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Analytical expressions are presented for the intraband conductivity tensor of graphene that includes spatial
dispersion for arbitrarily wave-vector values and the presence of a nonzero Fermi energy. The conductivity
tensor elements are derived from the semiclassical Boltzmann transport equation under both the relaxation-time
approximation and the Bhatnagar-Gross-Krook model (which allows for an extra degree of freedom to enforce
number conservation). The derived expressions are based on linear electron dispersion near the Dirac points, and
extend previous results that assumed small wave-vector values; these are shown to be inadequate for the very
slow waves expected on graphene nanoribbons. The new expressions are also compared to results obtained by
numerical integration over the first Brillouin zone using the exact (tight-binding) electron dispersion relation. Very
good agreement is found between the new analytical expressions and the exact numerical results. Furthermore, a
comparison with the longitudinal random-phase conductivity is also made. It is shown analytically that these new
expressions lead to the correct value of the quantum capacitance of a graphene sheet and that ignoring spatial
dispersion leads to serious errors in the propagation properties of fundamental modes on graphene nanoribbons.
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I. INTRODUCTION

Graphene, which is a planar atomic layer of carbon atoms
bonded in a hexagonal structure, is a very promising material
in emerging nanoelectronic and nanoelectromagnetic applica-
tions and is attracting an enormous interest both theoretically
and experimentally; the possible electromagnetic applications
include screens, antennas, interconnects, polarizers, plasmon-
ics, and cloaking.1–11

From an electronic point of view, graphene is a zero-
band-gap semiconductor whose conductivity can be tuned
either by doping or by electrostatic and/or magnetostatic
bias through the electric-field and Hall effects.12 From an
electromagnetic point of view, graphene can be described
as an infinitesimally thin medium characterized by a surface
conductivity; based on a semiclassical description through
the Boltzmann transport equation, a mathematical model for
such a conductivity has been derived in the past, which
also includes the important effects of electrostatic bias and
doping.13 Furthermore, it should be noted that under certain
conditions spatial-dispersion effects may arise, which lead to
a tensorial description of the graphene conductivity.13

Analytical expressions for the elements of the conductivity
tensor have previously been obtained under the so-called low-
q approximation (i.e., through a power series expansion for
qvF � ω, where q = |q| is the amplitude of the spectral wave
number, vF is the Fermi velocity, and ω is the radian frequency
of the electromagnetic field), so the model is expected to be
valid for sufficiently fast waves. In fact, it has been shown that
in these cases (e.g., for surface waves supported by isolated
graphene sheets), for frequencies below the terahertz regime
where interband transitions can be neglected, spatial dispersion
effects can be ignored.13 However, it has recently been shown
that both simple two-dimensional graphene nanowaveguides
and graphene nanoribbons (GNRs) can support extremely slow

fundamental quasitransverse electromagnetic (TEM) modes in
the low-frequency regime.14 In such cases, spatial dispersion
can become important and the low-q conductivity model is
expected to be inaccurate.

In Ref. 13, the Boltzmann transport equation has been
solved for the graphene conductivity tensor in the so-called
relaxation-time approximation (RTA).15 However, as is well
known, the RTA approximation does not enforce charge con-
servation (see, e.g., Refs. 16 and 17, and references therein). If
charge diffusion is included, as in the Bhatnagar-Gross-Krook
(BGK) model,18 a correction term is obtained (also known as
the Mermin correction)16 which can be important in deriving
the quantum capacitance of a graphene sheet, similar to what
has been shown for CNTs.17

In this paper, we derive the semiclassical, spatially dis-
persive intraband graphene conductivity tensor (the dominant
contribution up to tens of THz, ignoring interband transitions)
in the presence of an electric field, harmonic in space and time,
given by E (r,t) = E0e

i(q·r−ωt). We extend previous work in
several ways. We first calculate the conductivity elements via
numerical integration over the first Brillouin zone, based on the
exact (tight-binding) electron dispersion relation. Next, based
on the assumption of linear dispersion near the Dirac points, we
derive approximate analytical expressions for the conductivity
elements, valid at arbitrary wave vector. We compare the RTA
and BGK results, and we show that in order to derive the correct
quantum capacitance of a graphene sheet it is essential to
include spatial dispersion effects in a Mermin-correction/BGK
model. We also compare to the longitudinal quantum random-
phase approximation (RPA) conductivity. Finally, we show
that including spatial dispersion for arbitrary wave-vector
values (including both nonlocality and the tensor character)
in the graphene conductivity at low frequencies is important to
obtain the correct dispersion behavior of the dominant modes
on GNRs—in this case, neither the simple assumption of scalar
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local conductivity, nor the low-q spatial dispersion model, is
sufficient.

The present analysis is based on the Boltzmann transport
equation, which becomes inapplicable when the spatial vari-
ation of the fields becomes comparable to the de Broglie
wavelength of the particles (approximately, q > 2kF, where
kF is the Fermi wave vector). Although this is not a practical
restriction for our purposes, it may be for static-screening
problems where q > 2kF may be of interest.19,20

II. SEMICLASSICAL GRAPHENE INTRABAND
CONDUCTIVITY

As is well known, graphene is characterized by the energy
function ε (k), which reads

ε±(k) = ε±(kx,ky) � ±γ0
w(kx,ky)

1 ∓ s0w(kx,ky)
, (1)

where

w(kx,ky)

=
√

1 + 4 cos

(√
3 a

2
kx

)
cos

(
a

2
ky

)
+ 4 cos2

(
a

2
ky

)
.

(2)

These expressions result from a nearest-neighbor tight-binding
(NNTB) model, with possibly no electron-hole symmetry (in
the case s0 �= 0).21,22 The nearest-neighbor overlap energy γ0

and the overlap integral s0 can be used as fitting parameters
to match first-principles computations or experimental data;
commonly used values are γ0 = 3.033 eV and s0 = 0.129,
respectively.21 Finally, a = √

3 b is the graphene lattice
constant (b = 0.142 nm is the approximate length of the
carbon-carbon bond in graphene), while the upper and lower
signs in Eq. (1) correspond to the electrons in the conduction
(π∗) and in the valence (π ) bands, respectively. We can thus
introduce the electron velocities v+ and v− in the π∗ and π

bands, respectively, as

v± = 1

h̄
∇kε

± (k) . (3)

The electron current density is

J = J|π∗ band + J|π band = Je + Jh

= 2
e

(2π )2

∫∫
BZ

v+ (k) fe (k) d2k

∣∣∣∣
π∗ band

+ 2
(−e)

(2π )2

∫∫
BZ

v− (k) fh (k) d2k

∣∣∣∣
π band

, (4)

where BZ indicates the first Brillouin zone, e is the electronic
charge, while spin degeneracy is taken into account by the fac-
tor 2. The function fe = 1 − fh represents the nonequilibrium
distribution function for electrons.

Starting from the Boltzmann equation for electrons in
the π∗ and π bands together with the BGK model17,18

(which allows an extra degree of freedom with respect to
the usual relaxation-time approximation to enforce the current
continuity equation), a perturbation approach leads to fe =
f (0)

e + f (1)
e and fh = 1 − fe = f

(0)
h + f

(1)
h , where |f (1)

e/h| �

|f (0)
e/h|, so that17

f
(1)
e/h (k) = ihe/h (k) τ−1 − ie

∂f
(0)
e

∂ε
v± (k) · E

ω + iτ−1 − v± (k) · q
, (5)

where τ is a phenomenological electron relaxation time and

f (0)
e (ε) = 1 − f

(0)
h (ε) = 1

1 + e
ε−μ

kBT

(6)

is the electron Fermi-Dirac distribution at equilibrium with
a possibly nonzero chemical potential (Fermi level) μ, due
either to doping or to an external electrostatic bias. Moreover,
kB is the Boltzmann constant, T is the temperature, and

he/h(k) = ∂fe/h

∂ne/h

∣∣∣∣
0

(
ne/h − n

(0)
e/h

)
, (7)

where ne/h is the charge carrier density and n
(0)
e/h is the charge

carrier density at equilibrium, i.e.,

ne/h = 2

(2π )2

∫∫
BZ

fe/h (k) d2k,

(8)

n
(0)
e/h = 2

(2π )2

∫∫
BZ

f
(0)
e/h (k) d2k.

Note that the term involving he/h is absent in the RTA as in
Ref. 17, so that the first term in Eq. (5) leads to diffusion
current associated with the Mermin/BGK correction and the
second term in Eq. (5) leads to drift current associated with
the RTA method. Therefore, from Eqs. (4) and (5), we have

J = Je + Jh = i
eτ−1

2π2

∫∫
BZ

v+ he (k)|π∗band

ω + iτ−1 − v+ · q

− v− hh (k)|πband

ω + iτ−1 − v− · q
d2k

− i
e2

2π2

∫∫
BZ

∂f (0)
e

∂ε

∣∣∣∣
π∗ band

v+v+ · E
ω + iτ−1 − v+ · q

+ ∂f (0)
e

∂ε

∣∣∣∣
π band

v−v− · E
ω + iτ−1 − v− · q

d2k, (9)

where

Je = i
eτ−1

2π2

∫∫
BZ

v+ he (k)|π∗band

ω + iτ−1 − v+ · q
d2k

− i
e2

2π2

∫∫
BZ

∂f (0)
e

∂ε

∣∣∣∣
π∗ band

v+v+ · E
ω + iτ−1 − v+ · q

d2k

= Jdiff
e + Jdr

e (10)

and

Jh = −i
eτ−1

2π2

∫∫
BZ

v− hh (k)|πband

ω + iτ−1 − v− · q
d2k

− i
e2

2π2

∫∫
BZ

∂f (0)
e

∂ε

∣∣∣∣
π band

v−v− · E
ω + iτ−1 − v− · q

d2k

= Jdiff
h + Jdr

h . (11)

The first integrals on the RHS of Eqs. (10) and (11) define the
diffusion currents Jdiff

e/h, while the second integrals define the
drift currents Jdr

e/h.

115429-2



SEMICLASSICAL SPATIALLY DISPERSIVE INTRABAND . . . PHYSICAL REVIEW B 87, 115429 (2013)

A. Drift currents and RTA conductivity

Let us consider first the drift currents Jdr
e/h. Since

∂f (0)
e

∂ε
= − 1

4kBT cosh2
(

ε−μ

2kBT

) , (12)

we have

Jdr
e/h = ie2

8kBT π2

∫∫
BZ

v±v±

cosh2
[

ε±(k)−μ

2kBT

]
(ω + iτ−1 − v± · q)

× d2k · E0e
iq·r

= σ RTA
e/h · E0e

iq·r, (13)

where, explicitly,

σ RTA
e/h = ie2

8kBT π2
Aee/hh (q) (14)

with

Aee/hh(q) =
∫∫

BZ

v±v±

cosh2
[

ε±(k)−μ

2kBT

]
(ω + iτ−1 − v± · q)

d2k.

(15)

Therefore we can write

Jdr = Jedr + Jhdr = σ RTA · E0e
iq·r, (16)

where

σ RTA = σ RTA
e + σ RTA

h . (17)

This is the so-called RTA conductivity, obtained by neglecting
diffusion currents (i.e., he/h = 0).15

B. Diffusion currents and the BGK conductivity

In order to evaluate the diffusion currents Jdiff
e/h, it should be

noted that

he/h(k)|π∗/π band

= ∂fe/h

∂ne/h

∣∣∣∣
0

(
ne/h − n

(0)
e/h

) = ∂f
(0)
e/h

∂μ

∂μ

∂ne/h

∣∣∣∣
0

n
(1)
e/he

iq·r

= ∓∂f (0)
e

∂ε

∣∣∣∣
ε±(k)

∂μ

∂ne/h

∣∣∣∣
0

n
(1)
e/he

iq·r

= ∓∂f (0)
e

∂ε

∣∣∣∣
ε±(k)

(
∂n

(0)
e/h

∂μ

)−1

n
(1)
e/he

iq·r. (18)

Therefore, from Eq. (8), we obtain

∂n
(0)
e/h

∂μ
= 1

2π2

∫∫
BZ

∂f
(0)
e/h

∂μ
d2k

= ∓ 1

2π2

∫∫
BZ

∂f (0)
e

∂ε

∣∣∣∣
ε±(k)

d2k, (19)

so that

he/h (k)
∣∣
π∗/π band = 2π2

Fe/h cosh2
[

ε±(k)−μ

2kBT

] n
(1)
e/he

iq·r (20)

with

Fe/h =
∫∫

BZ

1

cosh2
[

ε±(k)−μ

2kBT

] d2k. (21)

In this way, we have

Jdiff
e/h = ± ieτ−1

2π2

∫∫
BZ

v±he/h (k) |π∗/πband

ω + iτ−1 − v± · q
d2k

= ∓ωede/h (q) n
(1)
e/he

iq·r, (22)

where

de/h (q) = − i

ωτFe/h

×
∫∫

BZ

v±

cosh2
[

ε±(k)−μ

2kBT

]
(ω + iτ−1 − v± · q)

d2k.

(23)

Now we enforce the continuity equation for the total
electron or hole current ∇ · Je/h − iωρe/h = 0. In the Fourier
domain, taking into account that ρe/h = ±ene/h, we have

n
(1)
e/h = ±qxJex

+ qyJey

ωe
(24)

so that

Jdiff
e/h = ∓de/h

(
qxJe/hx

+ qyJe/hy

)
eiq·r. (25)

From Eqs. (9), (16), and (25), and suppressing the eiq·r term,
we have(

1 + dexqx

)
Jex + dexqyJey = σ RTA

exx
E0x + σ RTA

exy
E0y,

(26)
deyqxJex + (

1 + deyqy

)
Jey = σ RTA

eyx
E0x + σ RTA

eyy
E0y,

and(
1 + dhxqx

)
Jhx + dhxqyJhy = σ RTA

hxx
E0x + σ RTA

hxy
E0y,

(27)
dhyqxJhx + (

1 + dhyqy

)
Jhy = σ RTA

hyx
E0x + σ RTA

hyy
E0y.

Equations (26) and (27) are two linear systems of two equations
in two unknowns ({Jex ,Jey} and {Jhx ,Jhy}), respectively. By
solving them, we may finally express the graphene constitutive
relation in the form

J = σ BGK · E0e
iq·r, (28)

where

σ BGK
rs = σ e

rs + σ h
rs , r,s = x,y, (29)

and

σ e/h
xx =

σ RTA
e/hxx

+ qy

(
σ RTA

e/hxx
de/hy

− σ RTA
e/hyx

de/hx

)
1 + (

qxde/hx
+ qyde/hy

) ,

σ e/h
xy =

σ RTA
e/hxy

+ qy

(
σ RTA

e/hxy
de/hy

− σ RTA
e/hyy

de/hx

)
1 + (

qxde/hx
+ qyde/hy

) ,

(30)

σ e/h
yx =

σ RTA
e/hyx

+ qx

(
σ RTA

e/hyx
de/hx

− σ RTA
e/hxx

de/hy

)
1 + (

qxde/hx
+ qyde/hy

) ,

σ e/h
yy =

σ RTA
e/hyy

+ qx

(
σ RTA

e/hyy
de/hx

− σ RTA
e/hxy

de/hy

)
1 + (

qxde/hx
+ qyde/hy

) .

The numerical evaluation of the integrals (15) and (23)
over the 2D Brillouin zone cannot be performed analytically
with the dispersion relation (1), but they can be performed
numerically by discretizing the first Brillouin zone through
nonoverlapping triangles and using Gaussian quadrature rules
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and iterative techniques.23 Results will be presented in a
following section.

III. APPROXIMATE ANALYTICAL EVALUATION OF THE
GRAPHENE CONDUCTIVITY: THE BGK AND RTA

FORMS FOR ARBITRARY q VALUES

From the above formulation, it is possible to obtain
approximate analytical expressions for the conductivity tensor
by using the fact that the Dirac points (which coincide with
the corners of the first Brillouin zone) give the most important
contributions to the involved integrals.24 Actually, this is
strictly correct only when μ = 0 eV; in fact, in general, the
most important contributions come from the points where
ε = μ. When μ �= 0, we do not have isolated points at which
ε (k) = μ and by increasing μ the locus of such points gets
further and further from the Dirac points kDP. However, it
can be shown numerically that the closed-form formulation
derived below gives results with a relative error with respect
to those obtained from Eq. (29) within 4%.

In the neighborhood of a Dirac point kDP, we have a linear
dispersion relation for the energy, i.e.,

ε±(k) � ±h̄vF

√
(kx − kFx)2 + (ky − kFy)2

= ±h̄vF |k − kF|, (31)

where vF = √
3 γ0a/ (2h̄) � 108 cm/s is the electron Fermi

velocity. Starting from Eqs. (10) and (11) and following the
procedure reported in the Appendix, we obtain the closed-form
relation J = σ BGK · E0, where

σ BGK
xx = γ

Iφxx
+ γD�qy

(
Iφxx

qy − Iφyx
qx

)
Dσ

,

σ BGK
xy = γ

Iφxy
+ γD�qy

(
Iφxy

qy − Iφyy
qx

)
Dσ

,

(32)

σ BGK
yx = γ

Iφyx
+ γD�qx

(
Iφyx

qx − Iφxx
qy

)
Dσ

,

σ BGK
yy = γ

Iφyy
+ γD�qx

(
Iφyy

qx − Iφxy
qy

)
Dσ

,

with

γ = i
e2kBT

π2h̄2 ln

{
2

[
1 + cosh

(
μ

kBT

)]}
, (33)

γD = −i
vF

2πωτ
, (34)

and

Dσ = 1 + γD�q2, (35)

where the other symbols are defined in the Appendix. It should
be noted that the presence of the term γD� takes into account
the diffusion process considered in the BGK formulation.
Based on the above formulas, it can analytically be shown
that the conductivity tensor is symmetric, i.e., σ BGK

xy = σ BGK
yx ,

in agreement with the Onsager reciprocity principle.25

It is interesting to note that the conductivity tensor has a
diagonal form in a polar coordinate system. In fact, the matrix

M = 1

q

[
qx −qy

qy qx

]
, (36)

which allows to change rectangular coordinates (x,y) to polar
coordinates (ρ,φ), diagonalizes the conductivity tensor in Eq.
(32), leading to the longitudinal and transverse conductivities,
i.e.,

σ BGK =
[
σ BGK

ρ 0

0 σ BGK
φ

]
, (37)

where

σ BGK
ρ = vF

2πγD (1 − χ ) + vFχ
σ BGK

φ , (38)

σ BGK
φ = γ

2πα

v2
Fq

2
(1 − χ ) , (39)

and

χ =
√

1 − v2
Fq

2

α2
, (40)

with α = ω + iτ−1. It should be noted that both σ BGK
ρ and

σ BGK
φ depend only on q. This implies that, within the limits

of validity of the considered tensor conductivity model, a
graphene sheet is isotropic in the xy plane, i.e., its constitutive
relation relating the electric field and the surface current is
invariant under arbitrary rotations of the sheet in that plane.25

It may also be noted that σ BGK
φ does not contain any

diffusion terms. This may be expected, since the diffusion
current arising in the Mermin-corrected BGK formulation
derives from the enforcement of the conservation of electric
charge, i.e., from the current continuity equation; the latter in
the spectral domain reads q · J = qJρ = ωρ, hence it involves
the radial current only. Therefore σφ obtained in the RTA
formulation would give the same result as Eq. (39). In fact, in
the RTA (i.e., neglecting the terms proportional to γD�), the
conductivity σ BGK reduces to

σ RTA = γ Iφ. (41)

In polar coordinates,

σ RTA
ρ = 1

χ
σ RTA

φ , (42)

σ RTA
φ = σ BGK

φ . (43)

It is interesting to note that for large q values (such
that |α| � |vFq|), the transverse conductivity becomes the
dominant contribution since |σρ | � |σφ|.

IV. APPROXIMATE ANALYTICAL EVALUATION OF THE
GRAPHENE CONDUCTIVITY: THE BGK AND RTA

FORMS FOR LOW-q VALUES

By expanding the σBGK function in Eq. (32) in a Taylor
series with respect to qx and qy we obtain the BGK low-q
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model:

σ BGK
xx � γ

π

α

[
1 + v2

F

4α2

(
3 + i

2

ωτ

)
q2

x + v2
F

4α2
q2

y

]
,

σ BGK
xy � γ

π

α

(
v2

F

2α2

) (
1 + i

1

ωτ

)
qxqy,

(44)

σ BGK
yx � γ

π

α

(
v2

F

2α2

) (
1 + i

1

ωτ

)
qxqy,

σ BGK
yy � γ

π

α

[
1 + v2

F

4α2
q2

x + v2
F

4α2

(
3 + i

2

ωτ

)
q2

y

]
.

By expanding the Iφ function (A18) in a Taylor series with
respect to qx and qy , we obtain the RTA low-q model:

σ RTA
xx = γ Iφxx

� γ
π

α

(
1 + 3v2

F

4α2
q2

x + v2
F

4α2
q2

y

)
,

σ RTA
xy = γ Iφxy

� γ
π

α

(
v2

F

2α2

)
qxqy,

(45)

σ RTA
yx = γ Iφyx

� γ
π

α

(
v2

F

2α2

)
qxqy,

σ RTA
yy = γ Iφyy

� γ
π

α

(
1 + v2

F

4α2
q2

x + 3v2
F

4α2
q2

y

)
.

As expected, expressions (45) are in a perfect agreement with
the RTA conductivity derived in the limit of small q.13

In the absence of spatial dispersion (i.e., q = 0), we have
the scalar conductivity

σ = γ
π

α
, (46)

which coincides with that derived in many other papers.5,12,26,27

As concerns the polar representation (37), for small q

values, it is easy to show

σ BGK
ρ � γ

π

α

[
1 +

(
3

4
+ i

1

2ωτ

)
v2

F

α2
q2

]
, (47)

σ BGK
φ = σ RTA

φ � γ
π

α

(
1 + v2

F

4α2
q2

)
, (48)

while

σ RTA
ρ � γ

π

α

[
1 + 3v2

F

4α2
q2

]
. (49)

When q = 0, we obtain

σρ = σφ = γ
π

α
, (50)

which is again the scalar result obtained ignoring spatial
dispersion.

Finally, the Lindhard/random phase approximation (RPA)
leads to a longitudinal spatially dispersive conductivity,28

σ RPA
ρ = γ

2ωπ

2ωα − v2
Fq

2
. (51)

It should be noted also that the RPA conductivity is a
low-q solution as well, since Eq. (51) is derived under the
assumption vFq � ω.28 By normalizing q with respect to the
free-space wave number k0 = ω/c, the range of validity of
the Lindhard/RPA model can also be expressed as q/k0 �
c/vF � 3 × 102.

V. QUANTUM CAPACITANCE OF A GRAPHENE SHEET

It is natural to define the graphene distributed impedance as
z = Eρ/Jρ = σ−1

ρ . In the low-q approximation, the element
σρ can be written as

σρ = γ
π

α
(1 + a0q

2), (52)

where the coefficient a0 has different expressions in the BGK
and RTA formulations,

aBGK
0 =

(
3

4
+ i

1

2ωτ

)
v2

F

α2
, aRTA

0 = 3

4

v2
F

α2
, (53)

so that

z = 1

σρ

= α

γπ (1 + a0q2)

= 1

i e2kBT

πh̄2(ω+iτ−1)
ln

{
2
[
1 + cosh

(
μ

kBT

)]}
(1 + a0q2)

� πh̄2(1 − iωτ )

e2τkBT ln
{
2
[
1 + cosh

(
μ

kBT

)]} (1 − a0q
2)

= R − iωLk + zC, (54)

where

R = πh̄2

e2τkBT ln
{
2
[
1 + cosh

(
μ

kBT

)]} , Lk = τR. (55)

The capacitance term is

zC = − πh̄2(1 − iωτ )

e2τkBT ln
{
2
[
1 + cosh

(
μ

kBT

)]} a0q
2

= − 1

iωCq
ξ, (56)

where

ξ = 2iω (1 − iωτ )

v2
Fτ

a0q
2 (57)

and

Cq = 2e2kBT ln
{
2
[
1 + cosh

(
μ

kBT

)]}
πh̄2v2

F

(58)

agrees with the expression of the graphene quantum capaci-
tance previously reported.29,30

First of all, it should be noted that the presence of quantum
capacitance is a consequence of including spatial dispersion.
Moreover, the parameter ξ is dramatically different in the BGK
and the RTA models,

ξBGK = −
(

3

2
+ i

1

ωτ

)
iωτ

1 − iωτ
q2,

(59)

ξRTA = −3

2

iωτ

1 − iωτ
q2.

The fundamental difference is that the coefficient ξ , which is
frequency dependent, has a different limit for ω → 0, so that

zBGK → R − iωLk − q2

iωCq
, zRTA → R − iωLk. (60)
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VI. NUMERICAL RESULTS

A. Graphene conductivity

In this section, a comparison among the different graphene
conductivity models is presented for different radian frequen-
cies ω, assuming in all cases τ = 0.5 ps, μ = 0 eV, and
T = 300 K. The conductivity tensor will be represented in
polar coordinates, showing results for σρ and σφ as functions
of the radial wave number q normalized with respect to the
free-space wave number k0.

For clarity, we summarize the different models considered.
For the RTA formulations, there are three conductivity expres-
sions; the one that is expected to be the most accurate over a
wide range of q values is the result from numerical integration
over the first BZ using the exact electron dispersion relation
(1), leading to Eq. (17). The next most accurate formulation
should be the full-q approximation where we assume linear
dispersion (31) throughout the first BZ, leading to the analyt-
ical result (41). And, the least accurate (except for small q

values) is expected to be the low-q analytical approximation
(49) and (48). For the BGK result, which is expected to be more
accurate than the RTA result, we again have three formulations
that parallel the above-mentioned RTA ones; the result from
numerical integration over the first BZ using the exact electron
dispersion relation (1), leading to Eqs. (29) and (30), the
full-q approximation where we assume linear dispersion (31)
throughout the first BZ zone, leading to the analytical result
(37), and the low-q analytical approximation (47) and (48).
We also show the scalar, non-spatially-dispersive result (46)
and also the Lindhard/RPA result (51).

In Fig. 1, the absolute values of σρ and σφ are shown
at ω/ (2π ) = 10 GHz. The various formulations can be
compared with the numerically exact reference result obtained
by integrating over the Brillouin zone (thick blue line). For
both components, the full-q RTA and BGK models are in
excellent agreement with the reference results, respectively.
However, the scalar, non-spatially-dispersive conductivity and
both the low-q RTA and BGK models are accurate only in a
low-q range, as expected; this range is however narrower for
σρ (q < 1000k0) than for σφ (q < 4000k0). Outside the low-q
range, the numerically calculated RTA model for σρ fails as
well, thus showing the importance of the Mermin correction
in modeling the longitudinal response of graphene.

It is interesting to observe that the longitudinal Lind-
hard/RPA formulation models very accurately σρ , also well
outside its expected range of validity q/k0 � 3 × 102.

In Fig. 2, results are shown for σρ and σφ at the considerably
higher frequency ω/ (2π ) = 1 THz. While the full-q formu-
lations remain accurate, the range of validity of the low-q
formulations is reduced with respect to the previous case.
The Lindhard/RPA model loses accuracy for q/k0 > 100, as
expected, but becomes again accurate at high wave numbers
(q/k0 > 1000). In fact, it can analytically be shown that in the
asymptotic limit of large q/k0 values the Lindhard/RPA scalar
conductivity and the BGK full-q expression of σρ converge to
the same result.

For completeness, the real and imaginary parts of σρ and σφ

[computed using Eqs. (29) and (30)] are reported in Figs. 3(a)
and 3(b), respectively, as functions of q/k0 for different values
of ω/(2π ).

10

10

10

10

0 2000 4000 6000 8000 1 10
q /k

|σ | [S]

10

10

0 2000 4000 6000 8000 1 10
q/k

|σ | [S]

(a)

(b)

FIG. 1. (Color online) Absolute values of σρ (a) and σφ (b) as
functions of q/k0 at ω/ (2π ) = 10 GHz.

B. Graphene nanoribbon

In order to show the effects of spatial dispersion in graphene
waveguiding structures, we study the dispersion properties
of the fundamental mode supported by a graphene nanostrip
line, i.e., a graphene nanoribbon (GNR) placed on a grounded
dielectric substrate, as depicted in Fig. 4. In particular, a
graphene strip of width w and of infinite length in the
longitudinal y direction is assumed to be deposited over a
SiO2 substrate of thickness h, characterized by a relative
permittivity εr and placed above a perfectly conducting (PEC)
ground plane. Both the substrate and the ground plane are
assumed to extend infinitely in the xy plane. The parameters of
the structure are chosen as follows: w = 100 nm (two orders
of magnitude larger than the graphene lattice constant a, so
that electronic edge effects can be ignored), h = 500 nm, and
εr = 3.9.

An integral equation for modal current density J =
J0(x) exp(−jqyy) on the GNR is established by enforcing
the constitutive relation (28) on the nanostrip and expressing
the electric field in terms of J through the appropriate dyadic
Green’s functions for a grounded dielectric slab in the Fourier
domain. Such an integral equation is then discretized with the
method of moments, resulting in a linear homogeneous system
whose coefficients depend on the modal wave number qy ; the
latter can then be found through a numerical search for the
zeros of the determinant of the system matrix in the complex
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FIG. 2. (Color online) Absolute values of σρ (a) and σφ (b) as
functions of q/k0 at ω/ (2π ) = 1 THz.

plane (more details can be found in Refs. 31 and 32). It is
worth mentioning that in this formulation the coefficients of
the linear system are expressed as inverse Fourier transforms,
i.e., as integrals with respect to the transverse wave number
qx ; when GNR with submicrometric widths are considered,
the numerical evaluation of such coefficients may require the
evaluation of the graphene conductivity tensor for high values
of qx/k0, thus essentially requiring a representation of the
conductivity tensor accurate in the high-q range. Since in this
formulation the expression of the graphene conductivity in
rectangular coordinates is required, for illustration purposes in
Fig. 5 the real and imaginary parts of the elements σxx , σxy ,
and σyy of the graphene conductivity tensor are reported in the
(qx,qy) plane at ω/ (2π ) = 100 GHz.

In Fig. 6, dispersion and attenuation properties are illus-
trated for the considered nanostrip line in the frequency range
from 1 GHz to 1 THz. In particular, on the bottom horizontal
axis, the modal phase constant Re(qy) is reported, normalized
with respect to the free-space wave number k0; on the top
horizontal axis, the modal propagation length La is reported,
normalized with respect to the modal guided wavelength λg,
where La/λg = Re(qy)/[2π Im(qy)]. The nondispersive result
is obtained using the scalar, q-independent result (46). As it
can be seen, ignoring spatial dispersion leads to dramatic errors
in the computation of the complex wave number qy of the
fundamental mode. In order to point out other effects of spatial
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FIG. 3. (Color online) Real and imaginary parts of σρ (a) and σφ

(b) as functions of q/k0 for different values of ω/ (2π ).

dispersion, in Fig. 7, the amplitude of the y-component Jy of
the modal current distribution on the nanostrip (normalized to
its maximum value through the strip) is reported as a function
of the normalized coordinate x/w at ω/ (2π ) = 100 GHz (it
is worth noting that the longitudinal component Jy is three
orders of magnitude larger than the transverse component
Jx). As can be seen, the almost constant behavior obtained
ignoring spatial dispersion is very different from that obtained
including the correct spatially dispersive behavior. Therefore
the correct inclusion of spatial dispersion in the conductivity

FIG. 4. Graphene nanoribbon over a grounded dielectric substrate.
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FIG. 5. (Color online) Real and imaginary parts of σxx (a), σxy (b),
and σyy (c) as functions of qx/k0 and qy/k0 at ω/ (2π ) = 100 GHz.

model of graphene is mandatory to derive reliable results for
this particular problem.
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FIG. 6. (Color online) Normalized modal phase constant qy/k0

and normalized modal propagation length La/λg for a graphene
nanostrip line with parameters w = 100 nm, h = 500 nm, and
εr = 3.9.
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FIG. 7. (Color online) Normalized amplitude of the longitudinal
component Jy of the modal current distribution as a function of
the normalized abscissa x/w at ω/ (2π ) = 100 GHz using the
nondispersive and the BGK full-q model.

VII. CONCLUSION

This work presents analytical expressions for the semi-
classical intraband conductivity tensor of graphene, which
include spatial-dispersion effects for arbitrary wave-vector val-
ues (within the semiclassical Boltzmann-transport approach).
Such expressions are derived in a rectangular coordinate
system and are shown to give rise to a diagonal tensor in
a polar coordinate system depending only on the radial wave
number, thus clearly revealing the isotropic nature of graphene
despite the tensor representation. Moreover, the elements of the
graphene conductivity tensor, derived under the linear electron
dispersion approximation, are compared with results obtained
by numerical integration over the first Brillouin zone using
the exact (tight-binding) electron dispersion relation showing
an excellent agreement for Fermi energies up to 1 eV. These
new expressions, obtained under the Bhatnagar-Gross-Krook
model (which allows for enforcing charge conservation and
thus modeling diffusion currents), are also shown to lead to the
correct expression for the quantum capacitance of a graphene
sheet. Finally, as a case study, it is shown that ignoring
spatial dispersion in the conductivity model of graphene results
in dramatic errors in the computation of the propagation
properties of graphene nanoribbons.

APPENDIX

We report in this Appendix the derivation of the expressions
(32). By assuming the validity of Eq. (31) over the entire
Brillouin zone, we have

v± (k) = ±vF
k − kF

|k − kF| . (A1)

Upon defining a coordinate system centered at kF (where ε =
0), we may write

v± (k) = ±vF
k
|k| . (A2)
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By using a polar coordinate system for k (i.e., kx = kρ cos φk

and ky = kρ sin φk), from Eqs. (10) and (11), we obtain

Je/h = ±i
eτ−1

2π2

∫∫
BZ

he/h(ε±)v±(kρ,φk)

ω + iτ−1 − v±(kρ,φk) · q
kρ dkρ dφk

− i
e2

2π2

∫∫
BZ

∂f (0)
e

∂ε

∣∣∣∣
ε±

v±(kρ,φk)v±(kρ,φk) · E
ω + iτ−1 − v±(kρ,φk) · q

× kρ dkρ dφk. (A3)

We can now make the change of variable ε = h̄vFkρ . From
Eq. (A3), we thus obtain for the electron current Je (conduction
band, with positive energies) and the hole current Jh (valence
band, with negative energies),

Je/h = ±i
eτ−1

2π2h̄2v2
F

× 2
∫ 2π

0

∫ ±∞

0

he/h (ε) v± (ε,φk)

ω + iτ−1 − v± (ε,φk) · q
ε dε dφk

− i
e2

2π2h̄2v2
F

2
∫ 2π

0

∫ ±∞

0

∂f (0)
e

∂ε

∣∣∣∣
ε

× v± (ε,φk) v± (ε,φk) · E
ω + iτ−1 − v± (ε,φk) · q

ε dε dφk, (A4)

which can also be written as

Je/h = ±i
eτ−1

2π2h̄2v2
F

× 2
∫ 2π

0

∫ +∞

0

he/h (±ε) v± (±ε,φk)

ω + iτ−1 − v± (±ε,φk) · q
ε dε dφk

− i
e2

2π2h̄2v2
F

2
∫ 2π

0

∫ +∞

0

∂f (0)
e

∂ε

∣∣∣∣
±ε

× v± (±ε,φk) v± (±ε,φk) · E
ω + iτ−1 − v± (±ε,φk) · q

ε dε dφk. (A5)

It should then be noted that v− (−ε,φk) = v+ (ε,φk) and
therefore

Je/h = ±i
eτ−1

2π2h̄2v2
F

× 2
∫ 2π

0

∫ +∞

0

he/h (±ε) v+ (ε,φk)

ω + iτ−1 − v+ (ε,φk) · q
ε dε dφk

− i
e2

2π2h̄2v2
F

2
∫ 2π

0

∫ +∞

0

∂f (0)
e

∂ε

∣∣∣∣
±ε

× v+ (ε,φk) v+ (ε,φk) · E
ω + iτ−1 − v+ (ε,φk) · q

ε dε dφk. (A6)

From Eq. (A6), we thus have

J = Je + Jh = i
eτ−1

π2h̄2v2
F

×
∫ 2π

0

∫ +∞

0

[he (ε) − hh (−ε)] v+ (ε)

ω + iτ−1 − v+ (ε,φk) · q
ε dε dφk

−i
e2

2π2h̄2v2
F

2
∫ 2π

0

∫ +∞

0

[
∂f (0)

e

∂ε

∣∣∣∣
ε

+ ∂f (0)
e

∂ε

∣∣∣∣
−ε

]

× v+ (ε,φk) v+ (ε,φk) · E
ω + iτ−1 − v+ (ε,φk) · q

ε dε dφk. (A7)

By replacing

v+(ε,φk) = vF(ux cos φk + uy sin φk) = vFuk, (A8)

we finally have

J = i
eτ−1

π2h̄2vF

∫ 2π

0

∫ +∞

0

[he (ε) − hh (−ε)] uk

ω + iτ−1 − vFuk · q
ε dε dφk

− i
e2

2π2h̄2 2
∫ 2π

0

∫ +∞

0

[
∂f (0)

e

∂ε

∣∣∣∣
ε

+ ∂f (0)
e

∂ε

∣∣∣∣
−ε

]

× ukuk · E
ω + iτ−1 − vFuk · q

ε dε dφk. (A9)

It can be observed that the double integrals in Eq. (A9) are
actually products of single integrals, i.e.,

J = ie

π2h̄2vF

{
τ−1

∫ +∞

0
ε [he (ε) − hh (−ε)] dε

×
∫ 2π

0

uk

ω + iτ−1 − vFuk · q
dφk

− evF

∫ +∞

0
ε

[
∂f (0)

e

∂ε

∣∣∣∣
ε

+ ∂f (0)
e

∂ε

∣∣∣∣
−ε

]
dε

×
∫ 2π

0

ukuk

ω + iτ−1 − vFuk · q
dφk · E

}
, (A10)

which can be expressed as

J = ie

π2h̄2vFτ
DεDφ (q) − ie2

π2h̄2 IεIφ (q) · E0e
iq·r, (A11)

where

Dφ (q) =
∫ 2π

0

uk

ω + iτ−1 − vFuk · q
dφk, (A12)

Iφ (q) =
∫ 2π

0

ukuk

ω + iτ−1 − vFuk · q
dφk, (A13)

Iε =
∫ +∞

0
ε

[
∂f (0)

e

∂ε

∣∣∣∣
ε

+ ∂f (0)
e

∂ε

∣∣∣∣
−ε

]
dε. (A14)

These integrals can now be calculated exactly in closed form.
In particular, we have

Dφx
(qx,qy) = �

(
qx,qy

)
qx, Dφy

(qx,qy) = �
(
qx,qy

)
qy,

(A15)
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where

�(qx,qy) = − 2π

vFq2

(
1 − α√

α2 − v2
Fq

2

)
, (A16)

R(qx,qy) = α + vFqx√
α2 − v2

Fq
2

, (A17)

and α = ω + iτ−1, while q2 = q2
x + q2

y . We also have

Iφxx
(qx,qy) = 2π

v2
Fq

2
yq

2R − αvFqxp
2 − α2p2 (1 − R)

v2
F (α + vFqx) q4

,

Iφxy
(qx,qy) = Iφyx

(qx,qy) = −2πqxqy

× v2
Fq

2R + 2αvFqx + 2α2(1 − R)

v2
F(α + vFqx)q4

, (A18)

Iφyy
(qx,qy) = 2π

v2
Fq

2
xq

2R + αvFqxp
2 + α2p2(1 − R)

v2
F(α + vFqx)q4

,

where p2 = q2
x − q2

y .
It is also simple to show that

Iε = −kBT ln

{
2

[
1 + cosh

(
μ

kBT

)]}
. (A19)

In order to evaluate the Dε function, we need to calculate
first the terms he and hh. We have

he(ε) = ∂fe

∂ne

∣∣∣∣
0

(
ne − n(0)

e

) = ∂f (0)
e

∂μ

∂μ

∂ne

∣∣∣∣
0

n(1)
e eiq·r

= −∂f (0)
e

∂ε

∂μ

∂ne

∣∣∣∣
0

n(1)
e eiq·r (A20)

and

hh (−ε) = ∂fh(−ε)

∂ne

∣∣∣∣
0

(
nh − n

(0)
h

)

= −∂f (0)
e (−ε)

∂ε

∂μ

∂nh

∣∣∣∣
0

n
(1)
h eiq·r. (A21)

Moreover, from

n(0)
e = 2

(2π )2

∫∫
BZ

f (0)
e (ε) d2k

= 2

πh̄2v2
F

∫ +∞

0
f (0)

e (ε) ε dε,

(A22)

n
(0)
h = 2

(2π )2

∫∫
BZ

f
(0)
h (ε) d2k

= 2

πh̄2v2
F

∫ +∞

0
f (0)

e (ε + 2μ)ε dε,

we obtain

∂n
(0)
e/h

∂μ
= ± 2kBT

πh̄2v2
F

ln
(
1 + e

± μ

kBT
)
, (A23)

so that

Dε =
∫ +∞

0
ε[he(ε) − hh(−ε)] dε = πh̄2v2

F

2

(
n(1)

e − n
(1)
h

)
eiq · r.

(A24)

Finally, from the continuity equation

∇r · J = iωρ = iωe
(
n(1)

e − n
(1)
h

)
, (A25)

we have

n(1)
e − n

(1)
h = qxJx + qyJy

ωe
. (A26)

By suppressing the eiq·r term, from Eqs. (A11), (A24), and
(A26), using Eq. (A15) and defining

γD = −i
vF

2πωτ
, (A27)

we obtain

Jx

(
1 + γD�q2

x

) + Jy(γD�qxqy)

= − ie2

π2h̄2 Iε

(
Iφxx

E0x + Iφxy
E0y

)
,

(A28)
Jx(γD�qxqy) + Jy

(
1 + γD�q2

y

)
= − ie2

π2h̄2 Iε

(
Iφyx

E0x + Iφyy
E0y

)
,

which is a linear system of two equations in two unknowns
Jx and Jy . By representing the solution of Eq. (A28) as J =
σ · E0, we finally obtain the tensor elements in Eq. (32).
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3P.-Y. Chen and A. Alù, ACS Nano 5, 5855 (2011).
4G. Lovat, IEEE Trans. Electromagn. Compat. 54, 101 (2012).
5A. Y. Nikitin, F. Guinea, F. J. Garcı́a-Vidal, and L. Martı́n-Moreno,
Phys. Rev. B 84, 161407 (2011).

6J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L.
Koppens, and F. J. Garca de Abajo, ACS Nano 6, 431 (2012).

7P. Liu, W. Cai, L. Wang, X. Zhang, and J. Xu, Appl. Phys. Lett.
100, 153111 (2012).

8A. Y. Nikitin, F. Guinea, F. J. Garcı́a-Vidal, and L. Martı́n-Moreno,
Phys. Rev. B 85, 081405 (2012).

9P. A. Huidobro, A. Y. Nikitin, C. González-Ballestero, L. Martı́n-
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