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Quantum plasmonic excitation in graphene and loss-insensitive propagation
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We investigate the excitation of quantum plasmonic states of light in graphene using end-fire and prism
coupling. In order to model the excitation process quantum mechanically, we quantize the transverse-electric and
transverse-magnetic surface plasmon polariton (SPP) modes in graphene. A selection of regimes are then studied
that enable the excitation of SPPs by photons and we show that efficient coupling of photons to graphene SPPs is
possible at the quantum level. Furthermore, we study the excitation of quantum states and their propagation under
the effects of loss induced from the electronic degrees of freedom in the graphene. Here we investigate whether it is
possible to protect quantum information using quantum-error correction techniques. We find that these techniques
provide a robust-to-loss method for transferring quantum states of light in graphene over large distances.
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I. INTRODUCTION

Quantum plasmonics is attracting considerable interest at
present from a wide range of researchers, most notably those
in the quantum optics and plasmonics communities [1]. This
interest is, in part, due to the potential of plasmonics for
applications in quantum information processing (QIP), which
include ultracompact and versatile single-photon sources [2–5]
and single-photon switches [6–8]. An important aspect in
the quantum study of plasmonic systems is the excitation
of quantum states of propagating surface plasmon polaritons
(SPPs) using photons, which are easier to generate experi-
mentally in a well-controlled manner [9]. Indeed, the ability
to transfer a quantum state between two different systems
is an important requirement for QIP in general [10]. Here
the quantum state transfer must be efficient and not entail
significant decoherence. Furthermore, the transferred state
must be maintained over times and distances necessary to
perform the required processing operations. Experimental
work in quantum plasmonics using photons to excite SPPs has
so far confirmed the preservation of entanglement when trans-
ferring quantum states between photons and SPPs [11,12],
the preservation of superposition states [13], as well as a wide
range of other properties related to the quantum statistics of the
excitation process [14–18]. Most recently experiments have
demonstrated two-plasmon quantum interference, confirming
the maintenance of the bosonic nature of the photons used to
excite SPPs in a plasmonic Hong-Ou-Mandel setting [19–22].

Most work on quantum plasmonic systems has so far
focused on basic metallic material as the support media for the
plasmonic excitations, using either silver or gold. However,
there is a large range of other materials available to use [23],
and graphene has recently emerged as a powerful alternative
due to the possibility of chemical doping and electrical gating,
which provides a highly tunable media for supporting quantum
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FIG. 1. (Color online) Excitation of quantum plasmonic states in
graphene. (a) Free-standing graphene and coordinate system. Here
SPPs cannot be excited by photons directly without a coupling method
to provide energy-momentum matching conditions. (b) End-fire
method for coupling. (c) Prism method for coupling. (d) Using either
end-fire or prism methods, the excited plasmonic state propagates
along the graphene surface. The hybrid nature of the SPP—consisting
of a joint state of a photon and a collection of electrons—means that
the electronic degrees of freedom induce loss effects in the photonic
part. An error-correction code is introduced to deal with the loss and
provide propagation over a large distance.

plasmonic systems. Here studies have focused on emitter cou-
pling and decay into SPPs [24], active control over a quantum
state biasing [25], nonlinear quantum optics [26–28], quantum
networks [29], and quantum sensing applications [30]. Despite
some impressive work in this area, one key issue that has
not been looked at in detail is the efficiency of the excitation
of single SPPs in graphene using photons and more general
quantum states of light. Moreover, given the many advantages
that graphene offers compared to conventional plasmonic
media in terms of tunability, the excited SPPs still suffer from
the effects of loss as they propagate.
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In this work we investigate the two issues of the excitation
efficiency and the effects of loss by studying the excitation of
quantum plasmonic states of light in graphene using end-fire
and prism coupling methods. We quantize the transverse-
electric and transverse-magnetic SPP modes in graphene in
order to build a fully quantum mechanical model for the
excitation process. We then study various parameter regimes
that enable the excitation of single SPPs by photons and
find that efficient coupling of photons to graphene SPPs is
possible. Furthermore, we study the subsequent propagation
of the excited quantum states under the effects of loss induced
from the electronic degrees of freedom in the graphene. In
order to protect the quantum states from loss, we use a
quantum error-correction code and find that the code provides
a robust-to-loss mechanism for propagating quantum states of
light in graphene over large distances.

The work is divided into five sections. In Sec. II we
introduce the model for SPP quantization in graphene. In
Sec. III we then use this model to study the conversion of
single photons to single graphene SPPs, and in Sec. IV we
provide a model for describing the effects of loss during
the subsequent propagation of the SPPs. In Sec. V we then
investigate quantum state transfer and propagation in detail,
introducing an error-correction code for protecting against
the effects of loss. We show the benefits of using the code
compared to not using it. In Sec. VI we conclude with a
summary of our results and an outlook on future studies.

II. GRAPHENE SPP QUANTIZATION

In our study of the transfer of quantum states between
photons and graphene SPPs, we consider the graphene as
a free-standing sheet, as shown in Fig. 1(a). Here SPPs are
excited by photons by using either the end of a fiber (end-fire
method), as shown in Fig. 1(b), or a prism, as shown in
Fig. 1(c). In order to model the coupling between photons
and SPPs, we must first quantize the SPPs in graphene. In this
section we briefly summarize the quantization steps.

A. Graphene conductivity

We start by considering a laterally infinite graphene sheet
lying in the x-y plane, as shown in Fig. 1(a). The graphene
is modeled as an infinitesimally thin, local, two-sided surface
characterized by a surface conductivity σ [31],

σ (ω) = ie2kBT

π�2(ω + i�)

[
μc

kBT
+ 2 ln(e− μc

kB T + 1)

]

+ ie2(ω + iγ )

π�2

∫ ∞

0

fd (−ε) − fd (ε)

(ω + iγ )2 − 4(ε/�)2
dε, (1)

where ω is the radian frequency, μc is the chemical potential
(Fermi energy), and � (γ ) is a phenomenological intraband
(interband) scattering rate. In addition, T is the temperature, e

is the charge of an electron, kB is Boltzmann’s constant, and
fd (ε) = (e(ε−μc)/kBT + 1)−1 is the Fermi-Dirac distribution.
The first term in Eq. (1) is due to intraband contributions, while
the second term is due to interband contributions. Absorption
is associated with both intraband electron scattering and
interband electron transitions. While Eq. (1) is valid for
arbitrary T , when kBT � (|μc|,�ω), i.e., the low-temperature

limit, it becomes [24,32]

σ (ω) = ie2μc

π�2(ω + i�)

+ e2

4�

[
�(�ω − 2μc) + i

π
ln

∣∣∣∣�ω − 2μc

�ω + 2μc

∣∣∣∣
]
, (2)

where �(x) is the Heaviside function. This form of the
conductivity has no T dependence and is used in our study
to simplify calculations in the low-temperature limit, whereas
the full form given in Eq. (1) is used in the high-temperature
limit, i.e., room temperature (T = 300 K).

For the decay rates, typical intraband scattering times are
τ = 1/� = 0.35 ps at room temperature, and as large as τ =
3–5 ps at low temperature [33–36]. For the interband scattering
rate we use 1/γ = 0.0658 ps [37]. These values are assumed
throughout our work unless otherwise noted. The Drude form
of the conductivity (the first term) has been verified in the
far infrared [34–37], and in the near infrared and visible the
interband behavior has been verified [35]. Note that for the
present application one could also consider N closely spaced
graphene monolayers, modeled as a single layer with a larger
effective conductivity, σeff(ω) = Nσ (ω).

B. Classical vector potential

We start by working in the Lorentz gauge (E = −∂A/∂t,
B = ∇ × A) and consider a homogeneous material having
relative permittivity, εr , on either side of the graphene, the
wave equation for the vector potential is

∇2A±(r,t) − 1

c2

∂2

∂t2
A±(r,t) = 0, (3)

where ± corresponds to the region z ≷ 0 and c = c0/
√

εr ,
with c0 being the speed of light in vacuum. The structure is
invariant in the transverse plane and therefore we can use the
solution

A±(r,t) =
∑

k

[A±
k (z)ei(k·r−ωkt) + A±∗

k (z)e−i(k·r−ωkt)], (4)

where the wave vector k = kxx + kyy is parallel to the
interface. Substituting Eq. (4) into Eq. (3) we find(

∂2

∂z2
− q2

0

)
A±

k (z) = 0, (5)

where q2
0 = k2 − 1

c2 ω
2
k, with k2 = |k|2. Thus, a solution for

the vector potential is

A±(r,t) =
∑

k

A±
k e∓q0zei(k·r−ωkt) + c.c. (6)

Assuming for the moment propagation in the x direction only,
i.e., invariance in the y direction (ky = 0), for TE modes
the nonzero field components are (Ey , Hx , Hz) arising from
Ay , and for TM modes we have nonzero components (Ex ,
Ez, Hy) arising from Ax and Az. Enforcing the boundary
conditions [38]

z × (H+ − H−) = J = σE,

z × (E+ − E−) = 0, (7)
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at z = 0 leads to the determination of the form of the A±
k

vectors and to the dispersion relations for TE and TM graphene
modes that link the wave number k to the frequency ωk via
the conductivity σ (ωk) and the relative permittivity of the
background material εr . The explicit form of the A±

k vectors
is given later in this section. First, we discuss the dispersion
relations, which are given by

kTM = kTM
x = k0

√√√√εr

[
1 −

(
2

ση

)2
]
, (8)

kTE = kTE
x = k0

√
εr

[
1 −

(ση

2

)2
]
, (9)

where k0 = ωk/c0, η = √
μ0μr/ε0εr (with μr = 1), and σ =

σ (ωk).
By decomposing the conductivity into real and imaginary

parts, σ = σ ′ + iσ ′′, it can be shown that that for σ ′′ > 0
(inductive surface reactance) only a single TM surface plasma
wave is supported by the graphene and can propagate; if σ ′′ <

0 (capacitive surface reactance) the TM SPP is on the improper
Riemann sheet, exponentially increasing as |z| → ∞ [39,40].

On the other hand, for σ ′′ < 0 (capacitive surface reactance)
only a single TE surface plasma wave can propagate (if
σ ′′ > 0 the TE SPP is on the improper Riemann sheet) [39,40].
Figure 2(a) shows the conductivity σ and Fig. 2(b) shows the
rescaled surface plasma wave number, κ = k/k0 for both TE
and TM modes, decomposed into a real part κ ′ = Re(kx/k0)
and an imaginary part κ ′′ = Im(kx/k0) over a wide range of
frequencies for T = 0 K and T = 300 K, with the chemical
potential chosen as μc = 0.5 eV. At low frequencies �ω �
2μc (ω = ωk is used for concise notation) the intraband
conductivity is dominant (σ ′′ 
 σ ′′

intra), interband absorption
is blocked, and a slow TM surface plasma wave can propagate
on the graphene surface (σ ′′ > 0). As the frequency increases,
the Drude term falls off, and in the vicinity of �ω/2μc = 1
interband absorption becomes important. As the frequency
increases further σ ′′ 
 σ ′′

inter, so that a loosely bound TE
surface plasma wave can propagate (σ ′′ < 0). Therefore, in
Fig. 2(b), the mode is TM to the left of the discontinuity (TE
mode is on the improper Riemann sheet) and TE to the right
of the discontinuity (TM mode is on the improper Riemann
sheet). Note that the frequency range of the two modes can be
adjusted by changing the chemical potential, which will shift
the discontinuity to the left or right as required.

The vector potential from Eq. (6) can be written explicitly
as

A±(r,t) =
∑

k

Ckφk(z)ei(k·r−ωkt) + c.c., (10)

where the Ck are mode amplitudes and the mode functions are

φk(z) = φ+
k (z) + φ−

k (z), (11)

φ±
k,TM(z) = −�(±z)

(
2kxi

2q0 − iσμ0ωk
x̂ ∓ ẑ

)
e∓q0z, (12)

φ±
k,TE(z) = �(±z)ŷe∓q0z. (13)

FIG. 2. (Color online) Graphene conductivity and surface
plasma wave number. (a) The conductivity σ (ω) for bare graphene.
The conductivity has been rescaled by σmin = πe2/2h. (b) The
rescaled surface plasma wave numbers for TE and TM modes
(εr = 1), κ = kx/k0 = κ ′ + iκ ′′. In both, the chemical potential is
μc = 0.5 eV, and we have set τ = 5 ps at T = 0 K and τ = 0.35 ps
at T = 300 K.

Note that, from the relation q2
0 = k2 − 1

c2 ω
2
k and Eqs. (8)

and (9), we have

qTM
0 = ±i

ωk

c

2

ση
, qTE

0 = ±i
ωk

c

ση

2
, (14)

with the sign chosen so that the modal field decays expo-
nentially in the vertical direction away from the graphene
sheet. As σ (ω) is a complex valued function, in general
q0 = q ′

0 + iq ′′
0 , where q ′

0 describes the strength of lateral field
confinement (the decay length) to the graphene sheet while
q ′′

0 corresponds to the wavelength of the propagating mode
in the z axis, corresponding to leakage into the far field. For
simplicity, in this work we focus on propagating modes in the
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x-y plane only, so we restrict our interest to the regime where
Re(q0) � Im(q0). Furthermore, our model will only include
loss in x-y plane, corresponding to the case where internal loss
is much greater than leaky loss originating from q ′′

0 .

C. Quantization

With the explicit form of the vector potential now given,
we proceed to quantize the surface plasma wave. Note that
here we are considering an ideal case with no damping effects
due to the electronic degrees of freedom in the graphene sheet.
Furthermore, and consistent with no damping, for quantization
we assume a nondispersive model since we consider quantum
states that are associated with wave packets that have very
narrow bandwidths centered on ω. Both assumptions simplify
the quantization procedure. Damping will be reintroduced to
the model later in Sec. IV.

We start with the Hamiltonian for the field given by

Hf = ε0

2

∫
V

(
εr

∣∣∣∣∂A
∂t

∣∣∣∣
2

+ c2
0|∇ × A|2

)
dV.

For TE modes (σ ′′ < 0) the energy stored in the graphene
can be obtained by temporarily assuming the graphene has a
small but nonzero thickness d with effective permittivity

ε = 1 + i
σ

ωd
= 1 − σ ′′

ωd
= 1 + |σ ′′|

ωd

 |σ ′′|

ωd
, (15)

with associated energy

H TE
e = 1

2

∫
V

ε|E|2dV = 1

2

∫
V

∣∣σ ′′∣∣
ωd

|E|2dV

= 1

2

∫
V

δ(z)ω
∣∣σ ′′∣∣|A‖|2dV, (16)

where A‖ is the component of potential parallel to the graphene
sheet. Note that at this stage we are not including loss, so that
σ = iσ ′′.

For TM modes σ ′′ > 0, leading to a negative permittivity
ε < 0, and so a different method must be used. We again
assume that the graphene has a small but nonzero thickness d.
Inside the graphene the equation of motion F = ma leads to

∂A‖
∂t

= m

e

dv
dt

, (17)

where v is the velocity of electrons in the electron gas.
Thus, A‖(r,t) = (m/e)v(r,t) with associated current density
J = −en(r,t)v(r,t) = −(e2/m)n(r,t)A‖(r,t), where n is the
number density. The energy stored in the graphene electron
gas kinetics is [41]

He = 1

2
m

∫
n(r,t)v2(r,t)dV,

= 1

2

e2

m

∫
V

n(r,t)A2
‖(r,t)dV. (18)

Considering that for a lossless plasma ne = ω2
pε0(m/e2) =

mωσ ′′/e2d, we obtain

H TM
e = 1

2

∫
V

δ(z)ωσ ′′A2
‖dV. (19)

Therefore, the total Hamiltonian for either TE or TM modes is

H = ε0

2

∫
dV

[
εr

∣∣∣∣∂A
∂t

∣∣∣∣
2

+ c2
0|∇ × A|2 + δ(z)

ω|σ ′′|
ε0

|A‖|2
]
.

(20)

To compute the Hamiltonian, we take a region of space
of size L × L on the surface of the graphene sheet (in the
x-y plane) such that the wave numbers are kx,y = 2πnx,y/L,
nx,y = 0, ± 1, ± 2, . . ., i.e., periodic boundary conditions.
The volume integrals in the Hamiltonian are evaluated using∫ L

0

∫ L

0 ei(k−p)·rdxdy = L2δk,p and substituting in Eq. (10). By
doing this we obtain terms such as

|A(r,t)|2 = 2
∑

k

CkC
∗
kφk(r) · φ∗

k(r)

+
∑

k

CkC−kφk(r) · φ−k(r)e−i2ωkt + c.c.

It is straightforward to show that the cross terms, e.g.,
φk(r) · φ−k(r), associated with electric, magnetic, and gas
kinetic energies will cancel, as occurs in free-space optics, and
thus we only retain terms such as φk(r) · φ∗

k(r) = |φk(r)|2. By
collecting all the nonzero terms, after substituting in Eq. (10)
and carrying out the integrals, we obtain

H = ε0L
2
∑

k

ω2
kNk(C∗

kCk + CkC
∗
k), (21)

where Nk = NTE/TM
k is a normalization parameter having units

of length. To quantize the fields, we use the correspondence of
the Hamiltonian in Eq. (21) with that of the harmonic oscillator,
mapping the coefficients as

Ck →
√

�

2ε0L2ωkNk
b̂k, C∗

k →
√

�

2ε0L2ωkNk
b̂
†
k, (22)

where the bosonic creation and annihilation operators satisfy
the commutation relation [b̂k,b̂

†
k′ ] = δkk′ . We then have the

quantized Hamiltonian, Ĥ = ∑
k(�ωk/2)(b̂kb̂

†
k + b̂

†
kb̂k), for

the system and the corresponding quantized vector potential
operator is

Â(r,t) =
∑

k

√
�

2ε0L2ωkNk
b̂kφk(z)ei(k·r−ωkt) + H.c. (23)

For our purposes it is convenient to take the continuum limit
using

∑
k → ( L

2π
)2

∫
dk and b̂k → ( 2π

L
)b̂(k), so that

Â(r,t) = 1

2π

∫
dk

√
�

2ε0ωN (k)
φ(z,k)ei(k·r−ωt)b̂(k) + H.c.

(24)
For simplicity, we also assume excitations propagating in the
x direction only with a beamwidth W in the y plane. Then∫

dk → 2π
W

∑
ky

∫
dkx and b̂(k) → (W 1/2

2π
)b̂(kx), which leads

to

Â(r,t) = 1

2π

∫
dkx

√
�

2ε0WωN
φ(z,kx)ei(kxx−ωt)b̂(kx) + H.c.,

(25)
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with the spatial mode functions φ(z,kx) given in Eqs. (11)–
(13). Finally, converting to the frequency domain using kx =
v−1

g ω, dkx = v−1
g dω, and b̂(kx) → √

vgb̂(ω), where vg(ω) =
∂ω/∂kx is the group velocity, we have the vector potential for
quantized surface plasma waves, now SPPs, given by

ÂTE/TM
SPP (r,t) = 1

2π

∫
dω

√
�

2ε0WvgωNTE/TM

× φTE/TM(z,ω)e−iω(t−x/vg )b̂(ω) + H.c.

III. PHOTON-TO-SPP COUPLING MODEL

With the graphene SPPs quantized we now introduce
the coupling model between photons and SPPs in order to
investigate the efficiency of the excitation process at the
quantum level. As described in Refs. [42,43], within a linear
response regime the coupling of photons to SPPs can be
described in the Heisenberg picture by a unitary transformation
matrix, [

âout(ω)

b̂out(ω)

]
=

[
γ (ω) β(ω)

−β∗(ω) γ ∗(ω)

][
âin(ω)

b̂in(ω)

]
, (26)

where |γ (ω)|2 + |β(ω)|2 = 1 and â(ω) is an annihilation op-
erator for the photon field which, together with â†(ω), satisfies
the bosonic commutation relation [â(ω),â†(ω′)] = δ(ω − ω′).
In the following, we use the coupling coefficient, g(ω) =
ei arg β(ω) sin−1 |β(ω)|, defined in terms of the transmission
coefficient, β(ω), from Eq. (26). The coupling coefficient
appears in the interaction Hamiltonian for the system, given by
Ĥint = i�

∫
dω[g(ω)â†b̂ − g∗(ω)âb̂†]. Here perfect coupling

corresponds to g(ω) = π/2, which provides the complete
transfer of a given quantum state of a photon to a SPP.

In Appendix A we provide details of various different
coupling scenarios that can provide a range of transformation
matrices for the photon-to-SPP transfer. Here we briefly
summarize the main results. The first coupling scenario we
consider is end-fire coupling, where the photon field from
the end of a fiber is evanescently coupled to the field of
the graphene SPP [44]. We consider a structure similar to
that shown in Fig. 1(b), where an optical fiber has a center
perturbed region with the cladding removed. In order to make
the setting more realistic, we consider the core of the fiber as
being partially removed in order to support the graphene sheet,
as shown in the inset of Fig. 3(a). Here photons enter the fiber
from the far-right and couple to the graphene SPPs, after which
the output is taken on the left-hand plane, where the structure
terminates. We use a numerical finite-difference time-domain
(FDTD) simulation (see Appendix A for details) to obtain
the transmission coefficient β, which is shown in Fig. 3(a).
The graphene SPPs in this geometry are quantized using
the formalism given in the previous section, with appropriate
consideration of the asymmetric dielectric media above (air)
and below (fiber core support). The FDTD simulation enables
the calculation of the overlap between the evanescent photon
mode function and the graphene SPP mode function. As the
mode functions correspond to the classical wavelike part of the
photons and the SPPs, the overlap calculation is essentially
a classical calculation with the resulting β value entering

FIG. 3. (Color online) End-fire coupling of photons to SPPs on
graphene using a fiber. The inset shows the configuration considered.
(a) Transmission coefficient β. (b) Power distribution for TE
excitation of graphene strip showing good coupling to a graphene
TE SPP. (c) Power distribution for TM excitation of graphene strip
showing no excitation of the graphene TM SPP. The cladding has
radius 3 μm and εcladding = 1.16, the core has radius 500 nm and
εcore = 1.45, the depth of the removed region is 3.025 μm, and the
graphene is biased at μc = 0.02 eV, with T = 0 K, and τ = 0.1 ps
[Im(σ ) < 0, allowing only TE mode propagation].

into the transformation matrix of Eq. (26) in order to model
the coupling quantum mechanically. Here the operators are
associated with a given spatial mode function at a specific
frequency ω.

In Fig. 3(a) one can see that at high frequencies (where
only TE SPPs are supported), good TE SPP coupling can be
achieved, whereas TM SPP coupling is significantly reduced.
In Figs. 3(b) and 3(c) we show the power distribution for the
transfer of the field from the fiber to the graphene sheet for TE
and TM modes, respectively. One can see that the TE mode can
be coupled to well, whereas the TM mode cannot as it is only
supported at lower frequencies. In Appendix A we discuss a
grating method for efficient end-fire coupling of photons to
TM modes at lower frequencies, which is tunable by varying
the chemical potential.

The second coupling scenario we consider is prism
coupling, where the photon field from below a prism is
evanescently coupled to the field of the graphene SPP [45–47].
The coupling structure is similar to that shown in Fig. 1(c),
whose configuration is shown in more detail in Fig. 4(a). In
Appendix A, we provide details of the prism coupling, for
which, unlike end-fire coupling, we are able to obtain an
analytical solution easily and therefore do not need FDTD
simulation. In Fig. 4(b), as an example, we show the coupling
coefficient β as the spacing between the prism and the
graphene, d, changes for both TE and TM SPPs at a specific
frequency for the incoming photon, corresponding to a free-
space wavelength of λ0 = 500 nm. In the inset we show the
TE reflection coefficient near the resonance of the coupling. It
can be seen from Fig. 4(b) that good photon-SPP coupling can
be achieved using a prism for both TM and TE SPPs.
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FIG. 4. (Color online) Prism coupling of photons to SPPs on
graphene. (a) The coupling system considered. (b) Transmission
coefficient for SPPs as a function of prism-graphene spacing d . TE
mode (dotted line, prism-graphene spacing given by top horizontal
axis): θi = 54.74◦, ε1 = 1.5, μc = �ω/2 = hc/λ0 (μc = 1.24 eV),
f = 600 THz (λ0 = 0.5 μm), T = 0 K; TM mode (dashed line,
μc = 0.5 eV, solid, μc = 0.8 eV, prism-graphene spacing given
by bottom horizontal axis): f = 0.81 THz (λ0 = 3.7 × 10−4 m),
θi = 64◦, ε1 = 1.5, T = 300 K. The inset shows the TE reflection
coefficient as a function of frequency near the resonance frequency.

In summary, both end-fire and prism coupling methods
can provide good photon-to-SPP coupling, with transmission
coefficients β > 0.7 (g > 0.77) for TM and TE modes.

IV. PROPAGATION AND DAMPING MODEL

Once the SPP is excited using one of the above methods
it propagates along the graphene surface. Here it is damped
by interactions with phonons, impurities, and defects at
both the light level (diffraction and radiation at a physical
discontinuity) and the electron level (intraband electron scat-
tering and interband absorption), as well as with interactions
with the thermal bath of field modes. The former (possible
diffraction and radiative scattering) is ignored here as we
assume an unperturbed graphene surface. On the other hand,
both electron-level damping [incorporated in the graphene
conductivity in Eq. (1)] and thermal interactions cannot
be neglected and are accommodated by using a standard
multiple beam-splitter model [42,43,48–50], consisting of N

quantum beam splitters each with a quantized field mode ĉi (ω),
i = 1, . . . ,N . These bath field operators satisfy the bosonic
commutation relations [ĉi(ω),ĉ†j (ω′)] = δij δ(ω − ω′). In the

continuum limit N → ∞, �x → 0, ĉi(ω) → √
�xĉ(ω,x ′),

and δij → �xδ(x − x ′), and the annihilation operator of the

SPP after traveling a distance x is given by [42,43]

b̂out(ω,x) = eikxx b̂out(ω)

+ i
√

2k0κ ′′(ω)
∫ x

0
dx ′eikx (x−x ′)ĉ(ω,x ′), (27)

where kx = kx(ω) = k0[κ ′(ω) + iκ ′′(ω)] and k0κ
′′(ω) is the

attenuation factor for a surface plasma wave (wherein electron-
level damping is included). The continuous field operators
obey [ĉ(ω,x),ĉ†(ω′,x ′)] = δ(x − x ′)δ(ω − ω′) and the second
term in Eq. (27) preserves the bosonic nature of the propagated
SPP.

Using the relation b̂(t) = (2π )−1/2
∫

dωe−iωt b̂(ω), the
mean SPP flux at space-time coordinate (x,t) can be calculated,
fout(x,t) = 〈b̂†out(x,t)b̂out(x,t)〉. For a narrow wave packet
centered at ω0, we have [42]

fout(x,t) = e−2k0κ
′′xfout(tR), (28)

where tR = t − x/vg , with vg being the group velocity at the
center frequency. The mean flux of the quantized SPPs is
therefore simply damped by the classically expected factor
2k0κ

′′. Using the values of κ ′′ in Fig. 2 for both TE and
TM modes, and the above model for the operator mapping
[summarized by Eq. (27)] we are now in a position to further
investigate the impact of loss on the transfer of quantum states
of SPPs on the graphene surface and quantify the performance
of an error-correction code for protecting against this loss.

V. ROBUST-TO-LOSS QUANTUM STATE TRANSFER

A. Lossy propagation

In Sec. III we showed that efficient coupling of incident
single photons and graphene SPPs is possible at the quantum
level. In this section we now analyze the transfer of more
complex photon states to SPP states and their subsequent
propagation. The general setting is the following, the input
state is defined as |�〉in = |ψ〉a|0〉b, where a corresponds to
the photon mode and b to the SPP mode (which is initially
in the vacuum state). The photon interaction with the SPP via
end-fire or prism coupling produces the output state, written
as |�〉out = U |�〉in, where the unitary transformation U is
defined by Eq. (26). We start by considering the photon input
in a superposition of coherent states [43],

|�〉in = N (|α〉 + | − α〉)a|0〉b, (29)

with | ± α〉a = exp[−|α|2/2]
∑∞

n=0(±α)n/
√

n!|n〉, where
|n〉 is a number state and N = (2 + 2e−2|α|2 )−1/2. Using
the transformation matrix from Eq. (26) we have
|�〉out = N (|α cos g〉a| − α sin g〉b + | − α cos g〉a|α sin g〉b),
where β = sin g and γ = cos g. For perfect coupling
(g = π/2) we have

|�〉out = |0〉aN ((| − α〉 + |α〉)b (30)

and the coherent state superposition is transferred perfectly to
an SPP superposition.

In general, we are interested in the SPP state itself, so
we need to trace out the unobserved photon modes a. The
density operator for the total photon and SPP system is ρ̂ =
|�〉out out〈�|. By tracing out system a we have ρ̂b = Traρ̂,
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which gives [43]

ρ̂b = |N |2[|α sin g〉〈α sin g| + | − α sin g〉〈−α sin g|
+ cout(|α sin g〉〈−α sin g| + | − α sin g〉〈α sin g|)],

(31)

where cout = exp[−2|α cos g|2]. We take this state as the initial
mixture (at x = 0) that we want to propagate a distance x

along the graphene in the presence of loss and characterize its
decoherence. Using Eqs. (27) and (31) one finds [43,51]

ρ̂b(x) =|N |2[| − α sin ge−k0κ
′′x〉〈−α sin ge−k0κ

′′x |
+ |α sin ge−k0κ

′′x〉〈α sin ge−k0κ
′′x |

+ c(x)(|α sin ge−k0κ
′′x〉〈−α sin ge−k0κ

′′x |
+ | − α sin ge−k0κ

′′x〉〈α sin ge−k0κ
′′x |)], (32)

where c(x) = cout exp[−2|α sin g|2(1 − e−2k0κ
′′x)]. Note that

at long times (large x) the SPP moves towards the vacuum
state, as expected, and at early times (small x), c(x) 
 cout,
and, therefore, ρ̂b(x) 
 ρ̂b(0).

In Sec. III we showed that good coupling can be achieved
using several different coupling methods (end-fire, which
has been experimentally demonstrated [44], and prism cou-
pling [45–47]), resulting in values of g ∼ 0.8 or higher. In the
following investigation of state propagation, rather than link
the results to a certain coupling geometry we assume values
of g in a reasonable range.

In order to quantify the effect of loss on the excitation
process and subsequent propagation, we use the fidelity F =
〈ψ |ρ̂|ψ〉 as a measure of the similarity between two states, one
pure |ψ〉 (ideal) and one mixed ρ̂ (damped) [52]. When F = 1
the states are the same and when F = 0 they are completely
orthogonally. In the ideal case, the superposition state |ψ〉
given in Eq. (29) will be excited as an SPP and then propagate
without loss along the graphene surface. In the realistic case,
however, the state ρ̂ given in Eq. (32) will be the state resulting
from the nonideal excitation process and damping. The fidelity
thus provides a means to measure how far away in the Hilbert
space the damped SPP state is from the ideal (initial photon)
state as it propagates along the graphene.

In Fig. 5(a) we show examples of the fidelities between
the initial photon state in Eq. (29) and the excited SPP
states in Eq. (32) (with different coupling efficiencies), which
become damped as they propagate. One can see that the initial
fidelities do not start at 1 for the nonideal coupling cases
and the fidelities decay as the SPP propagates, showing the
movement of the quantum state further away from the initial
ideal state. In Fig. 5(b) we show the fidelity of the excited
SPP state with respect to the ideal photon state with a smaller
amplitude α′ = α sin ge−k0κ

′′x . We have included this case as
the amplitude of the SPP state is expected to decay as it
propagates, thus it is informative to compare it with an ideal
photon state that has a decayed amplitude, but importantly
has no degradation in its original structure; it is a pure state
with the same fixed positive phase. In this second case the
fidelity starts at a slightly higher level and approaches a higher
asymptotic value (= 0.5) as the damping increases. In Fig. 5(a)
the asymptotic limit of the fidelity is zero as the SPP state
moves toward the vacuum state as a result of dissipation of

Κ

β = 1
= 0.98
= 0.95
= 0.9
= 0.8

Κ

FIG. 5. (Color online) Fidelities of propagating SPPs with re-
spect to the initial state in (a) and the initial state with smaller
amplitude α′ = α sin ge−k0κ ′′x in (b) after excitation with different
excitation couplings β = 1,0.98,0.95,0.9,0.8. The initial photon
state has α = 3. The plots in (a) monotonically decrease to zero,
while those in (b) approach a finite value when k0κ

′′x < ln[
√

2β],
after which they turn and increase to unity as the vacuum contribution
becomes significant.

energy. On the other hand, in Fig. 5(b) the asymptotic limit is
0.5 as the state we are comparing the SPP state with is matched
in terms of its energy, resulting in an effective phase damping
of the SPP state from the perspective of the photon state.

From Fig. 5, it is clear that the excitation process and
subsequent damped propagation affect the quality of the
quantum state transfer between photons and graphene SPPs.
In the next section we show that by using an error-correction
strategy, one can protect the superposition state (and more
general quantum states) from loss caused by the damping
during propagation.

B. Error-correction code

In order to provide robust-to-loss propagation of quantum
states of SPPs along the graphene waveguide we consider the
code states [53]

|0̄±〉 = 1√
N±

(|α〉 ± |−α〉), (33)

|1̄±〉 = 1√
N±

(|iα〉 ± |−iα〉), (34)

where N± = 2(1 ± e−2|α|2 ). For large-enough mean photon
number 〈n̂〉 = |α|2 we have that the states |±α〉 and |±iα〉 are
orthogonal, and therefore so are the code states. The states |0̄+〉
and |1̄+〉 form an orthogonal basis, |〈1̄+|0̄+〉|2 ≈ 0 when α >

2, representing a code space in which an arbitrary quantum bit
(qubit) can be encoded as

|�〉 = c0|0̄+〉 + c1|1̄+〉, (35)

where |c0|2 + |c1|2 = 1. This type of encoding has recently
been considered theoretically in a cavity scenario using super-
conducting qubits [54,55] and experimentally demonstrated
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in Ref. [56]. Here we extend its application to a waveguide
setting.

When damping occurs during SPP propagation, for a short
time interval �t this can be described by the density matrix
mapping [57]

ρ̂ → ρ̂ ′ = �P ρ̂jump + (1 − �P )ρ̂no-jump, (36)

where �P � 1 is the probability of losing an excitation during
time �t , �P = γ�tTr(ρ̂n̂) = γ�t〈n̂〉, with γ the decay
rate. Here we have more explicitly ρ̂jump = âρ̂â†/〈n̂〉 and
ρ̂no-jump = e− γ

2 �tâ†â ρ̂e
γ

2 �tâ†â/Tr[e− γ

2 �tâ†â ρ̂e
γ

2 �tâ†â]. In other
words, we can write the evolution of the density matrix during
a short time �t as ρ̂ → ρ̂ ′ = E0ρ̂E

†
0 + E1ρ̂E

†
1, where the

Kraus operators for the damping process are E0 = √
γ�tâ

and E1 = (1 − γ

2 �tâ†â), with e− γ

2 �tâ†â 
 (1 − γ

2 �tâ†â). By
using the relations

â|0̄±〉 = α
√

N∓/N±|0̄∓〉, â|1̄±〉 = iα
√

N∓/N±|1̄∓〉,
e− γ

2 �tâ†â|0̄±〉 = e
1
2 |α|2(e−γ�t−1)

√
N±,�t/N±|0̄±,�t 〉, (37)

e− γ

2 �tâ†â|1̄±〉 = e
1
2 |α|2(e−γ�t−1)

√
N±,�t/N±|1̄±,�t 〉,

where N±,�t = 2(1 ± e−2|αe−γ�t/2|2 ), and the decayed states

|0̄±,�t 〉 = 1√
N±,�t

(|αe−γ�t/2〉 ± |−αe−γ�t/2〉), (38)

|1̄±,�t 〉 = 1√
N±,�t

(|iαe−γ�t/2〉 ± |−iαe−γ�t/2〉), (39)

one finds that the code states are mapped as

|0̄+〉〈0̄+| → �P |0̄−〉〈0̄−| + (1 − �P )|0̄+,�t 〉〈0̄+,�t |,
|1̄+〉〈1̄+| → �P |1̄−〉〈1̄−| + (1 − �P )|1̄+,�t 〉〈1̄+,�t |,

and similarly for the off-diagonal terms. The code space and
the decayed code space {|0̄+,�t 〉,|1̄+,�t 〉}, which remains or-
thogonal for large-enough mean excitation number and can be
distinguished from the erred space (spanned by |0̄−〉 and |1̄−〉
and their decayed versions) by the photon parity operator P̂ =
eiπ â†â = ∑

n eiπn|n〉〈n| = ∑
n(−1)n|n〉〈n|. Using the rela-

tions P̂ |α〉 = |−α〉 and P̂ |−α〉 = |α〉, one finds 〈0̄+|P̂ |0̄+〉 =
〈1̄+|P̂ |1̄+〉 = +1 and 〈0̄−|P̂ |0̄−〉 = 〈1̄−|P̂ |1̄−〉 = −1. Thus,
by measuring the parity continuously within small-enough
time periods one can determine whether an excitation has been
lost and correct the state back into the code space.

Two important points should be mentioned in relation
to our application of the above error-correction strategy to
propagating SPPs in a waveguide setting. First, the correction
operations do not need to be performed until the very end of
the propagation. This is because the parity checks continuously
project the state into either the code space or the erred space,
with the state moving between these two subspaces in a
cyclical fashion as it propagates, similar to the case described
in Refs. [54,55]. At the end of the propagation, after having
recorded the outcomes of the sequence of parity checks, we
know whether the final state is in the code space or the erred
space and we can correct it accordingly to bring it back into
the code space, although with a reduced amplitude. This leads
to the second important point, which is that once the initial
state has propagated a given distance (and undergone many

parity-check operations), it will have decayed significantly.
Therefore, the error-correction strategy means that we must
supply a large-enough starting value of α for a desired
propagation distance along the graphene surface so that the
decayed code states maintain their orthogonality. By doing
this we effectively put quantum state transfer and classical
state transfer in plasmonics on a level playing field, where one
simply increases the intensity in order to transfer information
along the plasmonic waveguide.

In summary, the robust-to-loss encoding for quantum state
transfer requires only parity checks to be performed on the
SPP as it propagates along the graphene surface. These checks
could be realized by incorporating additional circuitry within
the graphene sheet, using an ancilla mode (electronic or
photonic in origin) and the unitary operation outlined in
Ref. [56], which provides a means of carrying out a noninvasive
measurement of the photon parity. The closeness of the parity
checks on the surface depends on the rate of loss of the SPP
and the speed with which it propagates. For this, we assume
the SPP wave packet containing the quantum state is narrowly
centered around the frequency ω0, such that it propagates with
speed vG(ω0) = vG. We then use the relations γ = 2k0κ

′′vG

and �t = �x/vG to find the corresponding distance �x for
the time interval �t .

In the following analysis of the performance of the code,
we carry out a quantum jump simulation via a Monte Carlo
iteration method, tracking 104 individual trajectories of the
initial state and summing the final states [57]. We use the
fidelity to quantify the effectiveness of the code as the number
of parity checks is modified from the ideal case when it occurs
every �x � (2k0κ

′′|α|2) m, to the case where no parity checks
are made, corresponding to bare graphene propagation. In all
cases we consider an initial parity check after the photonic
excitation of the SPP in order to put the different cases on
an equal footing from the point of excitation. As examples,
we show the fidelities (averaged over the single-qubit Bloch
sphere) of error-corrected propagation of TM (TE) modes at
T = 300(0) K and μc = 1(0.8) eV for λ0 = 1550 nm and
λ0 = 810 nm in Fig. 6 for different excitation couplings in
panels (a), (b), and (c). During propagation, the parity check is
performed every �t/p (equivalently �x/p) for a given parity-
check probability p. Note that the proposed scheme corrects
the damping effect by flipping over the states in the erred
space depending on the outcomes of the parity measurements,
leading to a significant increase of fidelity from the initial
value F0 given by the excitation process. In Fig. 6(d) we show
the validity of the orthogonality approximation of the code
basis states for the fidelity calculation as the SPP propagates,
which we set via |〈0′

±|1′
±〉| � 10−2. Note that, depending on

the frequency and chemical potential, the graphene SPP can
be made to propagate further, but very high chemical potential
may require an alteration of the experimental structure, which
also needs to be theoretically taken into account.

VI. CONCLUSIONS

In this work we investigated the excitation efficiency and
impact of loss on SPP propagation in graphene at the quantum
level. We considered two different excitation techniques:
end-fire and prism coupling. We started by quantizing the
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F0 ∼ 0.49
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FIG. 6. (Color online) Average fidelities of error-corrected prop-
agating SPP qubits with increasing parity-check probabilities p =
0,0.2, . . . ,1 for different excitation couplings: β = sin[g = π/2] in
(a), β = sin[g = 0.9 × π/2] in (b), and β = sin[g = 0.8 × π/2] in
(c). F0 is the average fidelity just after the excitation process, before
the first parity-check operation. The fidelities are calculated with
respect to the initial state with a smaller amplitude α′ = α sin ge−k0κ ′′x

for α = 3. The propagation length is scaled with respect to TM (TE)
modes at T = 300(0) K and μc = 1(0.4) eV for λ0 = 1550 nm in top
(bottom) horizontal axis and λ0 = 810 nm in top (bottom) horizontal
axis. The effective wavelengths for TM (TE) modes for λ0 = 1550
nm and λ0 = 810 nm are λeff (= 2π/k0κ

′) ∼ 23.59(1549.77) nm
and ∼1.74(810.053) nm, respectively. Panel (d) shows that the
orthogonality approximation, |〈0′

±|1′
±〉| � 10−2, is well satisfied

during a quantum jump simulation for the case of (c), for instance.

transverse-electric and transverse-magnetic SPP modes in
graphene, and used this to build a fully quantum model for
the excitation process. We then studied various parameter
regimes that enabled the excitation of SPPs by photons and
found that efficient coupling of single photons to graphene
SPPs is possible. We then studied the subsequent propagation

of excited quantum states under the effects of loss induced
from the electronic degrees of freedom in the graphene.
In order to protect the quantum states from loss, we used
a quantum error-correction code and found that the code
provides a robust-to-loss mechanism for propagating quantum
states of light in graphene over large distances. The results
and analysis in this work contribute to the growing field of
quantum plasmonics and to the use of graphene as a flexible
alternative to basic metallic materials for supporting SPPs and
their quantum applications.
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APPENDIX A: FREE-SPACE PHOTON-TO-SPP
COUPLING MODELS

In the main text we considered photon-to-SPP quantum
state transfer for several values of the coupling parameter g.
In this appendix we provide several coupling models that can
be used to achieve good coupling.

1. End-fire coupling

In the first configuration, we consider end-fire coupling
from a fiber (TE) or wire (TM) to graphene strips. For the
TE case it has been experimentally verified that good fiber-to-
graphene coupling exists [44]. THz experiments for the TM
case have not been performed as yet, although far-infrared
excitations of TM SPPs have been shown using an atomic
force microscope tip [58,59].

For the TE case we consider a structure similar to the
experimental configuration of Ref. [44], which consisted
of an optical fiber (step-index core-cladding) with a center
perturbed region where the cladding is removed and the core
partially removed, upon which the graphene is located [see
inset to Fig. 3 (a)]. The fiber core is excited at the far right
as the input and the output is taken at the plane on the
left where the structure terminates. In Fig. 3 we show the
transmission coefficient β obtained using FDTD simulation
via CST Microwave Studio. Very good selectivity for TE
polarization is exhibited, as measured in Ref. [44]. Note the
dimensions of the structure in Ref. [44] and those used here
are somewhat different (see caption for details). Good TE
SPP propagation is expected in the frequency range shown,
since here σ ′′ < 0 and only a TE SPP propagates. Figures 3(b)
and 3(c) show the power distribution on the structure for
TE and TM excitation, respectively, showing good TE SPP
propagation and no TM SPP propagation.

For the TM case at low THz frequencies, a grating geometry
can be used for SPP excitation. The inset of Fig. 7 shows the
coupling geometry and the main part shows the transmission
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FIG. 7. (Color online) Grating end-fire coupling of photons to
SPPs on graphene. The inset shows the configuration considered
and the main part shows the transmission coefficient β. The grating is
silicon and has period 4.717 μm and depth 2.3 μm. The width (across)
of the graphene region is 39.5 μm, and μc = 0.152 eV, τ = 0.1 ps at
T = 0 K.

coefficient β. At these frequencies σ ′′ > 0 and only a TM SPP
can propagate.

For both the fiber and the grating end-fire coupling methods,
the quantization of the graphene SPPs follows the same method
as that given in the main text, with appropriate consideration
of the asymmetry in the surrounding dielectric media.

2. Prism coupling

For prism coupling of photons to SPPs we consider an atten-
uated total reflection (ATR) setup (Otto configuration [60]) to
provide a momentum match between the incoming photon and
the graphene SPP. We ignore photon reflection from the top of
the prism (which can be mitigated using impedance matching)
and assume that a plane-wave photon field is incident on the
lower air-prism interface at z = d, as depicted in Fig. 4(a).
Total internal reflection will result in an evanescent field in the
space below the prism, which can couple to the SPP evanescent
field. Since the space below the graphene is vacuum, the field
transmitted into that region is also evanescent. For graphene,
prism coupling to SPPs has been considered classically in
Refs. [45–47].

To determine the efficiency of SPP excitation, we consider
the overlap between the photon field and the SPP field. For
the photon field we assume an incident field having parallel
polarization. In Appendix B we quantize the TE and TM
photon modes for the ATR geometry, leading to the quantized
vector potential operator for photons having the form

Âp(r,t) ∝
∫

dω[r(ω)�u(r,ω)�(z − d)

+ τ (ω)�L(r,ω)�(d − z)]â(ω)N−1/2
� (ω) + H.c.,

where N� is a normalization parameter having units of
length, and r(ω) and τ (ω) are field amplitudes. The factors
�u,L(r,ω) are mode functions that depend on the geometry.
The upper-region mode function �u has a standing wave
behavior in z and cannot couple to the graphene plasmons,
so this term can be ignored. The lower-region mode function

�L(r,ω) = �m(r,ω)[�(z) − �(z − d)] + �t (r,ω)�(−z) ex-
hibits evanescent behavior and couples energy into the SPP.

As described in Refs. [42,43], the transmission coefficient
is the overlap integral between the two fields (photon and SPP),
given by

β∗(ω) =
√

1 − |r(ω)|2δ(ω − ω′)δ
(
k − ki

x

)
× 1√

N� (ω)
√

Nφ(ω′)

∫
dz�(z,ω) · φ(z,ω′)∗. (A1)

Here ω (ω′) is the radian frequency of the photon (SPP), ki
x

(k) is the x component of the photon (SPP), Nφ is the SPP
normalization, and the SPP mode functions φ(z,ω′) are given
explicitly in Eq. (11). The form of the ATR mode functions is
given in Appendix B. The transmission coefficient β depends
on the geometrical parameters of the prism-graphene system
(governing the reflection coefficient r and the degree of
mode overlap), and representative results are presented in the
following discussion.

In order to excite SPPs on the graphene surface, the
longitudinal wave number of the incident field, ki

x = k1 sin θi ,
must match the propagation wave number of the SPP given
in Eqs. (8) and (9), where k1 = √

ε1k0 and ε1 is the relative
permittivity of the prism. Therefore, setting kSPP

x = k1 sin θi

leads to the matching frequency ω0 that satisfies

σ (ω0)η = ±2
√

1 − ε1 sin2 θ TE,

σ (ω0)η = ±2√
1 − ε1 sin2 θ

TM,

where θ > θc, the critical angle for total internal reflection
(TIR). However, this θ is only real valued for lossless graphene
(σ = iσ ′′). For the more realistic lossy case one must find a
zero or minimum of the reflection coefficient r at the prism-air
interface.

In Fig. 8(a) we show the reflectance R = |r|2 as a function
of frequency and incidence angle for the TE case for a
prism having ε1 = 1.5, prism-graphene spacing d = 620 nm,
and μc = 1.24 eV. The critical angle for TIR is θc =
sin−1(1/

√
ε1) = 54.736◦ (for θ < θc the SPP is not excited).

Since for the TE mode, which is loosely confined to the
graphene surface, kSPP

x 
 k0, a match is found for ε1 sin2 θ 
 1,
which occurs very close to the critical angle. As a result, the
contour of the coupling angle is a horizontal line near θ 
 θc.

For the TM case at low THz frequencies, Fig. 8(b) shows the
reflectance for ε1 = 1.5, d = 200 μm, and μc = 0.5 eV, and
Fig. 8(c) shows the result for a prism having ε1 = 4. Compared
to the TE case, considerable dispersion is found, with good
matching at low THz frequencies and angles moderately above
the critical angle.

In Fig. 4(b) we show the transmission coefficient β as the
prism-graphene spacing d changes for TE (top horizontal axis)
and TM (bottom horizontal axis) SPPs. The inset shows the TE
reflection coefficient versus frequency near resonance, which
occurs for θ 
 θc and �ω 
 2μc. Although the inset only
shows the TE case, the reflection coefficient can be reduced to
zero for both the TE and TM cases. Despite this, the overlap
integral results in β < 1 since the mode functions outside the
prism region are not identical to those inside the prism. Since
we do not account for reflection from the prism-graphene
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FIG. 8. (Color online) Reflectance for the prism-coupling con-
figuration. (a) Reflectance R = |Er |2 as a function of frequency
and incident angle for the TE case, for a prism having ε1 = 1.5,
prism-graphene spacing d = 620 nm, and μc = 1.24 eV. (b) TM
reflectance for ε1 = 1.5, d = 200 μm, and μc = 0.5 eV. (c) TM
reflectance for ε1 = 3.9, d = 200 μm, and μc = 0.5 eV.

interface in a rigorous manner, our calculation of β is valid
when the EM field energy inside the prism is negligible.

APPENDIX B: ATR FIELDS AND QUANTIZATION

To compute the reflection coefficient in Eq. (A1) for the
ATR geometry, we assume an incident photon field and solve
the plane-wave reflection and/or transmission problem for the
prism-graphene geometry shown in Fig. 4. We then quantize
the resulting fields and obtain the mode functions.

1. TE prism modes

For the TE case (perpendicular polarization), we assume an
incident field in the prism (z � d) given by

Ei(r) = Ei
⊥ŷei(ki

xx+ki
zz)e−iωt + c.c.,

Hi(r) = ki
zx̂ − ki

x ẑ

ωμ1
Ei

⊥ei(ki
xx+ki

zz)e−iωt + c.c.,

where ki
x = k1 sin θi , ki

z = k1 cos θi , and ki
y = 0. The reflected

field in the prism is

Er (r) = Er
⊥ŷei(kr

xx+kr
z z)e−iωt + c.c.,

Hr (r) = kr
z x̂ − kr

x ẑ

ωμ1
Er

⊥ei(kr
xx+kr

z z)e−iωt + c.c.,

with kr
x = ki

x and kr
z = −ki

z. The field in the middle region
(below the prism and above the graphene, 0 � z � d) is

Em(r) = (Em1
⊥ ei(km

x x+km
z z) + Em2

⊥ ei(km
x x−km

z z))ŷe−iωt + c.c.,

Hm(r) = km1
z x̂ − km1

x ẑ

ωμ1
Em1

⊥ ei(km
x x+km

z z)e−iωt

+ −km2
z x̂ − km2

x ẑ

ωμ1
Em2

⊥ ei(km
x x−km

z z)e−iωt +c.c., (B1)

where km
x = ki

x and km
z = √

k2 − (ki
x)2. The transmitted field

(z � 0) is

Et (r) = Et
⊥ŷ ei(kt

xx+kt
zz)e−iωt + c.c.,

Ht (r) = kt
zx̂ − kt

x ẑ

ωμ1
Et

⊥ei(kt
xx+kt

zz)e−iωt + c.c.,

with kt
x = ki

x and kt
z = km

z . Enforcing the boundary conditions
of Eq. (7), we obtain the reflected and transmitted field
amplitudes Ei

⊥, Er
⊥, Em

⊥ , and Et
⊥. The resulting vector potential

has the form

A(r,ω) = r(ω)�u(r,t)�(z−d) + τ (ω)�L(r,t)�(d − z)

+ c.c.,

where �u,L(z,ω) are mode functions and r(ω) = Er
⊥/Ei

⊥ and
τ (ω) = eikr

z dEt
⊥/Ei

⊥ are reflection and transmission parame-
ters, respectively.

2. TM prism modes

For the TM case (parallel polarization), we assume an
incident field

Hi(r,t) = Ei
‖

η1
ŷei(ki

xx+ki
zz)e−iωt + c.c.,

Ei(r,t) = −ki
zx̂ + ki

x ẑ

k1
Ei

‖e
i(ki

xx+ki
zz)e−iωt + c.c.,

where ki
x = k1 sin θi and ki

z = k1 cos θi . The reflected field
(z � d) is

Hr (r,t) = Er
‖

η1
ŷei(kr

xx+kr
z z)e−iωt + c.c.,

Er (r,t) = −kr
z x̂ + kr

x ẑ

k1
Er

‖e
i(kr

xx+kr
z z)e−iωt + c.c.,

with kr
x = ki

x and kr
z = −ki

z. The field in the middle region
(below the prism and above the graphene, 0 � z � d) is

Hm(r,t) =
(

E1
‖

η0
e−ikm

z z + Em2
‖
η0

eikm
z z

)
ŷeikm

x xe−iωt + c.c.,

Em(r,t) = −km
z x̂ + km

x ẑ

k0
Em1

‖ ei(km
x x+km

z z)e−iωt

+ km
z x̂ + km

x ẑ

k0
Em2

‖ ei(km
x x−km

z z)e−iωt + c.c.,

with km
x = ki

x and km
z =

√
k2

0 − (ki
x)2. The transmitted field

(z � 0) is

Ht (r,t) = Et
‖

η0
ŷ ei(kt

xx+kt
zz)e−iωt + c.c.,

Et (r,t) = −kt
zx̂ + kt

x ẑ

k0
Et

‖e
i(kt

xx+kt
zz)e−iωt + c.c.,
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with kt
x = ki

x and kt
z = km

z . Enforcing the boundary con-
ditions of Eq. (7), we obtain the reflected and transmit-
ted field amplitudes. The resulting vector potential has
the form

A(r,ω)

= [r(ω)�u(r,t)�(z − d) + τ (ω)�L(r,t)�(d − z)] + c.c.,

where �u,L(r,t) are mode functions, and r(ω) = Er
‖/E

i
‖ and

τ (ω) = √
kt
z/ki

ze
ikr

z dEt
‖/E

i
‖ are reflection and transmission

parameters.

3. TE and TM prism mode quantization

For either the TE or TM polarization the Hamiltonian can
be evaluated in the same way as for the graphene quantization
described in the main text, leading to

H = ε0L
2
∑

k

Nkω
2
(
At

kA
t∗
k + At∗

k At
k

)
, (B2)

where Nk has units of length, so that the field is quantized
using

At
k →

√
�

2ε0L2ωNk
âk, (B3)

At∗
k →

√
�

2ε0L2ωNk
â
†
k. (B4)

The bosonic annihilation and creation operators âk and â
†
k

satisfy [âk,â
†
k′ ] = δk,k′ . Assuming a continuum of frequencies,

the quantized potential operator is then

Âp(r,t) = 1

2π

∫
dω

√
�

2ε0L2ωN
e−iω(t−x/vg )â(ω) (B5)

× [r(ω)�u(r,ω)�(z − d)

+ τ (ω)�L(r,ω)�(d − z)] + H.c.
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F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera,
P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. Garcı́a de
Abajo, R. Hillenbrand, and F. H. L. Koppens, Nature (London)
487, 77 (2012).

[60] A. Otto, Z. Phys. 216, 398 (1968).

013828-13

http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1063/1.2990753
http://dx.doi.org/10.1063/1.2990753
http://dx.doi.org/10.1063/1.2990753
http://dx.doi.org/10.1063/1.2990753
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1063/1.3005881
http://dx.doi.org/10.1063/1.3005881
http://dx.doi.org/10.1063/1.3005881
http://dx.doi.org/10.1063/1.3005881
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1103/PhysRevB.4.4129
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevLett.101.190504
http://dx.doi.org/10.1103/PhysRevA.79.053845
http://dx.doi.org/10.1103/PhysRevA.79.053845
http://dx.doi.org/10.1103/PhysRevA.79.053845
http://dx.doi.org/10.1103/PhysRevA.79.053845
http://dx.doi.org/10.1038/nphoton.2011.102
http://dx.doi.org/10.1038/nphoton.2011.102
http://dx.doi.org/10.1038/nphoton.2011.102
http://dx.doi.org/10.1038/nphoton.2011.102
http://dx.doi.org/10.1209/0295-5075/92/68001
http://dx.doi.org/10.1209/0295-5075/92/68001
http://dx.doi.org/10.1209/0295-5075/92/68001
http://dx.doi.org/10.1209/0295-5075/92/68001
http://dx.doi.org/10.1063/1.4759319
http://dx.doi.org/10.1063/1.4759319
http://dx.doi.org/10.1063/1.4759319
http://dx.doi.org/10.1063/1.4759319
http://dx.doi.org/10.1063/1.4752465
http://dx.doi.org/10.1063/1.4752465
http://dx.doi.org/10.1063/1.4752465
http://dx.doi.org/10.1063/1.4752465
http://dx.doi.org/10.1364/JOSAB.4.001535
http://dx.doi.org/10.1364/JOSAB.4.001535
http://dx.doi.org/10.1364/JOSAB.4.001535
http://dx.doi.org/10.1364/JOSAB.4.001535
http://dx.doi.org/10.1103/PhysRevA.47.3346
http://dx.doi.org/10.1103/PhysRevA.47.3346
http://dx.doi.org/10.1103/PhysRevA.47.3346
http://dx.doi.org/10.1103/PhysRevA.47.3346
http://dx.doi.org/10.1103/PhysRevA.41.5132
http://dx.doi.org/10.1103/PhysRevA.41.5132
http://dx.doi.org/10.1103/PhysRevA.41.5132
http://dx.doi.org/10.1103/PhysRevA.41.5132
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/PhysRevLett.111.120501
http://dx.doi.org/10.1103/PhysRevLett.111.120501
http://dx.doi.org/10.1103/PhysRevLett.111.120501
http://dx.doi.org/10.1103/PhysRevLett.111.120501
http://dx.doi.org/10.1088/1367-2630/16/4/045014
http://dx.doi.org/10.1088/1367-2630/16/4/045014
http://dx.doi.org/10.1088/1367-2630/16/4/045014
http://dx.doi.org/10.1088/1367-2630/16/4/045014
http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532
http://dx.doi.org/10.1007/BF01391532



