubits
are above a finite groove with qubit separation 1.5λspp = 634.5 (see Fig. 5 for details of the
geometry). Two different regimes of pumping have been considered, symmetric pumping
(two field pumping) and asymmetric pumping (single field pumping).

The qubits dynamics is different for one-field and two-field pumping. For the case of two-
field pumping, in the steady state we have ρeg = ρge which is reasonable as we are pumping
both systems identically. We can see that these elements first grow rather fast with the growth
of the pump intensity, but then slow down around Ωaa = Ωbb = 0.3Γaa. We can also see that
the element ρee also grows under the influence of the pump. But it first grows slower and
then starts growing faster around Ωaa = Ωbb = 0.3Γaa. Therefore, this indicates that under such
strong pumping the dynamics of both emitters is mostly defined by external pumps, and not
by the qubit-qubit interactions, which is detrimental for entanglement. Under the single field
illumination the density matrix elements evolve similarly to the previous case. However, ρeg >
ρge, because the first qubit that is pumped in this case. We can see that with the intensity increase
all elements grow, however, when the intensity becomes too strong the growth freezes and only
ρeg grows, indicating that dynamics of first emitter is entirely defined by the pump field, which
is also detrimental for entanglement.
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4. Conclusions

Transient and steady state entanglement of two qubits mediated by two different types of plas-
monic waveguides have been presented. The quantum dynamics of the coupled qubit system
has been studied using a master equation formalism. The waveguides, acting as photonic reser-
voirs, were incorporated into the formalism through the classical dyadic Green function, ac-
counting for dissipative and coherent interactions between qubits and the reservoir. The Green
dyadic has been calculated numerically. Two different methods have been proposed to improve
the entanglement between qubits communicating through excited surface plasmons: (i) using
a finite, resonant-length plasmonic waveguide, and (ii) including coupling slots near the sites
of the qubits. . The calculated results are compared with the infinite-length versions of the
waveguides, and the vacuum case, and it is shown that a finite structure or slotted structure can
improve the entanglement of appropriately-positioned qubits.
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