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An analysis of leaky-wave dispersion phenomena
in the vicinity of cutoff using complex

frequency plane singularities

(eorge W. Hanson and Alexander B. Yakovlev

Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee

Abstract. In this paper we analyze characteristics of the dispersion function for
leaky-wave modes in the vicinity of cutoff for several representative
waveguiding structures. Our principal purpose is to demonstrate that in the
vicinity of leaky-wave cutoff in open-boundary waveguides (in the spectral-gap
region), dispersion behavior is controlled by the presence of branch points in the
complex frequency plane. A similar situation occurs for the ordinary modes of
homogeneously filled, perfefetly conducting cylindrical waveguides. These
closed waveguides admit to simple analysis, leading to an explicit dispersion
function which indicates frequency domain branch points. For open-boundary
waveguides, the presence of frequency domain branch points is obscured by the
necessity of numerically solving an implicit dispersion equation. A set of
sufficient conditions is provided here which defines these branch points in a
unified manner for both open and closed waveguides. Identification of these
points allows for rapid determination of important and interesting regions in
both the frequency and wavenumber planes and leads to increased understanding
of dispersion behavior, especially in the case of dielectric loss. Examples are
shown for several waveguiding geometries to demonstrate the general nature of

the presented formulation.

1. Introduction

Leaky waves on open-boundary waveguides
have been of interest for a long time [Marcu-
vilz, 1956; Tamir and Oliner, 1963], from both a
theoretical and prdctical standpoint. The main
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utility of using leaky waves is to provide a con-
cise and compact form, in restricted spatial re-
gious, for the fields produced by a source in the
presence of a waveguide that admits leaky-wave
solutions. Leaky modes are usually implicated
in a steepest-descent representation for the rele-
vant integrals of a source-excited open-boundary
waveguide. The literature in this area is exten-
sive; several representative publications are by
Blok et al. [1984], Barkeshli et al. [1990], Jack-
son and Oliner [1988], and Collin [1991].

Other than steepest-descent representations,
leaky-mode expansions are described by Carpen-
tier and dos Santos [1985, 1984] and Tesler and
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Fichmann [1978], among others. A particu-
larly relevant formulation is provided in a
series of papers by Haddon [1986, 1987a, b,
1989}, which served as the motivation for this
work. Haddon’s technique concerns transient
elastic-wave phenomena, yet the relevant im-
plicit dispersion relation is similar to those en-
countered in electromagnetic wave problems. Us-
ing this formulation, the transient elastic wave
is computed over a deformed contour in the fre-
quency plane, with the spatial inversion com-
puted using proper and improper modes. The
continuous radiation-mode component (branch
cut integral in the transverse transform plane) is
completely eliminated using this method. Duffy
[1994] later implemented this method for elec-
tromagnetic transverse electric {TE) line source
excitation of a grounded dielectric slab. In the
above mentioned set of papers, identification of
frequency domain branch points was crucial for
implementation of the method.

Another related area that has received consid-
erable attention lately is the topic of leaky waves
supported by printed transmission lines [Oliner,
1987a; Shigesawa et al., 1988, 1991, 1995: Bagby
et al., 1993; Nghiem et al., 1996]. Open printed
transmission line structures support space-wave
leaky modes, which are used in antenna applica-
tions [Oliner, 1987b]. Currently, there is much
interest in surface-wave leaky modes, which can
lead to undesirable coupling, cross talk, and en-
ergy loss in a printed transmission line system.
It has been found that the onset of surface-
wave leakage (or leaky-wave cutoff ) occurs in the
spectral-gap region and that dispersion behavior
in the spectral-gap region is significantly altered
by the presence of dielectric loss [Shigesawa et
al., 1993]. This leaky-wave cutoff point (split-
ting point in the spectral-gap region, where sev-
eral dispersion curves join together) for a lossless
structure is identified as a fold point by Yakovlev
and Hanson[1997], wherein a set of defining con-
ditions which describe this point is presented.
Qualitative normal forms which describe the dis-
persion behavior in the spectral-gap region are
also presented.
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In this paper, some frequency-plane singu-
larities of the dispersion function for several
guided-wave structures are examined. Moti-
vated by symmetry conditions, it is shown that
the previously mentioned fold point also iden-
tifies a frequency-plane branch point, residing
on the real-frequency axis for lossless structures,
at which frequency various branches of the dis-
persion function join together. Another type
of branch point is also suggested by symme-
try, leading to branch points in the complex fre-
quency plane. This second type of branch point
also satisfies the general conditions for the fold
point, and so it is seen that the general fold point
conditions are suflicient for both types of branch
points. Theoretical and numerical results will be
presented for several waveguiding structures.

2. Formulation

Consider a two-dimensional waveguiding struc-
ture, invariant along the waveguiding direction,
taken here to be the z axis, The waveguid-
ing media will be assumed isotropic, although
the following results will apply to more general
classes of media. In order to study the discrete
modes which can be supported by the structure,
Maxwell’s equations are Fourier transformed
temporally (¢ < w) and along the waveguid-
ing axis (# < k). The transformed equations
are combined to form a homogeneous set of
Helmholtz equations, which are then solved sub-
ject to appropriate boundary conditions. Equiv-
alently, although with a change in interpreta-
tion, solutions of the same boundary valie prob-
lem can be sought for a prescribed e/(“t=%2) de-
pendence. FEither method yields an equation
to determine the characteristic spectrum of dis-
crete modes that the waveguide is capable of
supporting, written here as

(1)

It will be assumed here that H : C% — C'is
a smooth analytic function of the two complex
variables (x,w). The dispersion function for dis-
crete modes is obtained as the solution of (1),

H{k,w)=0.
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generally in the form k,(w), m = 1,2,3,.... Tt
is generally impossible to determine the disper-
ston function analytically, excepting a few sim-
ple cases, for example, a homogeneously filled,
perfectly conducting cylindrical waveguide. It is
shown in the following that certain symmetries
in equation (1) lead naturally to the occurrence
of frequency domain branch points of the disper-
sion spectrum K, (w).

The considered class of problems will be pla-
narly layered geometries of infinite extent, open
or closed vertically, with or without perfectly
conducting, infinitely thin strips, This class in-
cludes multilayered slab waveguides and mul-
tilayered, multiconductor printed transmission
line geometries, among others. Examination
of the implicit dispersion equation (1) for such
structures leads to two observations. The first
observation is that if & is a root of the eigen-
value equation (1), —« is also a root of the same
equation:

(2)

It is clear that this condition will hold for any
waveguiding structure, invariant along the waveg-
uiding axis, composed of reciprocal media.

The second observation is that for real-valued
material parameters (lossless media) and
w=Re{w} or w=Im{w}, if & is a root of the
eigenvalue equation (1), £:x* are also roots of
the same equation:

H(k,w) = H(-k,w)=0.

H(k,w)= H(k*,w) =0
H(-k,w) = H(—r*\w)=0

(3)

where £x* are complex conjugates of 4-x. The
fact that complex roots occur in conjugate pairs
is well known for shielded structures and can
be observed for the considered class of problems
by examination of the characteristic function H.
The proof of (3) for the specific case of multi-
layered slab waveguides is the subject of Tamir
[1967]. It is clear that if the branches (s, —x)
and (x,x*) meet in the complex x plane for
some complex w, that value of w may represent
a branch point which separates various branches

805

of the dispersion function. The idea is to identify
the frequencies w for which branches (x, —«) join
together, and similarly for (x,*), and to pro-
vide conditions under which those frequencies
are branch points of the dispersion function.

Accordingly, consider a point in the frequency
plane w = wp at which (x, —«) solutions of (1)
become equal, ie., k{wg) = —k(wo) = 0. As-
suming that (k,—k) are first-order zeros of (1)
and become a second-order zero at wg prompts
the condition

H(0,00) = H,(0,w0) = 0. (4)

Since we have two equations for the one complex
variable, it suffices to determine wy by solution
of H(0,wo) = 0.

Considering a point w = w; at which (x, x*)
solutions of (1) become equal, which again repre-
sents the coalescing of two first-order zeros of (1)
to a second-order zero, leads to

(5)

While (4) and (5) define second-order zeros of H,
these points are not necessarily branch points.
Considering the point (ks,ws) to represent ei-
ther (0,wp) or (ky1,w;) for (4) and (5), respec-
tively, it is found that the nonzero condition

§ = Hy(kg,wp)Hys(kpy00y) # 0

H(&],wl) = H,‘;(m,wl) =0.

(6)

is sufficient to guarantee wy is a branch point. In
the following we will consider the branch point
which separates (—x,x) branches to be of wy
type and those which separate (k, x*) {or their
analytic continuation) to be of w,; type.

It should be noted that equations (5) and
(6), which define the branch point wy in the w
plane, are the same as the definition of the fold
point {Golubitsky and Schaeffer, 1985; Seydel,
1994} found in the (x,w) plane. The occurrence
of a fold point in the spectral-gap region for
conductor-backed coplanar strips has been dis-
cussed by Yakouvlev and Hanson [1997). It should
be noted that in the event of material loss, com-
plex conjugate solutions no longer exist, but two
complex modes (those which become conjugate
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modes when loss is removed) still coalesce at a
complex fold point, given by (5) and (6). In the
following, no notational difference will be made
between the lossy and lossless cases.

To show that the fold point with coordinates
(k7,wy) in the (x,w) plane determines a branch
point wy in the w plane, a Taylor series ex-
pansion in the vicinity of (ks,wy) can be ap-
plied. However, it necessitates a truncation of
higher-order terms in the expansion, resulting in
an approximation of the obtained results. An-
other way of showing the connection between
the fold point and the branch point utilizes the
normal form for the fold point obtained in the
local neighborhood, as defined in [Golubitsky
and Schaeffer, 1985; Seydel, 1994; Yakovlev and
Hanson, 1997)

(k= 5)* + (0 —wy)
(k= 57)" — (w—wy)

6>0,

§<0 (7)

such that the normal form (equation (7)) quali-
tatively represents the dispersion function
H(k,w) near {xs,wy).

Consider the case when & > 0, resulting in the
following representations for k{w):

Kw) =K+ Jwy —w w<ws, (8)
k(w) = Kkf F jfw — wy w>wp. (9)

Equation (8) represents a real-valued parabola
equation, Im{x(w)} = 0. Equation (9) is equiv-

alent to the form
Re{s(w)}=ry, Im{r(w)}==+/w—wy

which defines a straight-line equation for

Re{x(w)} and a parabola equation for Im{x(w)}.

Since locally,

Kw) = Ky £\ —(w —wy)

it would seem to identify branch points at w =
w; which cause branches of the x function to
meet, It should be noted that x; = 0 indi-
cates the branch point w = wy = wq separating
{k,—x), and k5 # 0 indicates the branch point
w = wy = w; separating (K, K%).
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The above analysis is correct assuming that
the fold point (xy,wy) is real valued, such that
the normal form (equation (7)) is applied only
for real valued 6. A more general proof for com-
plex (k1,w) follows from the Welerstrass prepa-
ration theorem {Bochner and Martin, 1948].

Following the Weierstrass preparation
theorem, let H(Z, 2,) with the notation
% = (21, wv., #2n—1) be holomorphic (analytic) in a
neighborhood of the origin 0 € C*, with

H(0,0)=0, H(0,2,) #£0.

The origin 0 € C® is used for convenience; any
point can be translated to the origin by a smooth
linear change of variables. Then there exists
a neighborhood ) of the origin and a function -
U(Z%, z,) which is analytic and nonvanishing in
Q such that throughout £, H can be factored in
the form

H(Z ) = (4 + ¢pa(B)eh 4+

+a(2)z + ao(Z)U(5, ) (10)
where the a; are holomorphic functions in a
neighborhood of 0 € CP~! and a,(0) = 0 for
3= 10,...,p~1. If the integer p is taken to be the
order of the zero of H (0, #,) at 2, = 0, then the
functions U, @;, 3 = 0,...,p~ 1 are uniquely
determined.

Therefore the Weierstrass preparation theo-
rem states that the holomorphic function H of
two complex variables {w, k) in a neighborhood
of (wy,k¢) = (0,0) can be factored in the form

(11)

where U(w,x) is a holomorphic function,
U(0,0) # 0, and

H(w,k) = U{w, &) X W(w, k)

(12)

is a Weiersirass polynomial of order 2, wherein &
and w are interchanged from (1) for convenience.
The characteristic equation (1) in a neighbor-
hood of (0,0) is equivalent to a quadratic equa-
tion in k

W(w, k) = &2 + a1(w)x + ao(w)
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(13)

It can be seen that H(0,0) = 0 is equivalent
to ap(0) = 0 and H.(0,0) = 0 is equivalent to
@1(0) = 0. The solution of the quadratic equa-
tion (13) is given as

_mgw) 4 \/“%(W);‘MO(W) e

Let d(w) = (264 a1) and e(w) = (a? ~ 4ap) such
that d? = ¢ with ¢ analytic and ¢(0) = 0. If
c(0) # 0, then there is no analytic function d
such that d? = ¢. To prove the last statement,
assume d is analytic and take the derivative of
d? = ¢ to get 2dd’ = ¢’. Since the left side of the
last expression is zero (d(0) = 0), the right side
must be zero, leading to a contradiction. Hence
if ¢'(0) # 0, then d is nonanalytic, showing that
& is nonanalytic. It is easy to see that ¢/ # 0
leads to afj # 0, which in turn is equivalent to
H!, # 0by (11)and (12). The nonanalytic
point is easily seen to be a branch point due
to the multivalued nature of (14), where a1, ap
can be expanded in power series. As a result,
the Weierstrass preparation theorem shows that
the fold point in the (x,w) plane occurring in
the spectral-gap region as discussed by Yakovlev
and Hanson [1997] is a sufficient condition for
the determination of a branch point in the w
plane defined by equations (5) and (6). Note
that the condition H/ # 0 is not implied by the
Weierstrass theorem but comes from the defini-
tion of the fold point. Note also that the con-
dition H|, # 0 is a sufficient but not necessary
condition.

For completeness, considering the Morse criti-
cal point (MCP) (K, wn, ), discussed byYakovlev
and Hanson [1997, and references therein], and
Shestopalov and Shestopalov [1996], which oc-
curs in the mode coupling region, the following
conclusions can be made. It has been shown
that the MCP is defined by the following set of
equations:

K% + a1 (w)k + ao(w) = 0,

K(w) =

}I:c(ﬁ#w)l(nm,wm) = Hc‘;(ﬁ:w)](nm,wm} =0,
& = {}I::’ngw - L[:;L;H::,;]I(Nm,wm) '_/: 0. (15)
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It can be seen that the condition H/(k,,,ws,) #
0 is not satisfied, which represents an important
condition in the definition of a branch point.
Also, it can be observed that the local struc-
ture K = k(w) obtained in the vicinity of the
MCP (kp,wn) | Yakovlev and Hanson, 1998)

1

K12 = Kin — HZ‘:(w — ) &
V((HE)? — BEH) W —wm)? — 2HE H (16)

"
Hﬂﬂ

does not indicate that w = w,, is a branch
point in the w plane due to presence of the term
(w—wy)?if H =0 as in a degenerate MCP, and
a nondegenerate MCP does not lie on the disper-
sion curve and so it cannot represent a branch
point.

The determination of w-plane branch points
of the dispersion function x{w) will be shown
for the examples of a parallel-plate waveguide, a
grounded dielectric slab waveguide, and aprinted
transmission line. The parallel-plate waveguide
is included here since it admits an entirely an-
alytical investigation. The grounded slab and
printed transmission line geometries represent
structures with increasingly complicated char-
acteristic determinants H(k,w). In all exam-
ples, an e/“!=52) dependence will be assumed

and suppressed.

2.1. Parallel-Plate Waveguide

Consider a parallel-plate waveguide geometry
shown in the inset of the top panel of Figure 1.
The structure is uniform in the 2z plane and
filled by a medium with real material parameters
(although this is not a necessary restriction).
Assuming the propagation of transverse electric
(TE) and transverse magnetic (TM) modes in
the axial z direction, the following characteris-
tic eigenvalue equation can be obtained:

H{k,w) = sinh (\/&2 - k22h) =0 (17)

which immediately results in the representation
for the propagation constant x(w)
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Figure 1. Dispersion behavior for the TE, (trans-
verse electric) mode of a parallel-plate waveguide,
€ = €, = pig, and & = 1 em. Local structure is
generated in the vicinity of the fold point.

K(w) = £ /k? - (%)2 , n=0,41,42,:k3, ..,

(18)

where k = w,/elt.

The propagation constant expression (equa-
tion (18})) leads to the following result for prop-
agating and evanescent modes:

K'real(w) = imw > (%)ﬁ

NN 2 nry 1
i — TN g2 PRy _- .
.mmag(w) +J7 (Qh) w < (Zh)\/e_ﬁ( |
19

respectively. Clearly, the cutoff frequencies w,

are determined for x{w) =0, leading to the

formula 1
nw
=|-—r)—. 2
e (Zh),/a,u (20)
It is easily seen that the cutoff frequencies w,
simultaneously represent branch point types wq
and w; in the w plane. Observe from (4)

H(0,wp) = sin(2kh) = 0
resulting in the formula for the point wo
nry 1
57) 5 (21)

As a check on the other conditions (5),

H(k1,01) = sinh(\/n% - kfﬁlh) =0

w=(

— nl(wl):i\/kf—(%)z (22)

(o) (261h) cosh (/2 — k32k) Y
" \/ﬁ’,g — k12

— k1 =0, (23)

Also, it can be proved that H H! #0atw =
wyand Ky =0
H:u("“'f’wf)lnf=0 =

_ (=2ksh) cosh( K} - k??h)

\/nf.—k}

Hy(kp,wilny=0 =

_ (—2k%h) cosh(, /K%~ k%?h)l

(<2 — k2P

(25 £h)* sinh (\/nfc - k?ﬁh)
+ Ir:f:ﬂ ?é O:

(k7 — &%)

where £y = k{wy), ky = k(wy).

Comparison of equations (20) and (21) with
(22)-(25) shows that w, = wg = w;. Regarding
the zero cutoff frequency for the dominant TMo

Ix;:() # 0 (24)

#y=0

(25)
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mode, it is clear from (18) that forn = 0 a
branch point does not occur in the w plane due
to the presence of the w? term. The dispersion
function (w) for this dominant mode, which is
actually a TEM mode, is an entire function of
frequency. Every other mode has branch points
at w = wp = w,. In the event of material loss,
all modes, including the dominant mode, have
branch points associated with the conductivity
of the medium.

For the specific example of a parallel-plate
waveguide it is determined that the cutoff fre-
quencies w, for all but the dominant mode rep-
resent branch points of the dispersion function
in the w plane, and wy = w; = w,. This indi-
cates that at w, the curves k, ~x (k, k* trivially)
come together.

Numerical study of the branch point fy =
fi = fo (f = w/2m) associated with the fold
point is provided in Figure 1. In this figure
and in all subsequent figures, the longitudinal
wavenumber x is replaced by k,. The fold point
in the (x, f) plane with coordinates (0,7.5) has
been obfained from the numerical solution of
equations (5) and (6), where x and f are in
units of centimeters and gigahertz, respectively.
The local structure shown in Figure 1 has been
generated using a Taylor series expansion in the
vicinity of the fold point [see Yakovlev and Han-
son, 1997, equation (5)}, and the full-wave re-
sults come from (19). Very good agreement with
full-wave dispersion behavior is observed in a lo-
cal region. This behavior is also represented by
normal forms (equation (7)), which provide a
qualitative description of dispersion characteris-
tics.

2.2, Grounded Dielectric Slab
Waveguide

As a second example, consider a grounded
dielectric slab waveguide configuration demon-
strated in the inset in Figure 2. The struc-
ture is uniform in the zz plane and character-
ized by material parameters ¢; and ¢; represent-
ing permittivities of the cover and slab, respec-
tively. The solution of the Helmholtz equation
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Figure 2. Dispersion behavior of dominant and
higher order TE-odd and TM-even modes in a
grounded dielectric slab waveguide, £ = 1 cm, ¢; =
€0, and ¢ = 2.25¢;.

with boundary conditions on the ground surface
and continuity conditions for tangential compo-
nents of the electric field on the surface of the
interface can be obtained for TE*odd and TM?-
even modes, leading to the eigenvalue equations
[Collin, 1991) with the characteristic functions

H™(k,w) = 71 + 12 coth(y2h) ,
2
k1]
H™M(k,0) =1 + n—é’}’z tanh(y2h) (26)
3

where 21 = \/€1 Jég, n2 = /&2 /€0, and
W 1
=462 -nd kE, ko==, c= .
T2 127> Fo =, eokia

The square root associated with 7, necessitates
the definition of branch cuts in the x plane, while
no such cuts are necessary for 7., since both
terms in {26) are even in . The standard hy-
perbolic cuts defined by Re{y;} = 0 are used
here, separating modes that decrease (proper)
and increase (improper) away from the slab.

It has been shown that the branch point wy oc-
curs in the w plane to separate (k, —«) solutions
and satisfies (4) and (6). Considering the above
characteristic function for TE-odd and TM-even
modes, the coordinates of wy branch points can
be easily determined analytically. Equation (4)
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applied to either term in (26) leads to
tan(nskoh) = :l:j%% , (27)
1

which can be inverted to yield

wo=:l:(ﬂ)n2hi32n hln["'jl 1] (28)
n=1,35,..

where all four sign combinations are necessary.
It can be shown that the values of the index n are
associated with modes as (TM,4+1,TE,). Here
we index the modes according to the order of
cutoff frequency in a symmetric slab waveguide.
Only the even TM modes of the symmetric-slab
waveguide of thickness 2k may propagate on the
grounded slab waveguide of thickness & consid-
ered here, denoted with an even subscript, while
only the odd TE modes may propagate on the
grounded slab waveguide, denoted with an odd
subscript. Note that the wg branch points are
symmetrically located in the four quadrants of
the w plane and that they lead to x values on
the improper Riemann sheet of the x plane.
For the grounded siab, w; branch points de-
fined by (5) and (6) separating (x,x™) cannot
be evaluated analytically. Although (5) and (6)
represent two simultaneous nonlinear equations
in two unknowns, it can be shown that at wy,
v1h = —1 for the TE modes | Yemaguchi et al.,
1990]. This reduces the numerical work to solv-

ing
HTE(n,w1)|N=: Vit = 0

No such simplification is available for the TM
modes.

Dispersion characteristics of TE-odd and TM-
even modes are shown in Figure 2 for the real
part of the normalized propagation constant
k,[ko. It is widely known in the literature, for
example, Collin [1991], that leakage of higher-
order modes occurs in slab waveguides. Theoret-
ical and numerical investigation of the dominant
TM¢g mode shows that this mode never leaks en-

1.5 — T
-~=- proper real
141 improper real
| — improper complex
3 —— local structure
T * fold point ]
g Tiptey wrplane
g 12} 1
-g BpP Refo}
M Ll -
™)
1o 4 " =
0.9 " L 1 i 1 1
60 80 100 120 140 160 180
Frequency (GHz)
0.5
04 |
03|

| —— improper complex
0 F — local structure

01 b 3K fold point

Imag(k,/kg)

6.0 7.0 8.0 9.0 100 11.0 120
Frequency (GHz)

Figure 3. Dispersion propagation constant char-
acteristics for the TMs mode and the local struc-
ture generated in the vicinity of the fold point. Inset
shows the path of frequency variation.

ergy into the cover region. It can be observed
that the first odd-mode TE; does not leak either,
but an improper real solution occurs below the
cutoff frequency for this mode. (The cutoff fre-
quency of a proper mode in an open waveguide
is defined as the frequency for which the mode
changes from the proper Riemann sheet of the
& plane to the improper sheet. This occurs at
the spatial transform branch point & = nqkp or
on its associated cut.) It can be seen that start-
ing with the second higher mode, TM,, leak-
age (radiation) exists in dielectric slab waveg-
uide. The spectral-gap region is formed by a
pair of improper real solutions and a conjugate
pair of complex {leaky mode) solutions. Qualita-
tive behavior of dispersion curves in the spectral-
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gap region is similar to that observed for vari-
ous printed transmission line circuits { Yakovlev
and Hanson, 1997; Shigesawa et al., 1995]. Fold
points have been found in the x — f plane at
the intersection of improper real and complex
solutions for the higher-order modes starting at
‘TMj, as demonstrated in Figure 2. Figure 3
demonstrates dispersion propagation constant
characteristics for the TM, mode in the region
of interest and the local structure generated in
the vicinity of the fold point using a Taylor series
expansion. The inset in Figure 3 shows the path
in the frequency plane over which frequency is
varied. It can be observed that qualitative and
quantitative dispersion behavior in the localized
-spectral-gap region is completely determined by
characteristics of the fold point.

Figure 4 and Figure 5 demonstrate the loca-
tion of wy- and wy-type frequency plane branch
points for corresponding TM-even and TE-odd
modes of the grounded dielectric slab waveguide.
The coordinates of fo points for (TMy;1,TE,)
modes are (£nb, £2.5615) GHz, n = 1,3,5, ...
from (29) such that these branch points occur
in conjugate pairs. The solid curve Re{x} = 0
separates (Re{x}, -Re{x}) solutions and can
be chosen as a physically meaningful branch
cut (separating the forward from the backward

15
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Re{f} (GHz)
Pigure 4. Frequency-plane branch points for TM,
and TM, even modes. The curves Re{x} = 0 can
be chosen as appropriate branch cuts. Points on the
real axis are of wy-type, while those off of the real
axis are of wo-type.
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Figure 5. Frequency-plane branch points for TE,
and TE3 odd modes. The branch point f; does not
oceur for the TE; mode.

propagating modes). It can be confirmed that
equations (5) and (6) are satisfied at these points.
Note that the singularities in the upper half
(lower half) frequency plane correspond to com-
plex modes that decrease (increase) along the
waveguiding axis.

The coordinates of the fi-type branch points
(on the real-frequency axis) must be determined
numerically. For the TMj, TEs, and TM,
modes, the fold point coordinates (x,f)
are (1.1275,10.9648), (1.0291,19.6589), and
(1.0495, 25.3669), respectively.

The curve Im{x} =0 separates (Im{x},
-Im{x}) solutions and is shown for convenience,
but it does not indicate an appropriate branch
cut separating modes in the (k, f) plane. The
horizontal dashed-line segments emanating from
the wy branch points and directed outward could
be considered as a meaningful branch cut, a sec-
tion of which separates modes from their conju-
gates. Note that the TMp mode does not possess
wo or wy-type branch points and the TE; mode
does not possess wy-type branch points. All
higher-order modes beyond TE; possess both
types of branch points and behave in a quali-
tatively similar manner. For these higher-order
modes, the two improper real solutions exist
on different frequency plane Riemann sheets, in
that a complete revolution in the complex
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Figure 6. Dispersion behavior for TM, mode of
a lossy grounded dielectric slab waveguide, h =
1 cm, €1 = €q, and €53 = (2.25 — 50.1)¢q. Inset shows
the path of frequency variation.

frequency plane around a wy-type branch point
shows an analytically continuous transition from
one improper real solution to the other. Simi-
lar comments apply to the complex conjugate
solutions. The Re(k) = 0 (Im(x) = 0) curves
in Figures 4 and 5 were obtained numerically
by starting at the appropriate branch point, in-
creasing & as (0, ;) {(«,,0)), and performing a
root search for the complex frequency which pro-
vides those values.

The concept of the w;-type branch point is es-
pecially useful for interpreting the spectral-gap
behavior in the presense of loss. Consider a lossy
grounded slab wavegunide with the complex per-
mittivity ¢; = (2.25, —0.1)¢p and the same ge-
ometrical parameters as in the previous exam-

ple. Dispersion characteristics for the TM, even
mode are demonstrated in Figure 6. In compar-
ison with the lossless case it can be seen that the
conjugate complex (leaky mode) solutions split
into two complex modes, and the classical dis-
persion behavior in the spectral-gap region no
longer exists. The complex fold point with co-
ordinates (k, f) = (1.1276 — 30.00989, 10.9317 -+
70.5422) has been found, -which determines a
complex w;-type branch point in the frequency
plane, as the real fold point indicated for loss-
less media. To obtain a bifurcation of solutions
at the fold point (branch point in the frequency
plane), consider a complex variable frequency
with the same imaginary part as in the fold point
frequency: Im{f} = 0.5422 GHz. Propagation

20
1.8 f
1.6 s
2 14
%‘ 1.2 ¢
[
1,0
B —— #mproper complex
08 ~=-- proper complex
) W complex fold point
0.6 bt

~0.0 5.0 10.0 15.0 20,0 25.0
Real{Frequency) (GHz)

0.4
0.3 ¢ —— improper complex
0.2} ===-= proper complex
¥ complex fold point
’:\2 0.1t
& A Y ]
% 00 F e ]
A ol
0.2 r
-0.3 ¢
-0, s 5 x : " X
5.0 7.5 100 125 150 17.5 20.0 225 250
Real(Frequency) (GHz)
Figure 7. Propagation constant characteristics

for the TMy mode versus complex frequency with
Im{f} = 0.5422 GHz. Bifurcation of solutions oc-
curs ab the complex fold point. Inset shows the path
of frequency variation.
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Figure 8. Propagation constant characteristics

for the TMs mode versus complex frequency with
Im{f} = 1 GHz. Bifurcation of solutions does not
occur at the complex fold point. Inset shows the path
of frequency variation.

constant characteristics for the TMq even mode
versus the real part of the complex frequency,
with constant imaginary part, are shown in Fig-
ure 7. It can be observed that the bifurcation of
solutions occurs at the complex fold point deter-
mined above, demonstrating that the complex
fold point obtained in a lossy case represents
the complex branch point w; defined by equa-
tions (5) and (6). Note that conjugate modes
no longer exist, due to the complex frequency
used. Figure 8 shows propagation constant char-
acteristics for a lossy slab waveguide versus com-
plex frequency with Im{f} = 1 GHz, i.e., along
a complex frequency contour above the branch
point. It should be noted that the bifurcation
of solutions in the (k, f} plane occurs only in

the case when the frequency path crosses the
f-plane branch point along any such frequency
plane contour.

Examination of Figure 6 shows that when fre-
guency is varied along a path below the wi-type
branch point, the proper bound mode {complex
due to Im(w) # 0 or Im(e) # 0 or both ) is ana-
lytically continuous with the improper nonphys-
ical below-cutoff complex mode, and the im-
proper mode (which is the improper real mode
for Im{w)=Im(¢) = 0) is analytically continuous
with the improper physical below-cutoff complex
mode. Figure 8 shows that when frequency is
varied along a path above the wy-type branch
point, the reverse situation occurs. This was

. first observed by Haddon [1986) and has impor-
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Figure 9. Dispersion behavior of improper real
and complex modes in the spectral gap region of
a conductor-backed coplanar strip line, A == 1 cm,
e = 2.25, and d/h = 0.25.
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tant implications for computing the response of
a slab waveguide using leaky modes.

2.3. Conductor-Backed Coplanar Strip
Line

In the third example, a full-wave analysis of a
conductor-backed coplanar strip line geometry
shown in the inset of Figure 9 has been per-
formed using an electric-field integral equation
technique, as was used by Yakovlev and Han-
son [1997). A coupled set of homogeneous inte-
gral equations has been obtained, enforcing the
boundary condition for the tangential compo-
nent of the electric field on the surface of the con-
ducting strips. Dispersion propagation constant
characteristics have been determined from the
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,5° *pp
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E’ """"
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E — improper complex
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0.05 ——- proper (odd)
¥ fold point
0,03 flap
g 0.01
&
2001 f_.__._ TM,
& VUV RRousoirnes T — ot 2o RS, JyNR .
g *
-0.03
~0.05
~0.07 t t + * .
7.5 8.0 8.5 9.0 9.5 100 105

Frequency (GHz)
Figure 10. Dispersion behavior for improper com-
plex modes of a lossy conductor-backed coplanar
strip line, h = 1 ecm, d/h = 0.25, and ¢ =
2.25 — 30.05. Inset shows the path of frequency vari-
ation.
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Figure 11. Propagation comnstant characteristics

for improper complex modes versus frequency with
Im{f} = 0.0886 GHz. Branching of solutions occurs
at the complex fold point. Inset shows the path of
frequency variation.

numerical solution of a coupled integral equa-
tion system with unknown current density ex-

~panded as a series of Chebyshev polynomials.

Full-wave results for proper and improper modes
in a conductor-backed coplanar strip line have
been demonstrated and discussed by Yekoviev
and Hanson [1997], using the concept of critical
fold and Morse points. In this section, dispersion
behavior of all possible solutions will be shown
in some local regions (spectral-gap) wherein the
branching of solutions occurs.

Dispersion characteristics for improper real
and improper complex (leaky mode) solutions
for the dominant odd mode in the spectral-gap
region are demonstrated in Figure 9. Disper-
sion characteristic behavior in the vicinity of
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the intersection point is formed by two real solu-
tions which resemble branches of a parabola and
a complex solution which resembles a straight
line in a similar manner to the grounded slab
modes just below cutoff, It has been discussed
previously that the intersection point within the
spectral-gap region is a fold point. For the
specific example, the fold point with coordi-
nates (, f) = {1.3654,9.0028) has been deter-
mined, as shown in Figure 9. The fold point
in the (x, f) plane represents the frequency-
plane branch point w; separating (s, &™) solu-
tions. Note that the lower improper real mode
in Figure 9a, which becomes tangent to the TMp
background mode, eventually becomes a proper
real (odd) mode upon further decreasing of fre-
quency [sce also Shigesawa et al,, 1995].
Consider a lossy conductor-backed coplanar
strip line configuration with the complex permit-
tivity of the substrate ¢, = (2.25, —30.05) and
the same geometrical parameters as in the loss-
less example. Dispersion behavior of improper
complex solutions is demonstrated in Figure 10.
It can be seen that the propagation constant
characteristics are significantly changed and the
classical dispersion behavior in the spectral-gap
region no longer exists [Shigesawa et al., 1993],
similar to the example of a lossy grounded di-
electric slab waveguide. The complex fold point
has been found with coordinates (,f)=(1.3652—
70.0159, 8.9999+470.0886), the frequency of which
is associated with the complex w; branch point
in the frequency plane. As in the example for
a lossy slab waveguide, consider a complex vari-
able frequency having constant imaginary part
Im{f} = 0.0886 GHz. Propagation constant
characteristics of improper complex modes ver-
sus complex frequency with the same imaginary
part as in the fold point frequency are shown
in Figure 11. It can be seen that branching of
solutions occurs at the complex fold point, indi-
cating that the complex fold point frequency de-
termines in a lossy structure the complex branch
point f; in the frequency plane separating two
complex modes (k,k*) that would be a conju-
gate pair in the lossless case. TFigure 12 shows
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Figure 12, Propagation constant characteristics
for improper complex modes versus frequency with
Im{f} = 0.1329 GHz. Inset shows the path of ire-

quency variation.

the corresponding case for a frequency path
above the fold point. Comparing Figures 10
and 12, when the frequency path passes below
the fold point {Figure 10), the physically mean-
ingful leaky mode is continuous with the mode
which becomes proper as frequency is lowered,
whereas if the frequency path passes above the
fold point (Figure 12) it is the nonphysical leaky-
mode which becomes the proper mode as fre-
quency is lowered. Note that for the dielectric
slab, the opposite behavior occurs, although in
this case the modes become proper as frequency
is increased rather than decreased.

It has been discussed by Yakovlev and Han-
son [1997] that parameterization of the prop-
agation constant characteristics by strip width
parameter w/h leads to migration and trans-
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Figure 13. Dispersion behavior for improper real
and complex modes of a conductor-backed coplanar
strip hine, h =1 cm, d/h = 0.25, and ¢, = 2.25.

formation of critical points. For example, the
transformation of real-valued fold points (FPs)
1 and 2 into complex conjugate points (CCPs)
appears at a singular point B, which is found
within the range 0.3855 and 0.3856 of w/h val-
ues (see Figures 6 and 7 of Yakovlev and Hanson
[1997] and associated discussion). Dispersion
behavior of improper real and improper complex
modes for w/h = 0.39 (just after singular point
B) is demonstrated in Figure 13 for a lossless
conductor-backed coplanar strip line configura-
tion. It can be seen that the conjugate pair of
complex critical points {CCPs) has been found
with coordinates (1.4008 4 30.0253, 9.4328
+ 70.0348). It can be shown that the complex
conjugate critical points represent the complex

conjugate frequency plane branch points wy de-
fined by equations (5) and (6).

As in the previous examples, which consider
complex fold points, we will transform the fre-
quency plane coordinate system. The full-wave
results have been generated for the same ma-
terial and geometrical parameters of the struc-
ture versus complex frequency with a conjugate
pair of imaginary parts. To show the branch-
ing of solutions, consider the constant imagi-
nary parts equal to those in the complex fold
point frequencies: Im{f} = +0.0348 GHz. Dis-
persion behavior of improper complex solutions
with a complex frequency considered is shown
in Figure 14. Bifurcation of solutions occurs at
complex conjugate points (complex fold points)
determined previously. The results shown in
Figure 14 explicitly demonstrate that a conju-
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Figure 14. Propagation constant characterist_ics

for improper complex modes versus {requency with

Im{f} = £0.0348 GHz.
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gate pair of complex fold points obtained in a
lossless structure is associated with a conjugate
pair of frequency-plane complex branch points
wy defined by equations (5) and (6). Thus it
is concluded that all of the various real and
complex fold points described by Yakovlev and
Hanson [1997] indicate frequency-plane branch
points of the w; type.

The qualitative and quantitative dynamic be-
havior of a conductor-backed coplanar strip line
has been investigated by examining the evolu-
tion of different critical points (fold and Morse
points) versus strip width parameter w/h, and
presented [see Yakovlev and Hanson, 1997, Fig-
ures 6 and 7). It has been shown that changes in
the types of critical points are related to qual-
itative changes of structural characteristics of
a system. The analysis presented here shows
that different types of critical points, includ-
ing real, complex, and complex conjugate fold
points, are associated with corresponding fre-
quency plane real and complex branch points
separating complex solutions. The evolution
of real and complex w; branch points versus
strip width has been generated showing possible
transformations of those points related to ap-
pearance and disappearance of leakage regimes.
Figure 15 demonstrates the evolution of branch
points (BPs) related to the evolution of criti-
cal points shown in Figures 6 and 7 of Yakovlev

R e S
, | =02 Ve0.295 0.6
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\ BP2
2r \ 0.48
§ y 0355
o 1r \ BPR2
o 0482 0332 Al oazg A4
S i L B A
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2 / $ 0.8
K BPI / {
3 Br3 /
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Figure 15. The evolution of real and complex fre-
quency plane branch points versus strip width pa-
rameter w/h.
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and Hanson {1997} for a coplanar strip line. Tt
should be noted that complex conjugate points
BP1 and BP3, associated with complex conju-
gate points CCP1 and CCP3, transform into real
branch points BP1 and BP3 at singular point
A, which occurs between w/h = 0.37040 and
w/h = 0.37045.

The transformation of real branch points BP1
and BP2, associated with real fold points FP1
and FP2, into complex conjugate points BP1
and BP2 occurs at singular point B, which is
found within the range of 0.3855 and 0.3856 of
w/h values, Taken together, Figures 6 and 7 of
Yakovlev and Hanson [1997] and Figure 15 here
show the complete dynamical evolution of rele-
vant critical points parameterized by strip width
in the temporal and spatial transform planes.

3. Conclusion

The investigation of frequency-plane branch
points found in various guided-wave structures,
including a parallel-plate waveguide, a grounded
dielectric slab waveguide, and a conductor-bac-
ked coplanar strip line, is presented. On the ba-
sis of the normal form of a fold point and the
Weierstrass preparation theorem, it is analyti-
cally shown that frequency-plane branch points
separating conjugate dispersion solutions sat-
isfy the general formulation given previously for
fold points in the spectral-gap region. Addi-

 tional branch points separating positive and neg-

ative dispersion solutions are obtained for the
examples of a parallel-plate waveguide and a
grounded dielectric-slab waveguide. It is shown
that real, complex, and complex conjugate fold
points are associated with frequency-plane real,
complex, and complex conjugate branch points,
respectively. The evolution of real and complex
branch points versus strip width for conductor-
backed coplanar strips has been generated, show-
ing transformations of those points related to ex-
istence, appearance, and disappearance of leak-

age.

Acknowledgments. The authors acknowledge
helpful discussions with Hans Volkmer from the De-
partment of Mathematical Sciences, University of
Wisconsin-Milwaukee.




818

References

Bagby, J.S., C.H. Lee, D.P. Nyquist, and Y. Yuan,
Identification of propagation regimes on integrated
microstrip transmission lines, TEEE Trans. Mi-
crowave Theory Tech., 41, 1887-1893, 1993.

‘Barkeshli, S., P.H. Pathak, and M. Marin, An asymp-
totic closed form microstrip surface Green’s func-
tion for the efficient moment method analysis of
mutual coupling in microstrip antennas, IEEE
Trans. Anlennas Propag., 38, 1374-1383, 1990.

Blok, H.,, J.M. Van Splunter, and H.Q. Janssen,
Leaky-wave modes and their role in the numeri-
cal evaluation of the field excited by a line source
in a non-symmetric, inhomogeneously layered, slab
waveguide, Appl. Seci. Res., 41, 223-236, 1984.

Bochner, S., and W.T. Martin, Several Complez
Variables, Princeton Univ. Press, Princeton, N.J.,
1948.

Carpentier, M.P., and A.F. dos Santos, Nonspec-
tral representation of the field of a horizontal wire
above ground, Radio Sci., 19(3), 812-828, 1984.

Carpentier, M.P., and A.F. dos Santos, Non-spectral
complete field expansion in two-dimensional strue-
tures, IMA J. Appl. Maik., 35, 1-12, 1985.

Collin, R.E., Field Theory of Guided Waves, 2nd.
ed., IEEE Press, Piscataway, N.J., 1891,

Duffy, D.G., Response of a grounded dielectric slab
to an impulse line source using leaky modes, IEEE
Trans. Antennas Propag., 42, 340-346, 1994,

Golubitsky, M., and D.G. Schaeffer, Singularities and
Groups in Bifurcation Theory, vol. 1, Springer-
Verlag, New York, 1985.

Haddon, R.A.W., Exact evaluation of the response
of a layered elastic medium to an explosive point
source using leaking modes, Bull. Seismol. Soc.
Am., 76(6), 1755-1775, 1986.

Haddon, R.A.W., Response of an oceanic wave gnide
to an explosive point source using leaking modes,
Bull. Seismol. Soc. Am., 77(5), 1804-1822, 19874.

Haddon, R.A.W., Numerical evaluation of Green’s
functions for axisymmetric boreholes using leaking
modes, Geophysics, 52(8), 1099-1105, 1987b.

Haddon, R.A.W., Exact Green’s functions using leak-
ing modes for axisymmetric boreholes in solid elas-
tic media, Geophysics, 54(5), 609-620, 1989.

Jackson, D.R., and A.A. Oliner, A leaky-wave analy-
sis of the high-gain printed antenna configuration,
IEEE Trans. Anlennas Propag., 86, 905-910, 1988.

Marcuvitz, N., On field representation in terms of
leaky modes or eigenmodes, IRE Trans., AP-4,
192-194, 1956.

HANSON AND YAKOVLEV: LEAKY-WAVE DISPERSION PHENOMENA

Nghiem, D., J.'T. Williams, D.R. Jackson, and A.A,
Oliner, Existence of a leaky dominant mode on
microstrip line with an isotropic substrate: The-
ory and measurements, IEEE Trans. Microwave
Theory Tech., 44, 1710-1715, 1996.

Oliner, A.A., Leakage from various wavegunides in
millimeter wave circuits, Radio Sci., 22(6), 866-
872, 1987a.

Oliner, A.A., Leakage from higher modes on mi-
crostrip line with application to antennas, Radio
Sei., 22(6), 907-912, 1987hb.

Seydel, R., Practical Bifurcation and Stability Anal-
ysis, 2nd ed., Springer-Verlag, New York, 1994,
Shestopalov, V.P., and Y.V. Shestopalov, Speciral
Theory and Ezcitation of Open Struclures, Inst.

of Electr. Eng., London, 1996.

Shigesawa, H., M. Tsuji, and A.A. Oliner, Conductor-
backed slot line and coplanar waveguide: Dan-
gers and full-wave analyses, in 1988 IEEE/MTT-S
International Microwave Symposium Digest, G-2,
pp. 199-202, Ins. of Electr. and Electron. Eng.,
New York, 1988.

Shigesawa, H., M. Tsuji, and A A. Oliner, Dominant
mode power leakage from printed-circuit waveg-
uides, Radio Sci., 26(2), 559-564, 1991,

Shigesawa, H., M. Tsuji, and A.A. QOliner, The na-
ture of the spectral-gap between bound and leaky
solutions when dielectric loss is present in printed-
circuit lines, Radio Sci., 28(6), 1235-1243, 1993.

Shigesawa, H., M. Tsuji, and A.A. Oliner, Simulta-
neous propagation of bound and leaky dominant
modes on printed-circuit lines: A new general ef-
fect, IEEE Trens. Microwave Theory Tech., 43,
3007-3019, 1995.

Tamir, T., Wave-number symmetries for guided com-
plex waves, Electron. Lelt., 3(5), 180-182, 1967.
Tamir, T., and A.A. Oliner, Guided complex waves,
Proc. Insi. Elecir. Eng., 110(2), 310-334, 1963.
Tesler, M.H., and G. Eichmann, Non-spectral field
representations in dielectric fiber guides, J. Inst.

Math. Its Appl., 21, 315-330, 1978.

Yakovlev, A.B., and G.W. Hanson, On the nature of
critical points in leakage regimes of a conductor-
backed coplanar strip line, I[EEE Trans. Microwave
Theory Tech., 45, 87-94, 1997.

Yakovlev, A.B., and G.W. Hanson, Analysis of mode
coupling on guided-wave structures using Morse
critical points, IEEE Trans. Microwave Theory
Tech., in press, 1998.

Yamaguchi, S., A. Shimojima, and 'T'. Hosono, Anal-
ysis of leaky modes supported by a slab waveguide,




HANSON AND YAKOVLEV: LEAKY-WAVE DISPERSION PHENOMENA 819

Electron. Commun. Jyn., part 2, 73(11), 20-31, A. B. Yakovlev, North Carolina State University,
- 1990. Center for Advanced Computing and Communica-
tion, Campus Box 7914, Raleigh, NC 27695-7914.

G. W. Hanson, Department of Electrical Engineer-  (e-mail: yakovlev@eos.ncsu.edn)

ing and Computer Science, University of Wisconsin-
Milwaukee, 3200 North Cramer Street, Milwaukee, (Received September 15, 1997; revised April 28, 1998:
WI 53211. (e-mail: george@ee.uwm.edu) accepted April 30, 1998.)




