dependence of the reconstruction accuracy on the size of the
scatterer under test. Moreover, some investigations will be
devoted to studying the matching between the multistep
procedure and iterative statistical minimization methods in
order to reduce the computational load (minimizing at each

step the number of unknowns), exploiting the robustness in

terms of the capability to reach global minima. To this end, a
version of the approach hybridized with a genetic algorithm is
currently under development.
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ABSTRACT: The face-centered node-point technique, developed earlier
for scattering applications, is applied to the calculation of resonance

frequencies of inhomogeneous dielectric resonators. The described
method leads to a well-conditioned matrix system suitable for numerical
solution, which is not the case when the permittivity is high and
conventional solution techniques (e.g., pulse functions with cell-centered
point matching) are employed. In this work, we concentrate on res-
onators having the shape of a parallelepiped, for which there are
relatively few computational results in the literature, although the method
can accommodate arbitrarily shaped structures. © 2002 John Wiley &
Sons, Inc. Microwave Opt Technol Lett 32: 356-359, 2002.
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l. INTRODUCTION

Dielectric resonators are typically simple geometric struc-
tures (sphere, cylinder, parallelepiped, hemisphere, etc.) fab-
ricated from low-loss, high-permittivity material. They have
many applications in high-frequency circuits, such as temper-
ature-compensated oscillators, microwave frequency synthe-
sizers, narrow-bandpass filters [3], and antennas [4]. Res-
onators that are inhomogeneous and have high permittivity
present a difficult challenge for numerical simulation tools,
and to our knowledge, no computational results have been
presented in the literature for this class of structure. For
dielectric resonator antennas, the case of an inhomogeneous,
rather than homogeneous, resonator has been found to be
useful for impedance-matching [5] and bandwidth-enhance-
ment techniques [6], and similar properties would be ex-
pected for other integrated resonator applications. In this
work, we present an accurate full-wave method for determin-
ing the complex resonance frequencies of inhomogeneous,
high-permittivity dielectric resonators using a volume inte-
gral-equation technique.

Volume integral equations have been used in the past by
many authors to analyze scattering from arbitrarily shaped,
inhomogeneous three-dimensional bodies. Typically, the
method of moments is utilized to convert the integral equa-
tions into a finite matrix equation that can be solved numeri-
cally. In the classic point-matching method, the scatterer is
divided into cubical cells using a three-dimensional pulse
function basis, while delta functions test the field at the
center of the cell. Although this method can, in principle,
accommodate strongly inhomogeneous media, it is noted that
pulse functions are only appropriate for fields that are rela-
tively constant throughout each cell [7-8], requiring large
numbers of cells to model complex scatterers. Furthermore, it
has been shown that, as the number of cells is increased, the
solution may converge to an incorrect answer [9-10] or may
fail to converge at all [11-12]. These problems are associated
with the improper modeling of polarization charge induced at
the interface of dissimilar media, and are exacerbated when
the permittivity of the scatterer is high. As this charge term
increases, errors in the off-diagonal elements of the method-
of-moments matrix, representing coupling between nearby
cells, also increases, and the resultant matrix becomes ill
conditioned [13-14]. Attempts have been made to model the
scatterer using higher order basis functions [12-15] to im-
prove accuracy, but generally, this still does not reduce the
sensitivity of the solution to ill-conditioned matrices [2].

The method utilized here is a variation of the point-
matching method. Since polarization charges are only in-
duced at the interface between two dissimilar media, the
testing functions (delta functions) are placed at the centers of
the cubical faces [1-2]. This face-centered node-point method

356 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 32, No. 5, March 5, 2002




allows the polarization charge to be modeled more accu-
rately, and the resulting matrix is well conditioned, even for
high-permittivity scatterers. Although the method was previ-

ously developed for scattering calculations, here we show that .

it is very well suited for determining the complex resonance
frequencies of inhomogeneous dielectric resonators which, in},{v
practical applications, are usually constructed from materials
having very high permittivities. Resonators in free space are
considered to illustrate the method, although other back-
ground environments can be accommodated by modifying the
Green’s function. Because the method is based on a rigorous
integral equation technique, higher order resonances can be
found using this technique, although in this work, we concen-
trate on the fundamental resonance. Moreover, the problem
of resonator coupling and excitation can be similarly analyzed
by incorporating appropriate feed structures, although this
topic is not pursued here.

Il. FORMULATION

Consider an incident electric field impinging on an inhomo-
geneous dielectric resonator having relative permittivity &,(r)
and residing in_free space. At any point in space, the total
electric field E(7) can be written in terms of the incident
electric field E'(7) and the scattered electric field E*(7) as
E(r) = EX(r) + E*(r) or

E() = EG) = jop [ 1o (7)GF, Fdv”
1 = i e ’
_ g—OVpreq(r )G, 7)dV' (1)

where _Joo(F) = joey x,(NEF) and p(7) = — &V -
(x.()E(r)) are the equivalent polarization current and
charge, respectively, x.(7) = (g(r) — 1), GG, 7') =
e *R/4wR is the free-space Green’s function, k, =
oy pogy, R =r—7'|, and V is the volume of the resonator.
The restriction 7 € V' leads to- the usual volume integral
equation for determining E(7). Writing the above equation
entirely in terms of E(7), we obtain

E(F) = E'() + k3 [ GF 7 x (FIEG av’
4
+V[GEFIV - (x GIEGVAV'. ()
'

In natural resonapce problems, we set E‘(T) = 0, and seek
nontrivial solutions of the homogeneous integral equation

K3(0) [ GG T, 0) X FIEF, @)dV' + ¥ [, w)
V(x.GFIEGF, 0)dV' —EGF, @) =0 (3)

where we consider the continuation of into the complex
w-plane. The solution of results in the natural resonant

frequency w = w,,,, and the associated natural-mode field at
resonance E(r) =E, _(7)

nmp '/t

ll. NUMERICAL PROCEDURE

To solve (2) or (3), we decompose the arbitrarily shaped
resonator into m, X m, X m, identical rectangular cells (one
could also utilize cells of different sizes), each cell having
volume Av = Ax X Ay X Az. As shown in Figure 1, the

\J
>

Y

Figure 1 Cubic cell with face-centered node points

node points are located on the surfaces of the cells; the cross
(+), circle (), and square (=) indicate where E,, E,, and E,
are sampled, respectively. Since the node points reside on the
cell faces, (2) or (3) must be solved for a body comprised of
both the resonator and a one-cell-thick layer of the surround-
ing space (&, = 1) using M = (m, + 1) X (m, + 1) X (m, +
1) cells. ‘

When modeling the resonator, the number of cells is
chosen so that the electric field and permittivity of each cell
are relatively constant. In doing so, the problem of a single
heterogeneous body in a nonuniform field is converted into a
system of simple homogeneous cells in a quasistatic field.
Induced charges will appear only on the surfaces of these
“electrically small” homogeneous cells, and can be deter-
mined by the normal component of the electric field at each
cell face. Placing the node points on the surfaces of the cells
gives one the option of choosing to solve for the electric field
on either side of the interface. By choosing the appropriate
side, we can reduce the magnitude of the off-diagonal matrix
elements, and produce a well-conditioned matrix [1-2].

Using the method of moments and applying a pulse func-
tion basis with face-centered delta function testing, the inte-
gral equation (2) is expressed as a matrix equation of the
form Ax = b, where A is a 3M X 3M matrix, x is a 3M vector
of unknowns, and b is a 3M vector related to the incident
field. Details of the procedure can be found in [1-2] and [16],
and so will be omitted here. In the case of the resonance
problem (3), we solve A(w)x = 0, leading to the equation
det{A(w)] = 0. Assuming that the resonant frequency is a
simple root of the determinant function, the natural mode
field E,lmp(?) is obtained by fixing one coefficient in x and
solving for the nontrivial solution of A(w)x = 0.

IV. RESULTS

Various checks on the accuracy of the numerical algorithm
were performed. First, the electric field scattered from vari-
ous dielectric cylinders was calculated using (2), and com-
pared to the results in [2]. Excellent agreement was found.
We then considered resonance frequency calculation using
3).

For dielectric resonators having the shape of a paral-
lelepiped, the electric field of the fundamental resonance is
transverse to the z-axis, otherwise known as a TEF,, mode,
where 0 <d < 1. We first considered the following three
homogeneous cases.

Geometry 1: Dielectric resonator measuring 7.45 mm X
7.45 mm X 2.98 mm with &, = 79.46. '
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Geometry 2: Dielectric resonator measuring 8.60 mm X
8.60 mm X 2.58 mm with &, = 37.84.

Geometry 3: Dielectric resonator measuring 8.77 mm X
8.77 mm X 3.51 mm with &, = 37.84.

Each resonator was modeled with m, X m, X m, cells i

a space of (m, + 1) X (m,, + 1) X (m, + 1) cells (resonator
+ air), where m, = m,. Table 1 represents the convergence
data for Geometry 1. The data from all three cases are
compared to the results obtained by other authors in Table 2.
In this table, FWM indicates a full-wave method, DWM
indicates an approximate dielectric waveguide model, and
FCNP indicates the face-centered node point method consid-
ered in this work.

As seen from the above table, results of the face-centered
node-point algorithm are in good agreement with the theoret-
ical results computed in [17] (the full-wave method described
in [17] is especially well suited to high-permittivity, homoge-
neous resonators), as well as experimental data collected in
[4]. Tt also provides a significant reduction in error over the
results obtained in [4] using a first-order dielectric waveguide
model.

Considering inhomogeneous resonators, in Table 3, we
compare the resonant frequency of two homogeneous dielec-
tric resonators with two inhomogeneous (multilayered) cases.
The homogeneous resonators have relative permittivities &,
=75 and &, = 85, while the inhomogeneous resonators are
comprised of two halves, with one half having relative permit-
tivity &, = 75, and the other half &, = 85. In the first inhomo-
geneous case, the boundary between the two materials occurs
in the y—z plane halfway along the x-axis. In the second case,
the boundary occurs in the x-y plane halfway along the
z-axis. All three resonators have the same dimensional char-
acteristics as Geometry 1 (7.45 mm X 7.45 mm X 2.98 mm).

Notice that the resonant frequency of both two-layer
dielectric resonators is found to be approximately equal to
the average of the resonance frequencies of the two homoge-
neous resonators. B

Since, in Table 3, the inhomogeneous resonators have
high permittivities that are fairly similar (e, = 85, &, = 75),
to illustrate the flexibility of the method in Table 4 we
consider an inhomogeneous resonator comprised of two ho-
mogeneous sections with greatly different permittivities. We
also consider the possibility of material loss. The resonator

TABLE 1 Convergence Data for Geometry 1

TABLE3 Comparison of Homogeneous and Inhomogeneous
Dielectric Resoantor Resonant Frequencies

Resonant
DR Geometry £, Frequency GHz
75 4.778 + j0.0258
85 4.496 + j0.0204

€. = 85

51 y

g, = 75 4.635 + j0.0233
g, = 8 :

e = 75 4.627 + j0.0228

has dimensions 8.77 mm X 8.77 mm X 3.51 mm, and the
boundary between the two materials occurs in the y—z plane
halfway along the x-axis (as in the third entry in Table 3). All
results are reported for an 8 X 8 X 4 mesh. Although results
for this class of inhomogeneous dielectric resonator are not
available in the literature to our knowledge, based on the
numerical stability of the algorithm and numerical conver-
gence and field plots, we have high confidence in the pre-
sented resonant frequency values. For comparison, note that,
for a homogeneous resonator having ¢, = 40, the resonance
frequency is 5.506 + 0.0690 GHz, and if &, = 45, the reso-
nance frequency is 5.204 + 0.0559 GHz.

Other multilayer or generally inhomogeneous arbitrary-
shaped resonators can be easily modeled using this tech-
nique. Note that the radiation Q for the structures presented,
Q = |F,l/2Im(F,,), is too low for typical resonator applica-
tions due to the structure being immersed in free space
(although some of the structures may be more suitable for
antenna applications). The radiation Q is very sensitive to the

Resonant Frequency (GHz)

m, X m, m, =2 m,=3 =4

4X4 4.66293 + j0.0217900 4.66663 + j0.0217735 4.65718 + j0.0214628

6 X6 4.63256 + j0.0223469 4.65815 + j0.0229616 4.65994 + j0.0229538

8§ X8 4.61133 + j0.0221760 4.64479 + j0.0230251 4.65216 + j0.0231809 i
10 X 10 4.59942 + j0.0220200 4.63556 + j0.0229494 4.64573 + j0.0231873

TABLE2 Comparison of Theoretical and Experimental Resonant Frequencies

Error
Fs (GH2) F.., (GH2) F.., (GHz) (% F,) F., (GH2) Error (% F,,)
Geometry (Exp.) [4] (FWM) [17] (DWM) [4] (DWM) [4] (FCNP) (FCNP) »
1 4.673 + j0.0246 = 4.346 + j0.0169 -7.0 4.646 + j0.0232 —0.58
2 6.322 + j0.1109 — 5.934 +j0.0783 -6.1 6.278 + j0.0968 —0.69
3 5.684 + j0.0902 5.649 + j0.0766 5337 + j0.0606 -61 5.650 + j0.0762 ~06

358 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 32, No. 5, March 5, 2002




TABLE 4 Fundamental Resonant Frequency for an
Inhomogeneous Resonator Comprised of Two Homogeneous
Sections with Greatly Different Permittivities

§ Resonant Frequency
Permittivity (GHz)

&, =60 5.316 + j0.0617
g, =30

&, =170 5.395 +j0.0518
e =20

&, = (70, —0.05) 5.395 + j0.0537
&, = (20, —0.014)

g = (70, 1) 5.394 + j0.0891

&, = (20, —0.285)

specific background environment into which the dielectric
resonator (or antenna) is placed. Here, we have concentrated
on the suitability of the numerical method for inhomoge-
neous resonators having high permittivity, rather than specific
resonator or antenna environments.

V. CONCLUSION

Inhomogeneous dielectric resonators are finding increasing
use in microwave /millimeter-wave circuits. The face-centered
node-point technique discussed here is a relatively simple
(based on pulse functions) full-wave method that provides a
stable algorithm for computing the resonance frequencies of
inhomogeneous dielectric resonators having high permittivity.
The method is accurate, and does not lead to ill-conditioned
matrices such as arise from conventional numerical solutions
of the governing volume integral equations in the high-per-
mittivity case. Numerical results for homogeneous dielectric
resonators have been compared with other theoretical and
experimental results to validate the method, and new results
for multilayer dielectric resonators have been provided.
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ABSTRACT: An analytical study of the optical power confinement of a
chirofiber is presented. Using Maxwell’s field equations and considering
the cases of meridional and skew modes, variation of the power con-
finement is presented in two events, viz. 1) with the change in cladding
chirality (for fixed values of core chirality), and 2) with the change in
core chirality (for fixed values of cladding chirality). Studies are made for
two different fiber core diameters, and it is found that, in general, the
power confinement in the core section reduces with the increase in its
chirality admittance. Further, the amount of transmitted power increases
with the mode index. However, as the core cross-sectional size increases,
the skew modes present almost similar behavior, and the power trans-
ported by them is much higher as compared to that by the meridional
modes. Thus, the skew modes in such chirofibers with a little larger size
present an event close to degeneracy, which is useful in integrated-optic
applications and optical-communication systems. © 2002 John Wiley
& Sons, Inc. Microwave Opt Technol Lett 32: 359-364, 2002.

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 32, No. 5, March 5, 2002 359




