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Light-matter interactions in conventional nanophotonic structures typically lack directionality. For example,
differently from microwave antenna systems, most optical emitters (e.g., excited atoms/molecules and simple
nanoantennas) exhibit quasi-isotropic dipolar radiation patterns with low directivity. Furthermore, surface waves
supported by conventional material substrates do not usually have a preferential direction of propagation, and
their wavefront tends to spread as it propagates along the surface, unless the surface or the excitation is properly
engineered and structured. In this article, we theoretically demonstrate the possibility of realizing unidirectional
and diffractionless surface plasmon polariton modes on a nonreciprocal platform, namely, a gyrotropic mag-
netized plasma. Based on a rigorous Green’s function approach, we provide a comprehensive and systematic
analysis of all the available physical mechanisms that may bestow the system with directionality, both in the sense
of one-way excitation of surface waves and in the sense of directive diffractionless propagation along the surface.
The considered mechanisms include (i) the effect of strong and weak forms of nonreciprocity, (ii) the elliptic-like
or hyperbolic-like topology of the modal dispersion surfaces, and (iii) the source polarization state, with the
associated possibility of chiral surface-wave excitation governed by angular-momentum matching. We find that
three-dimensional gyrotropic plasmonic platforms support a previously unnoticed wave-propagation regime
that exhibit several of these physical mechanisms simultaneously, allowing us to theoretically demonstrate
unidirectional surface plasmon polariton modes that propagate as a single ultranarrow diffractionless beam. We
also assess the impact of dissipation and nonlocal effects. Our theoretical findings may enable a new generation
of plasmonic structures and devices with highly directional response.
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I. INTRODUCTION

At the interface between certain metallic and dielectric
materials, light can couple to collective oscillations of the
free electrons of the metal, forming a guided wave that is
laterally confined to the interface, known as a surface plasmon
polariton (SPP) [1,2]. Differently from conventional guided
modes in optical fibers and waveguides, SPP modes are sup-
ported by the interface itself, due to a transverse resonance
enabled by the opposite optical properties of the interface
materials. The peculiar nature of such surface modes, arising
from the coupling of electronic and photonic oscillations,
enables field localization at scales much smaller than the free-
space wavelength, far beyond what is typically achievable
with dielectric waveguides, as well as high field enhancement
near the interface.

Since SPP modes on homogeneous surfaces are slow waves
with phase velocity lower than the speed of light in the
dielectric environment, they cannot be excited directly by an
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incident propagating plane wave (they can, however, be ex-
cited indirectly, by facilitating transverse momentum match-
ing through additional dielectric layers or by suitably structur-
ing the surface with a diffraction grating [2]). Conversely, lo-
calized emitters and scatterers at near-field distances from the
metallic surface can directly launch surface modes. Consider,
for example, a nanoemitter with linearly polarized electric-
dipole response, located a short distance above a conventional
plasmonic material that is homogeneous, isotropic, and recip-
rocal (namely, time-reversal symmetry is unbroken). Assum-
ing the linearly polarized emitter is oriented orthogonal to the
interface (inset of Fig. 1), it will excite SPPs that propagate
omnidirectionally along all in-plane angles, as sketched in
Fig. 1(a). This lack of directionality prevents the possibility
of launching surface waves along a predetermined direction,
and of guiding the SPP energy toward a desired target.

To overcome this issue, in recent years large research
efforts have been dedicated to artificial materials and surfaces
with extreme anisotropy, with particular attention devoted to
so-called hyperbolic structures, which are characterized by ef-
fective constitutive-tensor components with opposite signs for
orthogonal electric-field polarizations [3–5]. In other words,
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FIG. 1. Different physical mechanisms that influence the directionality of the excitation and propagation of surface plasmon polaritons
(SPPs). Panels (a)–(h) show qualitative sketches of the typical in-plane SPP pattern (surface-wave intensity in different directions on an
interface) that may be obtained with a specific combination of source polarization (linear or circular), SPP modal dispersion (elliptic or
hyperbolic), and medium properties (reciprocal or strongly nonreciprocal). The inset shows the system configuration under study: a generic
plasmonic material occupying the lower half space (z < 0) forms an interface with a different medium in the upper half space (e.g., free
space), where an electric-dipole source is located. The panels corresponding to linear source polarization assume a z-oriented dipole, whereas
for circularly polarized emitters the plane of circular polarization is indicated by dashed green lines (the dipole rotates in the plane containing
the green line and the z axis). In this work, particularly attention is devoted to panels shaded in blue and red.

a hyperbolic material or surface may behave as a dielectric
or a metal for orthogonal directions of wave propagation. In
this scenario, the modes of the system may exhibit hyperbolic
dispersion, in contrast to the usual circular/elliptic topology of
the dispersion surfaces. By exploiting this property in suitably
designed structures, recent works have indeed demonstrated
the existence of hyperbolic SPP modes, which propagate on
an interface as narrow beams along specific angles deter-
mined by the hyperbolic equifrequency contours (EFCs) of
the dispersion surface [4–7]. However, due to the reciprocal
nature of these platforms and their mirror symmetries, such
hyperbolic modes lack a preferential left-right and up-down
sense of direction, which implies that a linearly polarized
dipole orthogonal to the interface would excite four beams
propagating along the surface, as sketched in Fig. 1(c). Hence,
if point-to-point energy/information transfer is of interest, a
reciprocal hyperbolic platform of this type would not be ideal,
as surface waves are still guided toward unwanted directions.

This issue is clearly rooted in the symmetries of the
system, namely, time-reversal symmetry (equivalent to reci-
procity for dissipationless systems) and mirror symmetries.
Indeed, it is evident that in a reciprocal system, for every
forward-propagating mode, there must exist a backward-
propagating mode with symmetrical modal distribution and
propagation/radiation properties. Therefore, a generic emitter
or scatterer is allowed to excite both the forward and the
backward modes supported by the reciprocal structure (these
modes may be excited with different intensity depending
on the specific properties of the emitter/scatterer, but they
are both allowed to propagate). To intrinsically forbid the
backward mode—for an arbitrary emitter/scatterer—it is
therefore necessary to break Lorentz reciprocity for wave

propagation, which can be done by biasing the system with a
physical quantity that is odd under time reversal, for example,
a magnetic field or a linear/angular momentum.

The design of advanced nonreciprocal platforms is cur-
rently a very active area of research in applied electromag-
netics and photonics, with several important practical impli-
cations [8]. However, as we discuss in the following, breaking
reciprocity is not in itself sufficient for our purposes. Indeed,
only strong forms of nonreciprocity enable true unidirec-
tionality, namely, the absence of a backward mode. As an
example, the emerging class of artificial materials known as
“photonic topological insulators” [9–12] (the photonic ana-
log of quantum Hall insulators in condensed matter physics
[13]) represents a relevant subclass of strongly nonreciprocal
platforms with unidirectional response. Within this context, in
this article we consider another important class of nonrecip-
rocal continuum media, i.e., magnetized gyrotropic plasmas,
which can be practically implemented using certain natural
plasmonic materials, e.g., n-doped semiconductors at THz
and infrared frequencies, such as n-type InSb [14–16], under
moderate static magnetic bias. As demonstrated in this article,
materials of this type may exhibit both weak and strong forms
of nonreciprocity, including topological aspects, accompanied
by elliptic or hyperbolic modal dispersion. Thus, we can
explore the effect of several physical mechanisms on the prop-
agation of directional SPP modes, as depicted in Figs. 1(e) and
1(f), based on a naturally available material platform, without
the need to engineer complex photonic crystals or metama-
terials. We note that an example of asymmetric nonrecipro-
cal light emission under a magnetic bias has been recently
demonstrated experimentally in [17], in which plasmonic
effects were also used to enhance the emission directionality
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(see [18,19] for an overview of different magnetoplasmonic
devices).

Another drastically different strategy to select which sur-
face modes get excited on an interface is to suitably design
the polarization state of the emitter, such that it matches the
properties of the surface modes only in the desired directions.
Indeed, as further discussed in the following sections, the
lateral confinement of a surface mode directly implies that
the mode possesses a transverse component of spin angu-
lar momentum, whose sign only depends on the propaga-
tion direction, namely, on the sign of the linear momentum
[20–23]. Thanks to this property, known as spin-momentum
locking, a circularly polarized emitter would strongly excite
only the SPP modes propagating in directions for which their
transverse spin matches the spin of the excitation, leading
to more directive SPP patterns on the interface, as sketched
in Fig. 1, panels (b), (d), (f), and (h). In other words, this
behavior corresponds to a form of chiral asymmetric exci-
tation of surface modes, which has been recently exploited
to realize spin-dependent unidirectional emission, scattering,
and absorption in reciprocal platforms with transverse light
confinement (plasmonic and dielectric waveguides, and nano-
optical fibers) [24–31].

This type of chiral response is different from spin-
dependent effects in (meta)materials systems with chiral
constitutive parameters (i.e., magnetoelectric coupling) [32].
Indeed, surface modes exhibiting spin-momentum locking do
not require chiral material properties and can be supported
by conventional isotropic materials (e.g., a simple plasmonic
substrate). It is, in fact, the presence of the circularly polarized
emitter that breaks the mirror symmetry of the system and
enables spin-dependent unidirectional effects; conversely, a
linearly polarized emitter would launch surface waves bidi-
rectionally along the surface. It is also clear that the phe-
nomenon of chiral surface-wave excitation is fundamentally
distinct from nonreciprocal surface-wave excitation effects,
as the latter implies that the backward mode actually does
not exist, whereas the former only means that backward and
forward modes can be selectively excited due to their opposite
angular momentum. This distinction is particularly important
for discontinuity problems, where only in the latter case can
no back-reflection occur. As seen in the following, these
two distinct mechanisms may also be combined in suitable
structures, offering additional degrees of freedom to control
and tailor the emitter-SPP interaction. We also note that the
combination of spin-based directionality and hyperbolicity
was recently demonstrated in [33], while the interplay of
nonreciprocity and hyperbolicity was studied theoretically in
[34], but both works focused on waves propagating in the bulk
of a hyperbolic metamaterial, instead of the surface plasmonic
waves considered here.

In this paper, we investigate all the physical effects in-
troduced above based on an exact theoretical formulation
applied to the relevant case of a nonreciprocal plasmonic
substrate illuminated by a generic dipolar emitter. We focus on
a previously unnoticed regime of wave propagation supported
by a three-dimensional magnetized plasma, which enables the
realization of unidirectional and diffractionless surface plas-
mon polaritons. Our investigations reveal an unprecedented
degree of control over the excitation and guiding of SPPs,

not achievable without considering all the degrees of freedom
offered by hyperbolic dispersion, chiral excitation effects, and
nonreciprocity.

II. OVERVIEW OF THEORY

In this section, we provide a brief overview of our theoret-
ical approach to study the interaction between an electromag-
netic emitter with arbitrary polarization state and a generic
gyrotropic medium. No restrictive assumptions are made on
the properties of this medium, which can be dissipative (lossy)
and dispersive. The equations governing the electrodynamics
of the system can be written in compact form as

N · f − i
∂g
∂t

= iJ, (1)

where the six-vector f = [E H]T contains the electric
and magnetic fields, g = [D B]T the electric displace-
ment and magnetic induction fields, and J = [je jm]T the elec-
tric and magnetic current densities. The vector fields f and g
are related by constitutive relations, which may be expressed,
in the frequency domain, in the form of a material matrix
M. Throughout the paper we assume and suppress a time-
harmonic dependence e−iωt for all the fields. For a generic
nonmagnetic anisotropic medium, we have

g = M · f, M =
(

ε(r, ω) 0
0 μ0I

)
. (2)

The matrix N in (1) is a linear operator containing the spatial
derivatives appearing in Maxwell’s equations,

N =
(

0 i∇ × I3×3

−i∇ × I3×3 0

)
. (3)

The frequency-domain dyadic Green’s function of the sys-
tem (spatial impulse response of the system) is given by the
solution of Eq. (1) for an ideal electromagnetic point source,

(N − ωM) · G = iI6×6δ(r − r0), (4)

where r is the observation point, r0 is the source point, and

G =
(

GEE GEH

GHE GHH

)
(5)

is a 6 × 6 dyadic (or second-rank tensor) with 3 × 3 compo-
nents Gα,β , α, β = E, H.

We are interested in studying the problem of surface-wave
excitation by a localized emitter above a substrate or stratified
medium (as in the inset of Fig. 1). Assuming an electric
point dipole is located in a homogeneous half space, z > 0,
above a generic planar structure, the electromagnetic field in
this region is the superposition of the incident field radiated
by the source (primary field), and the field scattered by
the substrate (secondary field). The electric Green’s function
associated with the primary field is given by (−iωε0)Ginc

EE =
(∇∇ + k2

0I)�0, where �0 = eik0r/4πr. For a classical dipole
with electric dipole moment γ , the scattered electric Green’s
function Gs

EE is related to the scattered electric field by Es =
−iωGs

EE · γ , which can also be expressed in the form of a
plane-wave expansion corresponding to the following spatial
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Fourier integral (Sommerfeld integral) [2]:

Es =
∫∫

dkxdky
e−p0(z+z′ )

(2π )22p0
eik‖·(r−r′ ) C(ω, k‖) · γ

ε0
, (6)

where k‖ = kxx̂ + kyŷ is the in-plane wave number, p0 =√
k2
‖ − k2

0 , k0 = ω/c, and

C(ω, k‖) =
(

I‖ + ẑ
ik‖
p0

)
· R(ω, k‖)

· (ip0k‖̂z + k2
0I‖ − k‖k‖

)
(7)

with I‖ = x̂̂x + ŷ̂y. The matrix R(ω, k‖) in Eq. (7) is the
reflection matrix that links the tangential components of the
fields reflected by the substrate to the corresponding incident
fields (see Appendix A for additional details).

Considering a dipolar emitter, at an arbitrary position and
with arbitrary polarization state, Eq. (6) allows calculating,
exactly, the field distribution above a generic nonmagnetic
anisotropic substrate. In particular, the poles of the integrand
of (6) correspond to the discrete spectrum of the eigenmodes
supported by the considered structure, for example the SPP
modes on a metallic-dielectric interface.

The theoretical formulation above is rigorous and exact;
however, to get more physical insight into this problem, a
simpler approximate formulation may be developed by as-
suming that the main radiation channel of the dipolar source is
represented by the excitation of a single guided surface mode.
Under this assumption, which is typically valid in the cases
of interest, it can be shown that the radiation intensity in a
certain direction (power radiated by the dipole per unit of
angle, i.e., U (ψ ) = dPrad/dψ , with dψ the angular sector of
observation) is given by (see [35] and Appendix B)

U (ψ ) ≈ ω2

16π

1

|∇kω(k)|
1

C(k)
|γ∗ · Ek(z0)|2, (8)

where the angle ψ is measured from the +x axis in the xy
plane, Ek(z0) is the modal electric field at the location z0 of
the source, and C(k) is the curvature of the equifrequency
contour ω(k) = ω∗ of the modal dispersion function at a given
frequency ω∗ (e.g., for a circular contour with radius |k|,
we have C(k) = 1/|k|). Equation (8) gives the approximate
in-plane radiation pattern of the dipole, corresponding to the
in-plane SPP patterns sketched in Fig. 1. This equation reveals
that the SPP pattern can be controlled in two ways. The first is
by engineering the dispersion function of the relevant surface
mode, namely, by controlling (a) the angular dependence of
the group velocity, |∇kω(k)|, and/or (b) the local curvature
C(k) of the equifrequency contour. As mentioned in the Intro-
duction, this can be done by playing with the anisotropy and
nonreciprocity of the wave-guiding structure [for example, a
hyperbolic dispersion curve exhibits flat asymptotic regions
with C(k) ≈ 0 that lead to very directive radiation patterns].
The second way is by tailoring the polarization of the dipolar
source, which controls the coupling factor |γ∗ · Ek(z0)|2. If a
structure is isotropic (and therefore reciprocal), only this latter
option is available to control the SPP pattern.

In the following, we use these theoretical formulations
to investigate how generic dipolar emitters interact with a
nonreciprocal plasmonic substrate. Most importantly, we thor-
oughly study how (i) the topology of the modal dispersion

surface and (ii) the emitter’s polarization state provide the
necessary degrees of freedom to control the excitation and
guidance of unidirectional and diffractionless SPPs.

III. GYROTROPIC MAGNETIZED PLASMA AS A MODEL
NONRECIPROCAL SYSTEM

The electromagnetic system under consideration is com-
posed of a homogeneous nonreciprocal material half space
occupying the region z < 0 covered by an isotropic material
in the region z > 0, where an emitter is located, as in the inset
of Fig. 1.

As a relevant example of a homogeneous nonreciprocal
substrate, we consider a gyrotropic material with nonsymmet-
ric permittivity tensor ε = ε0(εt It + εaŷŷ + iεgŷ × I), where
It = I − ŷŷ, which can be realized as a magnetized plasma
with bias magnetic field along the y axis. Interestingly, it has
been recently shown that under certain conditions, continuum
gyrotropic materials of this type, with no intrinsic periodicity
but with broken time-reversal symmetry, can be understood
as examples of topological photonic materials [36–43]. In the
present work, however, we do not focus on the topological
properties (Chern invariants, etc.) of magnetized plasmas;
instead, we consider this material platform as a model system
for studying both strong and weak forms of nonreciprocity,
and elliptic or hyperbolic model dispersion.

We assume that the elements of the permittivity tensor of
the gyrotropic medium follow the classical dispersion model
of a lossy magnetized free-electron gas [44]:

εt = 1 − ω2
p(1 + i�/ω)

(ω + i�)2 − ω2
c

, εa = 1 − ω2
p

ω(ω + i�)
,

εg = 1

ω

ωcω
2
p

ω2
c − (ω + i�)2 , (9)

where ωp is the plasma frequency, � the collision rate associ-
ated with damping, ωc = −q|B0|/m the cyclotron frequency,
q = −e the electron charge, m the effective electron mass, and
B0 the static magnetic bias. The cyclotron frequency is either
positive or negative depending on whether B0 is oriented along
the +y or −y direction, respectively. As an example, certain
n-doped semiconductors, such as n-type InSb, have a plasma-
like response consistent with (9) when subject to a static
magnetic bias [14–16]. However, we would like to stress that
our discussion and considerations in the following sections
may qualitatively apply to other nonreciprocal platforms.

A homogeneous three-dimensional magnetized plasma
supports several bulk modes of different character (see also
Appendix C). The band diagram of these bulk modes is shown
in Fig. 2 for different directions of propagation defined by the
angle ψ with respect to the +x axis. For ψ = 0◦ (propagation
normal to the bias) there are three bands, as shown in Fig. 2(a).
The first and third bands correspond to transverse-magnetic
(TM) modes (Hx = 0), whereas the second band corresponds
to a transverse-electric (TE) mode (Ex = 0). The other panels
of Fig. 2 show how the bulk bands evolve as the angle ψ

is varied. The longitudinal field component of the modes
gradually vanishes until the modes become TEM for ψ = 90◦
(propagation along the bias). For angles ψ > 0◦, a fourth band
appears at low frequencies.
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FIG. 2. Band diagram (density plots) for the bulk modes of
a magnetized plasmonic material with bias along the y axis, for
different propagation directions defined by the angle ψ with respect
to the +x axis (see Fig. 1): (a) ψ = 0◦, (b) ψ = 30◦, (c) ψ = 60◦, and
(d) ψ = 90◦. The cyclotron frequency is set to ωc/ωp = 0.22, where
ωp is the plasma frequency. kp is the free-space wave number at ωp.
The white horizontal strip indicates the band gap between TM-like
modes. For each panel, the inset provides a zoom around the band
gap.

If we ignore the TE-like modes, we note that the TM-like
bands exhibit a common band gap as the angle is varied, near
the plasma frequency ω/ωp = 1, as indicated by the white
horizontal strip in Fig. 2. The higher and lower frequency
limits of this band gap are given, respectively, by

ωH = 1
2

(√
4ω2

p + ω2
c + |ωc|

)
(10)

and

ωL =
√

ω2
c + ω2

p. (11)

As mentioned in the Introduction, when a plasma-like
isotropic and reciprocal medium is interfaced with a dielectric
medium, TM surface waves are allowed to propagate on the
interface, associated with surface plasmon polariton modes.
Also in the case of a nonreciprocal magnetized plasma inter-
faced with a different medium (interface parallel to the bias
axis), TM SPP waves may emerge on the interface, but the
dispersion of these modes may be drastically different with
respect to the reciprocal case. In the following, we thoroughly
study the propagation properties of such SPP modes excited
by linearly and circularly polarized dipole sources near the
surface of a magnetized plasma. We consider different fre-
quency ranges where SPPs can propagate: (i) below the TM
bulk-mode band gap, (ii) within the band gap, and (iii) above
the band gap. We find that SPP modes exhibit qualitatively
different properties in these frequency ranges and, only under
specific conditions, unidirectional and diffractionless surface
modes can be obtained.

We would also like to note that a more accurate model
of a plasmonic material should include the effect of nonlo-
cality (spatial dispersion) for the metal permittivity [45,46].
However, we show in the Supplemental Material [16] that
the results and conclusions of our paper would be essentially
unchanged if considering a nonlocal Drude model instead
of a local one, as nonlocal effects become important only
for very large wave numbers, which are strongly affected by
realistic levels of dissipation. The impact of nonlocality on
wave propagation is also strongly dependent on the specific
material and configuration under consideration (for example,
nonlocal effects would be negligible for gas plasmas [16]).

In addition, we note that the impact of material dissipation
and the constraints imposed by passivity should always be
considered carefully when studying terminated unidirectional
channels (e.g., a cavity fed by a one-way input channel)
to avoid incorrect predictions and thermodynamic paradoxes
[47,48].

IV. LINEARLY POLARIZED EMITTER

We first consider the case of an electric-dipole emitter
oscillating linearly in the direction normal to the plasmonic
substrate, γ = γzẑ. In this case, the dipole itself does not
break the continuous rotational symmetry around the z axis;
hence, if the system was not biased (i.e., reciprocal), the dipole
radiation, and the resulting SPP pattern, would necessarily be
symmetrical in the xy plane [Figs. 1(a) and 1(c)]. The presence
of the bias along the y axis clearly breaks this symmetry, deter-
mining an increase in the directivity of the dipole emission and
SPP pattern [Figs. 1(e) and 1(g)]. The resulting SPP spatial
profile, however, largely depends on the allowed angles of
propagation of the surface modes, which is determined by the
shape of the SPP dispersion function in momentum space, at
a given excitation frequency, as discussed below.

A. Frequency within and above the bulk-mode band gap:
Asymmetric elliptic-like dispersion

When the frequency ω of the emitter is within the TM
bulk-mode band gap or at higher frequencies (ω > ωL > ωp),
a magnetized plasma layer may support SPP modes on its
surface. However, since the surface waves in this configura-
tion are fast waves, with phase velocity larger than the speed
of light in vacuum, they tend to lose energy in the form of
leaky-wave radiation; therefore, in order to suppress radia-
tion leakage and realize bound surface-wave propagation, we
consider an opaque isotropic material above the interface, as
sketched in Fig. 3. As an example, we consider an interface
between a magnetized plasma with ωc/ωp = −0.22 (biased
in the −y direction) and an isotropic metallic cover with
εm = −2 [49]. The left-column panels of Fig. 3 show the
evolution of the momentum-space equifrequency contours
(EFCs) of the dispersion function for the supported SPP mode
at different frequencies (red dashed lines). Further details on
the dispersion equation of these SPP modes are provided in
Appendix D.

As seen in Fig. 3, the EFCs are always more or less
asymmetric with respect to the in-plane wave vector kx, cor-
responding to the direction orthogonal to the bias, which is a
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FIG. 3. Surface modes on an interface between a magnetized
plasmonic material and an opaque (metallic) isotropic material, as
sketched in the inset on top. Left column: Equifrequency contours in
kxky space (red dashed lines) for the dispersion function of the TM
SPP modes supported by the structure in the inset. The magnetized
plasma has cyclotron frequency ωc/ωp = −0.22, and the isotropic
material has permittivity εm = −2. Three different frequencies ω/ωp

have been considered, within [(a)] and above [(c), (e)] the bulk-mode
band gap. The colors of the density plots correspond to the magnitude
of the integrand in Eq. (6) (brighter colors mean higher intensity),
indicating which portion of the equifrequency contour contributes
more strongly to SPP excitation for the chosen source: a dipolar
emitter linearly polarized along the z axis and located a distance
d = 0.5c/ωp above the surface. The red arrows indicate the main
directions of energy flow (i.e., SPP group velocity). Right column:
SPP patterns in the xy plane, corresponding to each equifrequency
contour on the left, for the same linearly polarized dipolar emitter.
The SPP patterns represent the amplitude of the field |Es

z|, calculated
exactly with Eq. (6), at a fixed radial distance 1.2λ0 from the source
(where λ0 is the free-space wavelength for each panel). In each panel,
the fields are normalized to their maximum value.

clear indication of nonreciprocal surface-wave propagation. In
a low-loss anisotropic medium/surface, the direction of energy
flow is determined by the group velocity, which, differently
from the isotropic case, does not necessarily coincide with the
direction of phase flow determined by the wave vector k‖ =
(kx, ky). Since the group velocity is defined as the gradient of
the dispersion function, vg = ∇k‖ω(k‖), the direction of the
group-velocity vector and, therefore, of the SPP energy flow is
necessarily orthogonal to the equifrequency contour ω(k‖) =
ω∗, at a given frequency ω∗. This direction is indicated in
Fig. 3 by the red arrows, whereas the colors of the density
plots indicate which portion of the equifrequency contour
contributes more strongly to surface-wave propagation for the
considered excitation [the colors correspond to the magnitude
of the integrand in Eq. (6)]. The corresponding in-plane SPP
patterns around the dipolar source are shown on the right of
each EFC panel in Fig. 3.

When the frequency of the emitter is within the bulk-mode
band gap, ωL < ω < ωH , a unidirectional SPP is supported by
the material interface, with the main direction of propagation
toward the positive x axis, whereas zero energy propagates in
the opposite direction, as shown in Figs. 3(a) an 3(b) [similarly
to the sketch in Fig. 1(e)]. For all frequencies within the band
gap, the EFC is qualitatively similar, yielding unidirectional
SPP propagation along the +x axis with moderate directivity.
Figures 3(c) and 3(d) show the case of emitter frequency near
the upper edge of the band gap ω ≈ ωH (slightly above it): the
EFC of the forward-propagating mode becomes more curved,
which determines a broadening of the SPP pattern, and a
backward-propagating mode emerges, producing nonzero en-
ergy propagation toward the negative x axis (the zero of the
SPP profile in this direction transforms into a minimum). As
the frequency is further increased, the forward- and backward-
mode EFCs tend to become more and more similar and merge
into a quasisymmetric ellipse, as shown in Fig. 3(e). As a
result, the in-plane SPP pattern in Fig. 3(f) is only slightly
asymmetric. Finally, for frequencies much higher than the
band gap (ω � ωH ) the EFC becomes a circle (not shown
here) corresponding to isotropic reciprocal SPP propagation.

These results indicate that the surface of the magnetized
plasma supports a strong form of nonreciprocity within the
bulk-mode band gap, in the sense that not only is surface-wave
propagation asymmetric along the x axis, but the surface
modes are also inherently unidirectional, with a zero of the
SPP pattern in the −x direction. As mentioned above, the
unidirectionality of these SPP modes existing within the band
gap has been recently connected to certain nontrivial topolog-
ical properties of the biased plasma, which make the SPPs
inherently robust to continuous perturbations of the surface,
as extensively discussed in [36–42]. Conversely, weak nonre-
ciprocity is obtained at frequencies above the band gap, with
an SPP pattern that is asymmetric, but not unidirectional. In
all the cases studied in this section, however, the “directivity”
of the SPP beam launched on the surface is low (namely, the
width of the main lobe of the SPP pattern is large), which is
due to the elliptic-like shape of the EFCs in momentum space.
As discussed in the next section, much higher directivity can
be achieved at frequencies below the bulk-mode band gap,
where the EFCs of the surface modes are drastically different.
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FIG. 4. Surface modes on an interface between a magnetized
plasmonic material and a transparent isotropic material (free space),
as sketched in the inset on top. The figure is similar to Fig. 3, but
for two frequencies below the bulk-mode band gap: (a), (b) ω/ωp =
0.47, and (c), (d) ω/ωp = 0.75. The magnetized plasma has cy-
clotron frequency ωc/ωp = 0.9. The linearly polarized dipolar emit-
ter is located a distance d = 0.05c/ωp above the surface. Left
column: Equifrequency contours for the SPP modes (red dashed
lines), overlapped to density plots indicating which portion of the
equifrequency contour contributes more strongly to SPP excitation
(brighter colors) for the chosen source, as in Fig. 3. Right columns:
Corresponding SPP patterns on the xy plane.

B. Frequency below the bulk-mode band gap:
Unidirectional semihyperbolic dispersion

When we operate below the bulk-mode band gap, i.e.,
ω < ωL, surface modes can still be supported on the interface
between the magnetized plasma and an isotropic medium. In
this case, we consider again an interface parallel to the xy
plane, but the isotropic medium above the plasma is taken
to be free space, as sketched in Fig. 3. In this case the SPP
modes are slow waves, with phase velocity lower than the
vacuum speed of light; hence, they do not radiate even though
the structure is open.

The EFCs at two different frequencies below the band
gap are shown in Fig. 4, left panels. We note that the EFC
is drastically different compared to the cases studied in the

previous section: the EFC is a single hyperbolic-like contour,
strongly asymmetric along the x axis. As in Fig. 3, the colors
of the density plots indicate how strongly different portions
of the equifrequency contour contribute to SPP propagation
for the considered excitation. It is therefore evident that the
dominant contribution comes from large values of in-plane
wave vector k‖, which corresponds to the asymptotic region
of the hyperbolic-like EFC (the intensity of this contribution
tails off at much larger values of k‖, as discussed in [16]).
Thus, most of the energy coupled into the SPPs propagates
in the same direction determined by the normal to these
asymptotes, as indicated by the red arrows in Fig. 4. This
behavior produces extremely directive surface-wave beams,
which propagate—essentially without diffraction—only to-
ward the positive x axis, as seen in the SPP patterns in Fig. 4,
right panels. The angle of propagation of these unidirectional
ultranarrow diffractionless beams can be controlled by vary-
ing the excitation frequency, with a wider angle between the
beams at lower frequencies [Fig. 4(a)].

Interestingly, it can be shown (see, e.g., [50–52]) that for
a magnetized plasma interfaced with vacuum, there exists a
specific frequency range in which these unidirectional semi-
hyperbolic SPPs are supported, with upper and lower bounds,
ω+ and ω−, defined by

ω± = 1
2

( ± ωc +
√

2ω2
p + ω2

c

)
. (12)

Furthermore, the dispersion relation of the asymptotic regions
of the hyperbolic SPPs (the dominant contribution to the
emitter-surface interaction) can be approximated as 2ω(k‖) =
ωccos(ψ ) +

√
2ω2

p + ω2
c [1 + sin2(ψ )], with ψ representing

the angle between the in-plane SPP wave vector k‖ and the
+x axis. The frequencies considered for the two examples of
unidirectional semihyperbolic SPPs in Fig. 4 indeed lie within
the range [ω−, ω+], and their large-wave-number behavior is
consistent with this approximate dispersion relation.

We would like to stress that the propagation properties
obtained here are drastically different compared to conven-
tional reciprocal hyperbolic surfaces [4–7]. In the nonrecipro-
cal scenario considered here, we obtained two unidirectional
ultranarrow beams propagating along the surface, instead of
the usual four symmetric beams in the reciprocal case [as
sketched in Figs. 1(c) and 1(g)]. Even more interesting would
be the ability to excite a single ultranarrow beam; however,
this would require breaking the symmetry of the system under
parity transformation (mirroring) with respect to the x axis.
To achieve this without breaking the transverse invariance
of the surface and without introducing chiral material prop-
erties (magnetoelectric coupling and, more generally, bian-
isotropy [32]), the only available option is to play with the
emitter polarization, consistently with Eq. (8), as discussed
below.

V. CIRCULARLY POLARIZED EMITTER: CHIRAL
SURFACE-WAVE EXCITATION

In this section, we investigate the possibility of realizing
unidirectional SPP excitation by suitably engineering the po-
larization state of the dipolar source, such that also the mirror
symmetry of the entire system (source and material structure)
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FIG. 5. SPP patterns in the xy plane on the surface of a non-
magnetized plasma, excited by a dipolar emitter with (a) linear
polarization γ = ẑ, and (b), (c) circular polarization, γ = x̂ + iẑ and
γ = x̂ − iẑ, respectively. The SPP patterns represent the amplitude
of the field |Es

z|, calculated exactly with Eq. (6), at a fixed radial
distance λ0 from the source (where λ0 is the free-space wavelength).
Intensities are normalized to the linear case in (a). The emitter is
located a distance d = λ0/20 above the interface and oscillates at
frequency ω/ωp = 0.55.

is broken, in addition to the broken time-reversal symmetry
due to the applied static bias. In particular, by considering
emitters that are circularly polarized on specific planes, we
obtain a form of chiral SPP excitation that is fundamentally
distinct from nonreciprocal forms of excitation; hence, it
provides an additional degree of freedom in designing the
emitter/SPP interaction.

To better understand the physical mechanism of this chiral
emitter-SPP interaction, consider a simpler case in which the
magnetic bias has been turned off, and a dipolar emitter inter-
acts with the plasma-vacuum interface at a frequency ω/ωp =
0.55. In this scenario, the nonmagnetized plasma is simply
a reciprocal isotropic material with εt = εa = −2.3, εg = 0
[given by Eq. (9)], which supports reciprocal SPPs when
interfaced with a dielectric medium (in this case, vacuum).
Let us consider first a dipolar source with linear polarization
normal to the interface. In this case there is no preference
in the coupling with forward or backward modes; hence,
as seen in Fig. 5(a) [similarly to Fig. 1(a)], the SPPs are
launched isotropically, propagating along the interface (real
in-plane wave vector) and decaying exponentially normal to
the interface (imaginary out-of-plane wave vector), as ex-
pected. Interestingly, the fact that the wave vector has real
and imaginary components along orthogonal directions, as in
any evanescent wave, directly implies that the electric field
has a longitudinal component in addition to the transverse
component (which can be understood from the transversality
condition, E · k = 0, applied to an evanescent wave in free
space). In addition, the longitudinal and transverse field com-
ponents have a quadrature phase relation (i.e., ±π/2 phase
difference) with the sign depending on whether the wave is
propagating forward or backward in a given direction. The
resulting longitudinal rotation of the elliptically polarized
electric field vector, as the wave propagates, indicates that the
surface wave carries transverse spin angular momentum, as
recently recognized in [21–23]. This transverse spin can be
written as [22]

S = Re(k) × Im(k)

[Re(k)]2
, (13)

FIG. 6. Schematic of the relevant quantities involved in SPP
excitation/propagation: group velocity vg (red arrows; direction of
SPP energy flow), linear momentum k (blue arrows; direction of
SPP phase flow if real, and of evanescent decay if imaginary), and
transverse spin angular momentum S (green arrows; normal to the
plane of rotation of the electric field) for a plasmonic surface mode.
Two cases have been considered: (a) nonmagnetized reciprocal
plasma (isotropic bidirectional surface waves), and (b) magnetized
nonreciprocal plasma (semihyperbolic unidirectional surface waves,
i.e., below-the-gap surface modes), interfaced with vacuum. The
vectors in panel (b) refer to the dominant large-k asymptotic region
of the hyperbolic equifrequency contour in Fig. 4.

which depends only on the direction of propagation of
the evanescent wave, and not on the polarization state. As
sketched in Fig. 6(a), a +x-propagating SPP and a −x-
propagating SPP have equal and opposite transverse spins.
Thus, the spin angular momentum of the incident field (i.e.,
the emitter radiation) can be used to excite, selectively, only
the surface waves with transverse spin that matches the spin
of the incident field (angular-momentum matching), thereby
selecting the direction of the launched surface waves ac-
cording to Eq. (13). This behavior is general, not limited
to plasmonic interfaces, as any guided surface mode with
evanescent tails possesses transverse spin and exhibits spin-
momentum-locked propagation [21–23].

To further understand this behavior from a different view-
point, consider the source coupling term in Eq. (8), which, for
a surface mode in the quasistatic limit, can be approximated as
|γ∗ · Ek(0)|2 ≈ |γ∗ · (ik̂‖ − ẑ)|2 [50–52], consistent with the
aforementioned fact that the electric field is elliptically polar-
ized (k̂‖ indicates the direction of the in-plane wave vector). If
we consider a circularly polarized emitter, γ ∝ κ̂ + iẑ, where
κ̂ indicates a direction in the xy plane, then |γ∗ · Ek(0)|2 ≈
1 + cos(ψ − φ), with k̂‖ · κ̂ = cos(ψ − φ), where ψ is the
angle formed by the in-plane modal wave vector and +x
axis, and φ indicates the polarization plane of the circularly
polarized source (dashed green line in Fig. 1) with respect to
the +x axis. Thus, because of spin-momentum locking, the
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FIG. 7. Elliptic-like SPP patterns in the xy plane on the surface
of a magnetized plasma, excited by a dipolar emitter, with linear
or circular polarization: γ = ẑ (blue line), γ = +x̂ + iẑ (black line),
and γ = −x̂ + iẑ (red line). All other parameters are the same as in
Fig. 3(b).

best coupling is always for a mode with in-plane wave vector
k̂‖ parallel to the in-plane electric-dipole moment, i.e., parallel
to κ̂. Conversely, the worst coupling (zero/minimum of the
SPP pattern) is when k̂‖ and κ̂ are antiparallel.

A linearly polarized emitter can be interpreted as the
combination of a right-handed circularly polarized (RCP) and
a left-handed circularly polarized (LCP) emitter, with equal
and opposite values of spin angular momentum (and equal and
opposite κ̂). According to the discussion above, each sense
of rotation gets coupled to either the forward- or backward-
propagating mode depending on its spin direction. To further
confirm this effect, the SPP patterns produced by circularly
polarized emitters are calculated separately and plotted in
Figs. 5(b) and 5(c) [similarly to the sketch in Fig. 1(b)]. It
is clear that, depending on the spin of the incident light, either
the forward or backward mode is preferentially excited. How-
ever, from this example it is also evident that reciprocal chiral
coupling is not sufficient to realize unidirectional ultranarrow
SPP beams: the SPP pattern exhibits a shallow minimum
instead of a zero in the backward direction [compare with
Fig. 3(a)], and the main SPP beam is broad. This can be
overcome by combining chiral excitation and nonreciprocal
effects, as discussed in the following.

A. Frequency within the bulk-mode band gap: Unidirectional
elliptic-like surface waves

We now study the effect of the emitter polarization on
the excitation of SPPs on a magnetized plasma, when the
excitation frequency lies within the bulk-mode band gap.
The parameters of the system are the same as in Fig. 3(b),
and the excitation frequency is ω/ωp = 1.05. Figure 7 shows
the in-plane SPP pattern for different emitter polarization
states: linear polarization, γ = ẑ (blue line), and circular
polarizations of opposite handedness, γ = x̂ + iẑ (black line)
and γ = −x̂ + iẑ (red line). For a linearly polarized dipolar
emitter normal to the surface, the SPP profile is the same
as in Fig. 3(b): a unidirectional beam with broad angular
response, exhibiting a zero in the backward direction, as

discussed above. Instead, for a circularly polarized dipolar
emitter with γ = x̂ + iẑ in the xz plane, the incident field
would couple more efficiently with a backward-propagating
mode due to angular-momentum matching; however, back-
ward propagation is forbidden in this nonreciprocal medium;
therefore, the overall energy coupled into the SPP modes is
smaller than in the linear case (a weak forward-propagating
mode is still excited). Conversely, for a circularly polarized
dipolar emitter with γ = −x̂ + iẑ in the xz plane, the incident
field couples more efficiently with a forward-propagating
mode, which is the allowed direction of propagation on this
nonreciprocal surface. In this case, due to angular-momentum
matching between dipolar emitter and forward-propagating
SPP, combined with the intrinsic directional preference of
the nonreciprocal system, we obtain a much stronger SPP
mode launched toward the +x axis, as clearly seen in Fig. 7
(red line) [similarly to Fig. 1(f)]. The polarization of the
emitter indeed provides an additional degree of freedom to
control the excitation of surface modes on a nonreciprocal
platform.

B. Frequency below the bulk-mode band gap: Unidirectional
ultranarrow hyperbolic surface waves

As discussed in Sec. IV B, for an interface between magne-
tized plasma and air, when the excitation frequency is within
the range [ω−, ω+], the SPP equifrequency contour has a
unidirectional semihyperbolic shape, which implies that the
interface supports two unidirectional ultranarrow SPP beams,
propagating at a frequency-dependent angle with respect to
the +x axis. Figure 6(b) depicts the dominant SPP group-
velocity vector vg, together with bundles of vectors for linear
momentum k, and transverse spin angular momentum S of
the dominant waves. The vector S is orthogonal to k, which
in turn is mostly orthogonal to vg for a semihyperbolic EFC
as in Fig. 4. Hence, the transverse spin of one of the two
excited SPP beams is mostly parallel to the group velocity,
namely, to the direction of energy flow, whereas the second
SPP beam has transverse spin mostly antiparallel to the group
velocity, as indicated in Fig. 6(b). In this unusual scenario, the
effect of emitter polarization is shown in Fig. 8. Panels (a) and
(b) compare the SPP pattern produced by circularly polarized
dipolar emitters of opposite handedness, with γ = −x̂ + iẑ
and γ = x̂ + iẑ, respectively. In this case, the incident field
generated by the emitter with γ = −x̂ + iẑ, whose spin has
positive y component, couples strongly with the two unidirec-
tional SPP beams, whose transverse spins also have positive y
component [see Fig. 6(b)]. Conversely, the incident field from
the emitter with polarization state γ = x̂ + iẑ couples more
weakly to the unidirectional SPP beams, as seen in Fig. 8(b).
Yet, except for a difference in intensity, these SPP patterns
look similar to the ones in Fig. 4 for a linearly polarized
dipole.

Finally, we consider again a dipolar emitter with circular-
polarization state, but we now tilt the plane of circular polar-
ization with respect to the y axis. In this way, we are able to
completely mismatch (misalign) the spin angular momentum
of the incident light with respect to the transverse spin of
only one of the two beams. As a result, the beam with
completely mismatched spin does not get excited by this
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FIG. 8. Semihyperbolic SPP patterns in the xy plane on the
surface of a magnetized plasmonic material, excited by a dipolar
emitter at frequency ω = 0.7ωp, with different circular-polarization
states: (a) γ = −x̂ + iẑ, (b) γ = x̂ + iẑ, (c) γ = cos(φ)x̂ + sin(φ)ŷ +
iẑ, and (d) γ = cos(φ)x̂ − sin(φ)ŷ + iẑ. The SPP patterns represent
the amplitude of the field |Es

z|, calculated exactly with Eq. (6), at
a fixed radial distance 0.7λ0 from the source (where λ0 is the free-
space wavelength). The emitter is located in vacuum, at a distance
d = 0.05c/ωp above the magnetized plasma. The plasma cyclotron
frequency is ωc/ωp = 0.9. The angle considered in panels (c) and
(d) is φ = 60◦, for this specific example. The intensities of the SPP
patterns are all normalized by the same value. Panels (e) and (f)
show the electric-field intensity distributions of the launched semi-
hyperbolic SPP beams, corresponding to the cases in panels (a) and
(d), respectively, obtained via full-wave simulations performed with
CST Microwave Studio [54]. We considered the same parameters as
in our exact Green’s function calculations, except for the inclusion
of moderate dissipation in the plasmonic material, defined by a
collision frequency �/ωp = 0.003. An animation of the simulated
time-harmonic electric field, for the case in panel (f), is included in
the Supplemental Material [16].

emitter, while the other beam is launched efficiently. This is
possible thanks to the fact that the transverse spins of the

two beams are oriented in sufficiently different directions,
as sketched in Fig. 6(b). As seen in the SPP patterns in
Figs. 8(c) and 8(d), by playing with the plane of polariza-
tion of the dipolar source, defined by the angle φ, we can
deliberately select only one of the beams, while the other one
is almost completely suppressed [similarly to Fig. 1(h)]. By
leveraging nonreciprocal effects, hyperbolic dispersion, and
angular-momentum matching (chiral coupling), this strategy
enables truly unidirectional excitation of surface plasmons,
forming a single ultranarrow beam that propagates—without
diffraction—on the surface of the structure [53]. Furthermore,
the angle of this unidirectional diffractionless beam can be
controlled by varying the intensity of the bias or the frequency
of the excitation. Particularly striking is the comparison of the
delta-function-like SPP patterns in Figs. 8(c) and 8(d), with
the isotropic or quasi-isotropic SPP patterns obtained with
conventional reciprocal plasmonic structures (Fig. 5).

To further verify these results, we have performed full-
wave numerical simulations using commercial software [54].
For the cases of the vertical linearly polarized dipole and
tilted RCP dipole considered in Figs. 8(a) and 8(d), we show
in Figs. 8(e) and 8(f) the simulated field-intensity distribu-
tion, near the source, above a slab of magnetized plasma
(biased in the +y direction, and slightly lossy). These results
clearly confirm that only one, unidirectional, ultranarrow,
SPP beam is launched on the surface, propagating with little
diffraction at an angle dictated by the semihyperbolic EFC
at the excitation frequency, in striking contrast with the be-
havior of SPPs on any conventional plasmonic platforms.
No energy flows toward the negative x axis because of the
inherent unidirectionality of this nonreciprocal platform (see
also [16] for the impact of nonlocality on this unidirectional
response). In [16], we have also included an animation of the
electric-field distribution, corresponding to Fig. 8(f), which
reveals the peculiar rotation of the electric-field vector that
produces a component of spin angular momentum along the
main direction of energy flow (differently from the direction
of phase flow), which is responsible for enabling this form
of chiral coupling between circularly polarized emitters and
semihyperbolic surface waves on a nonreciprocal plasmonic
platform.

VI. CONCLUSION

In summary, in this article we have provided a compre-
hensive theoretical study of surface plasmon polariton modes
on a nonreciprocal plasmonic platform, namely, a gyrotropic
magnetized plasma. Using a rigorous approach based on
the exact three-dimensional Green’s function of the system,
we have systematically studied all the available strategies to
control the excitation and propagation of unidirectional SPP
modes, including (i) the impact of strong and weak forms of
nonreciprocity; (ii) the elliptic-like or hyperbolic-like nature
of the modal dispersion surfaces, which strongly influences
the directivity of the launched SPP wavefront; and (iii) the
impact of the polarization state of the dipolar source, which
may be used to realize a form of chiral excitation of sur-
face waves governed by angular-momentum matching. Most
importantly, we have discovered a previously unnoticed wave-
propagation regime supported by homogeneous nonrecipro-
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cal plasmas, characterized by two unidirectional semihyper-
bolic propagation channels with distinct spin-polarized prop-
agation properties. This finding allowed us to theoretically
demonstrate unidirectional and diffractionless surface plas-
mon polaritons, which propagate as ultranarrow beams on
the two-dimensional surface of a nonreciprocal plasmonic
structure.

While our results directly apply to magnetized plasmas
and plasmonic materials, the generality of concepts such as
nonreciprocity, hyperbolic dispersion, transverse spin, and
chiral coupling suggests that the physical insight and general
predictions offered by this paper may also qualitatively apply
to surface waves supported by other classes of nonreciprocal
(meta)materials. We believe that our theoretical findings may
open up drastically new opportunities for controlling the
excitation and guiding of surface waves, with great practical
potential for several applications that benefit from directional
wave propagation, including on-chip point-to-point optical
communication and energy transfer, subdiffraction imaging,
and enhanced quantum light-matter interactions.

ACKNOWLEDGMENTS

F.M. acknowledges support from the National Science
Foundation (NSF) through Grant No. 1741694, and the Air
Force Office of Scientific Research (AFOSR) through Grant
No. FA9550-19-1-0043. M.S. was partially funded by Fun-
dação para a Ciência e a Tecnologia through Grants No.
PTDC/EEITEL/4543/2014 and No. UID/EEA/50008/2019.

APPENDIX A: REFLECTION MATRICES AND
SCATTERED ELECTRIC FIELD

As discussed in Sec. II of the main text, the calculation
of the scattered electric field Green’s function Gs

EE requires
determining a reflection matrix that relates the tangential
fields reflected by the considered structure to the incident
fields. For a gyrotropic material half space interfaced with an
isotropic material, as considered in the main text, by imposing
the continuity of the tangential fields at the interface, we can
write the reflection matrix in terms of the admittance matrices
(further details are provided in [40,50]):

R(ω, k‖) = (Y0 + Yg)−1 · (Y0 − Yg), (A1)

where

Y0 = 1

ik0 p0

(−p2
0 + k2

x kxky

kxky −p2
0 + k2

y

)
, (A2)

with p2
0 = k2

x + k2
y − k2

0 , and

Yg =
(

�1k2
t,1

k0

�2k2
t,2

k0
�1kxky+iγz,1(θ1−1)ky

k0
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k0

)

×
(

kx + iγz,1�1 kx + iγz,2�2

θ1ky θ2ky

)−1

, (A3)

with

�i = iεgk2
0

k2
0εt − (

k2
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t,i
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t,i
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, (A4)

and
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. (A5)

The admittance matrices Yg and Y0 connect the tangential
electric field to the tangential magnetic field for the gyrotropic
and isotropic half spaces, respectively.

We then consider a generic, elliptically polarized, dipo-
lar emitter with electric dipole moment of the form γ =
±cos(φ) x̂ + sin(φ)ŷ + iαẑ, where the angle φ is measured
with respect to the +x axis, indicating the deviation of the
polarization plane from the xz plane. For the component of
the scattered electric field normal to the material interface, Es

z,
the integrand in Eq. (6) then becomes

C(ω, k‖) · γ |z = ±cos(φ)J31
(
k2

0 − k2
x

) + J32(−kykx )

+ sin(φ)
[
J31(−kxky) + J32

(
k2

0 − k2
y

)]
+ iα[J31(ip0kx ) + J32(ip0ky)], (A6)

where J31 = i(kxR11 + kyR21)/p0, J32 = i(kxR12+kyR22)/p0,
and Ri j, i, j = 1, 2, are the elements of the reflection matrix
in Eq. (A1). For α = 1, Eq. (A6) gives the scattered field by a
circularly polarized emitter with polarization plane rotated by
an angle φ from the xz plane. For a linearly polarized emitter

along the z axis, the above equation reduces to C(ω, k‖) ·
γ |z = [J31(ip0kx ) + J32(ip0ky)].

APPENDIX B: DIPOLE RADIATION NEAR A
WAVE-GUIDING STRUCTURE: ROLE OF THE
EQUIFREQUENCY-CONTOUR CURVATURE

The normal n̂ to the equifrequency contour of the relevant
mode determines the direction of the group velocity, and
hence of the power flow. Consider two closely spaced points
k0 and k1 on the equifrequency contour separated by a small
arc with length dl . Let n̂0 and n̂1 be the corresponding normal
vectors, directed along the angular directions ψ0 and ψ1 with
respect to the +x axis in the xy plane. Thus, the power
carried by modes with the wave vector in the arc with length
dl is launched toward a sector with an angular amplitude
determined by dψ = ψ1 − ψ0. From [35], considering for
simplicity a single mode, the radiation intensity can be written
as

U (ψ0) ≈ ω2

16π

1

|∇kω(k)| |γ
∗ · Ek(z0)|2 dl

|dψ | . (B1)
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Using now dψ = ψ1 − ψ0 
 sin(ψ1 − ψ0) 
 ẑ · (n̂0 × n̂1)
and n̂1 = n̂0 + dn̂

dl dl , we obtain |dψ |
dl = |ẑ · (n̂0 × dn̂

dl )|. From
the Frenet-Serret formulas (for a curve in the xy plane, i.e.,
with no torsion) we know that dn̂

dl = ±C t̂, where C is the
curvature of the equifrequency contour, and t̂ is the vector
tangent to the contour (the sign ± depends on the orientation
of the curve). From this, we get |dψ |

dl = |ẑ · (n̂0 × C t̂)| = |C|.
Using this result in (B1), we obtain Eq. (8).

APPENDIX C: BULK MODES OF A
THREE-DIMENSIONAL NONRECIPROCAL

PLASMONIC MEDIUM

We derive here the exact dispersion equation for the bulk
modes of a gyrotropic plasma biased along the y axis (see also,
e.g., [40]). A plane wave in this medium satisfies Maxwell’s
equation, with ∇ × E = iωμ0H and ∇ × H = −iωε0ε · E,
where ε is the plasma permittivity tensor. The homogeneous
wave equation for the electric field in a generic anisotropic
material can be written in momentum domain (∇ → ik) as

k(k · E) − k2E + k2
0ε · E = 0, (C1)

where k0 = ω/c is the free-space wave number. We then write
the electric field in the form E = α1(k × ŷ) + α2kt + α3ŷ,
where kt = kxx̂ + kzẑ is the transverse wave number with
respect to the bias direction. By substituting this expression
in Eq. (C1), we find that nontrivial (i.e., nonzero) solutions of
the homogeneous wave equation should satisfy the dispersion
equation:

k4
0

[
εa

(
ε2

t − ε2
g

)] − k2
0

{[ − ε2
g + εt (εt + εa)

]
k2

t + 2εtεak2
y

}
+ (

k2
t + k2

y

)(
εt k

2
t + εak2

y

) = 0, (C2)

which implicitly defines the dispersion function, ω(k), of
the bulk modes supported by the magnetized plasma. Fur-
thermore, if we consider bulk-mode propagation along an
arbitrary direction, defined by the angle ψ with respect to
the +x axis, i.e., ky = k sin(ψ ), kt = k cos(ψ ), the dispersion
equation can be rewritten as

k4
0

[
εa

(
ε2

t − ε2
g

)] − k2
0

{[−ε2
g + εt (εt + εa)

]
cos(ψ )2

+ 2εtεasin(ψ )2
}
k2 + k4[εt cos(ψ )2+εasin(ψ )2] = 0. (C3)

The bulk-mode band diagrams for different angles ψ are
shown in Fig. 2 of the main text.

APPENDIX D: DISPERSION EQUATION
OF THE SPP MODES

Consider a magnetized-plasma half space interfaced with
an isotropic-medium half space at z = 0. Due to the trans-
lational symmetries of the system, the modal fields in the
region z ≷ 0 vary as eikxx and eikyy along the interface. In the
gyrotropic region, the fields can be written as a superposition
of two plane waves, modal solutions in the bulk of the gy-
rotropic medium, with wave vector components ki = kt,i +
kyŷ, with kt,i = kxx̂ + kz,iẑ (i = 1, 2). Surface modes decay
exponentially away from the interface, so we set kz,i = −iγz,i

such that Re(γz,i ) > 0. For this plane-wave superposition, the
electric field can be written in the form

E = (�1k1 × ŷ + kt,1 + θ1kyŷ)A1eγz,1z

+ (�2k2 × ŷ + kt,2 + θ2kyŷ)A2eγz,2z, (D1)

where the variation along x and y is omitted, and Ai (i = 1, 2)
are expansion coefficients. The corresponding magnetic field
can be found using H = k × E/ωμ0. Similarly, we can write
a generic field in the isotropic region as follows:

E = −[B1k0 × ẑ + B2k0 × (k0 × ẑ)]e−p0zωμ0H

= −
[

B1k0 × (k0 × ẑ) − B2
ω2

c2
εd (k0 × ẑ)

]
e−p0z,

(D2)

where k0 = kxx̂ + kyŷ + ip0ẑ, p0 =
√

k2
x + k2

y − εdω2/c2,

and Bi (i = 1, 2) are expansion coefficients. By imposing
electromagnetic boundary conditions (matching the tangential
fields) at the interface, we get the following system of equa-
tions (see also, e.g., [40]):⎛⎜⎜⎜⎜⎝

kx + iγz,1�1 kx + iγz,2� ky
kx ip0c

ω

θ1ky θ2ky −kx
kyip0c

ω

�1 �2 kxip0
−εd kyω

c

−�1k2
t,1 −�2k2

t,2 kyip0
εd kxω

c

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A1

A2

B1

B2
ω
c

⎞⎟⎟⎟⎠ = 04×1,

(D3)

where �i = �ikxky + iγz,i(θi − 1)ky, i = 1, 2. By setting the
determinant equal to zero, one finds the dispersion equation of
the SPP modes supported by a planar homogeneous interface
between a gyrotropic magnetized plasma and an isotropic
medium.
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