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On the modeling of graphene
layer by a thin dielectric

Modeling graphene as a 2D surface having an ap-
propriate value of surface conductivityσ is an ac-
curate approach for a semiclassical analysis (e.g.,
the Drude model for intraband contributions has
been verified experimentally,1–3 and the interband
model and the visible-spectrum response have also
been verified3). However, often it is convenient to
model graphene as a thin dielectric layer, which
is easily implemented in typical electromagnetic
simulation codes. It is common to consider an
equivalent dielectric slab with the thickness ofd
and a 3D conductivity ofσ3D = σ/d. The corre-
sponding bulk (3D) relative permittivity is4

ε3D = 1+
σ

jωε0d
, (S.1)

whereω is the angular frequency. However, for
calculations in which the geometry is discretized
(e.g., in the finite-element method), fine features in
the geometry such as an electrically-thin slab de-
mand finer discretization, which in turn requires
more computational costs. Thus, whereas sub
1nm thickness values may seem more physically-
appropriate, numerical considerations often lead
to the use of a thicker material. As an example,
in Ref.4 the thickness of the dielectric slab is as-
sumed to be 1nm.

However, the accuracy of the dielectric model
degrades as the thickness of the slab increases.
Since this model is widely adopted, yet a detailed
consideration of this effect has not been previously
presented, we briefly consider this topic below.

Consider a transverse magnetic SPP on an infi-
nite graphene layer. The SPP wavelength using the
2D conductivity is5
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λSPP= λ0

(

1−

(

2
η0σ

)2
)−0.5

, (S.2)

where λ0 is the wavelength in free space. On
the other hand, in Ref.6 it is shown that a dielec-
tric slab with negative permittivity ambient in a
medium with positive permittivity can support two
sets of dielectric modes (even and odd). The odd
modes have the wavelength (assuming vacuum as
the ambient medium)

λodd= 2π
(

−
2
d

coth−1ε3D

)−1

, (S.3)

whereε3D andd are the dielectric slab permittivity
and thickness, respectively. It is shown in Ref.6

that the odd modes can exist only if

ε3D <−1. (S.4)

It can also be noticed that the modal field dis-
tribution outside of the slab is similar to that of
a SPP on graphene. It is easy to show that in
the limit of d → 0 and using (S.1), the dielectric-
slab odd mode becomes the graphene SPP mode
λodd→ λSPP. It can be shown that (S.3) is a good
approximation forλSPPonly if three conditions are
satisfied as [see the next sub-section]

d
λSPP

≪ 1, (S.5)

|σ | ≪
2

η0
, (S.6)

∣

∣

∣

σ
d

∣

∣

∣
> 2ωε0. (S.7)

Equation (S.7) is in fact the direct insertion of
(S.1) into (S.4). Based on (S.7), as theσ/d ra-
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tio increases, the dielectric slab becomes a better
approximation (as long as (S.6) is not violated).
To consider this, Fig. S.1 shows the frequency
independent error (%) of using the dielectric slab
model for graphene as a function of the normalized
d andσ (assumingσ is imaginary-valued),

error(%) =
λodd−λSPP

λSPP
×100. (S.8)
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Figure S.1: The error (S.8) as a function of the
normalized dielectric thickness and conductivity
of graphene. The graph is frequency independent.

As a numerical example (using equations (3) and
(4) in Ref.5), for d = 2nm, the scattering rateΓ =
0.215meV, and chemical potentialµc = 0.03eV at
f = 10THz and very low temperature (T = 3K),
the normalized thickness and conductivity will be
d/λ0 = 66.7×10−6 andσ = 1.1− j23µS which
leads to an error of 4.9%. This is set as the maxi-
mum error that is allowed in the rest of this work.

Proof of (S.7)

From (S.3),

coth

(

d |βodd|

2

)

=
σ i

ωε0d
−1 (S.9)

whereβodd= 2π/λodd andσ =− jσ i.
Assumingd/λodd≪ 1, (S.9) leads to

2
d |βodd|

+
d |βodd|

6
− ...=

σ i

ωε0d
−1. (S.10)

After keeping only the first term of the series in
(S.10) and using the assumptiond/λodd≪ 1 ,

|λodd|

λ0
=

σ iη0

2
. (S.11)

Comparing (S.11) and (S.2),λodd is a good ap-
proximation ofλSPPonly if

∣

∣σ i
∣

∣≪
2

η0
. (S.12)

Proof of (2)

For the anisotropic region of Fig. 1, consider a
general magnetic field in the Fourier transform do-
main as

H = e− jkyy− jkzz×
(S.13)
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whereH+,−
x,y,z are constants. Equation (S.13) is cho-

sen so that it satisfies the Helmholtz equation and
has the form of a plasmonic wave.

Using Ampere’s law to find the electric field in
each region and satisfying the boundary conditions

H+
y −H−

y = σzEz, (S.14)

H+
z −H−

z =−σyEy, (S.15)

H+
x = H−

x , (S.16)

it is straightforward to show that

H−
y =−H+

y , (S.17)

H−
z =−H+

z , (S.18)





σz jky Y 0
jkzσy 0 Z

kx jky jkz









H+
x

H+
y

H+
z



= 0, (S.19)

whereY = −2 jωε0 − σzkx, and Z = −2 jωε0 −
kxσy. Setting the determinant of the above matrix
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Figure S.2: An infinite graphene layer with
isotropic periodic conductivity ofσ(z).

to zero leads to (2).
It is easy to show that in the isotropic limit (σy =

σz = σ0), (2) simplifies to the well-known disper-
sion equations5,7 kx = − 2 jk0

η0σ0
, andkx = − jk0η0σ0

2 ,
for transverse magnetic (TM) and transverse elec-
tric (TE) surface waves, respectively. The solution
of (2) will lead to a solution for the SPP with the
magnetic field

H = e−kxx− jkyy− jkzz× (S.20)
(

x̂+
jσzky

2 jωε0+ kxσz
ŷ+

jσykz

2 jωε0+ kxσy
ẑ
)

.

In the canalization regime, the SPP given by
(S.20) is a TM mode with respect to the canaliza-
tion direction (z-direction in our notation) and its
magnetic field has a peculiar circular polarization,

H = (x̂+ jŷ)e−ky(x+ jy)− jk0z. (S.21)

It is also interesting that the confinement in the
x-direction of each SPP harmonic is proportional
to ky.

Proof of (5) and (6)

Assume a sheet of graphene with a periodic
isotropic conductivity in thez-direction (σ (z) =
σ (z+T )) as shown in Fig. S.2. Enforcing a con-
stant, uniform, andz-directed surface current(Jz)
on the graphene induces an electric field on the
graphene as

E (z) =
Jz

σ (z)
. (S.22)

Defining average parameters leads to

Eav =
Jz

σav,z
=

1
L

∫

〈L〉

Jz

σ (z)
dz, (S.23)

1
σav,z

=
1
L

∫

〈L〉

1
σ (z)

dz. (S.24)

Enforcing a constant, uniform andy-directed
electric field (Ey) induces a surface current on the
graphene as

Jy (z) = σ (z)Ey (S.25)

which is (5).
Defining average parameters leads to

Jy,av(z) = σav,yEy =
1
L

∫

〈L〉

σ (z)Eydz, (S.26)

σav,y =
1
L

∫

〈L〉

σ (z)dz, (S.27)

which is (6).

Idealized graphene nanoribbons
with hard-boundaries

An idealization of the modulation scheme dis-
cussed in the text would consist of alternating pos-
itive and negative imaginary conductivities, with
each strip terminating in a sharp transition be-
tween positive and negative values (see Fig. S.6).
We assume that all of the strips have the same
width W = 4nm and conductivity modulus|σ | =
23.5µS, which is the conductivity of a graphene
layer for f = 10THz, T = 3K, Γ = 0.215meV
and µc = 0.022eV orµc = 0.03eV (for positive
and negative Im(σ), respectively). The chemi-
cal potential is chosen to minimize the loss at the
given frequency. In fact, the ratio Im(σ)/Re(σ)
is maximized at this frequency (the ratio is 7 for
µc = 0.022eV). Since the effect of loss was dis-
cussed in the text, here we assume an imaginary-
valued conductivityσ =± j23.5µS.

3



We refer to this idealized conductivity profile as
the hard-boundary case, because of the step dis-
continuity (sharp transition) of the conductivity
between neighboring strips. This resembles the
geometry in Ref.8 for canalization of 3D waves
in which there are also hard-boundaries between
dielectric slabs with positive and negative permit-
tivites.

As a simulation example of the hard-boundary
case, two point sources are placed in front of
the source line in Fig. 1 exciting two SPPs on
the graphene layer. The point sources are sepa-
rated by 20nm= 0.15λSPP whereλSPP= 133nm
using (S.2), and the canalization area (the re-
gion between the source and the image lines)
has length 2λSPP= 250nm and width of 100nm
(which is large compared to the separation be-
tween sources). Figure S.3 shows the normal-
ized x-component of the electric field|Ex| at the
source line and image line (at the end of the mod-
ulated region). Fig. S.4 shows the normalized
x-component of the electric field above the sur-
face of the graphene (x = 5nm). Note that the re-
gion−1< x< 1nm represents the graphene (since
we have used a dielectric slab model for graphene
with the thickness of 2nm).

Canalization is evident from Figs. S.3 and S.4.
Figure S.5 shows the normalized field intensities at
the source and image lines just above the graphene
surface (x = 1nm).

Simulation setup for the hard-
and the soft-boundary examples

Full-wave simulations have been done using CST
Microwave Studio.CST In this section we consider
the dielectric model of graphene. Figure S.6 shows
the simulation setup of the hard-boundary exam-
ple. The simulation results are given in Figs.
S.3-S.5. The graphene strips can be modeled
with dielectric slabs having thicknessd = 2nm
and, using (S.1), permittivities ofε− = −20 and
ε+ = 22. However, as shown in the insert of Fig.
S.6, the permittivityε+ = 17 is used rather than
ε+ = 22 because numerical experiments show that
that value leads to better canalization. The differ-
ence with our analytically-predicted value for best
canalization is seemingly because in our analytical

Figure S.3: The normalizedx-component of the
electric field at the source (top) and image (bot-
tom) planes of the hard-boundary example. Source
and image lines are separated by 2λSPP (the re-
gion −1 < x < 1 is the dielectric slab model of
graphene).

model we have disregarded radiation, reflections
from discontinuities, and similar effects.

For the soft-boundary example, the conductiv-
ity of the strips varies smoothly with position.
So, applying the dielectric slab model, we could
use a dielectric slab with a fixed thickness (e.g.,
d = 2nm) and a position dependent permittivity
given by (S.1) as

ε3D(z) = 1+
σ (z)
jωε0d

. (S.28)

However, an alternative method which is easier to
implement for simulation is to consider a dielectric
slab with fixed permittivity (or permittivities) and
a position dependent thickness as
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Figure S.4: Normalizedx-component of the elec-
tric field above the graphene surface.
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Figure S.5: The normalizedx-components of the
electric field at the source and image lines on the
surface of the graphene (taken at the heightx =
1nm) for the hard-boundary example.

d (z) =
σ (z)

(ε3D−1) jωε0
. (S.29)

Obviously, two differentε3D values should be
chosen for different signs ofσ (z) so thatd (z) re-
mains positive. This has been done for the con-
ductivity of Fig. 3, and the resulting dielectric slab
model is shown in Fig. S.7. Comparison between
Fig. S.6 and Fig. S.7 clearly shows the differ-
ence between the hard- and the soft-boundary ex-
amples.

Figure S.6: The dielectric model of the hard-
boundary graphene strip example.

Figure S.7: The dielectric model for the soft-
boundary example - constant permitivies and
smoothly-varying thickness model graphene’s si-
nusoidal chemical potential.

The improvement of canalization
by increasing the frequency

Figure S.8 shows the ratio Im(σ )/Re(σ ) versus
chemical potential at three different frequencies,
showing that, as frequency increases, loss be-
comes less important. Note also that the value of
chemical potential that maximizes the conductiv-
ity ratio is considerably frequency dependent. In
Fig. S.9 the effect of decreasing loss as a result
of the frequency increase is invesigated. To do so,
the peak ratio Im(σ )/Re(σ ) of the three curves in
Fig. S.8 are chosen associated with frequencies
10, 20, and 30 THz. These ratios are assigned
to a same geometry (and holding frequency con-
stant) and thex-component of the electric fields are
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Figure S.8: The ratio Im(σ)/Re(σ) as a function
of chemical potential for three different frequen-
cies.

shown in Fig. S.9 (the scalings are the same). In
this way, all of the electrical lengths (such as the
electrical length of the nanoribbons, canalization
region, etc.) remain the same and only the effect
of loss is incorporated. From Fig. S.9, it is ob-
vious that the increase of frequency improves the
canalization. However, since the dimensions be-
come smaller, fabrication becomes more difficult.

Modulated graphene conductiv-
ity using a rectangular ridged
ground plane

The sinusoidal conductivity of Fig. 3 can be
implemented using a rectangular ridged ground
plane, as shown in Fig. S.10. The conductivity
distribution of the geometry in Fig. S.10 is shown
in Fig. S.11 and is almost identical to Fig. 3, al-
though their ground plane geometries are differ-
ent. Obviously, the ideal canalization behavior of
the two geometries is very similar. Interestingly,
the rectangular ridged ground plane has to be non-
symmetric (the ratio of groove to ridge is 3) to pro-
duce the same conductivity function as the sym-
metrical triangular ridged ground plane.

Figure S.9: The normalizedx-component of the
electric field above the graphene surface (x =
2nm) for the peak value of Im(σ )/Re(σ ) at 10 THz
(top), 20 THz (middle), and 30 THz (bottom).
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Figure S.10: An alternative geometry with rect-
angular ridged ground plane to realize the soft-
boundary example.
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Figure S.11: The conductivity distribution in the
geometry of Fig. S.10.
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