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Abstract—Scattering problems involving wire media are compu-
tationally intensive due to the spatially dispersive nature of homog-
enized wire media. In this work, an integro-differential equation
based on a transport formulation is proposed instead of the convo-
lution-form integral equation that directly arises from spatial dis-
persion. The integro-differential equation is much faster to solve
than the convolution equation form, and its effectiveness is con-
firmed by solving several examples in one-, two-, and three-dimen-
sions. As experimental confirmation of both the integro-differential
equation formulation and the homogenized wire medium parame-
ters, several isotropic connected wire medium spheres have been
fabricated on a rapid-prototyping machine, and their measured
extinction cross sections compared with simulation results. Wire
parameters (period and diameter) are varied to the point where
homogenization theory breaks down, which is reflected in the mea-
surements.

Index Terms—Artificial plasma, integral equations, metamate-
rial, scattering, wire medium.

I. INTRODUCTION

A N isotropic connected wire medium (ICWM) is a square
lattice of connected wires, as depicted in Fig. 1. ICWMs

can act as an artificial plasma with negative permittivity and a
relatively low (e.g., GHz) plasma frequency [1]. The basic con-
cept of a wire medium as an artificial plasma has been known
since the 1960s [2], [3]. However, recent studies have demon-
strated interesting applications which were unknown before,
as well as considerable complications arising from their spa-
tially-dispersive nature [4], [5]. Some recent applications have
included super lensing and subwavelength imaging [6]–[10],
cloaking [11], shielding [12], and antenna applications [13],
[14].
Maxwell’s equations, along with constitutive (material

related) parameters, continuity equations, and appropriate
boundary conditions, fully describe electromagnetic inter-
actions between a source and a medium. However, defining
appropriate material parameters is often difficult, especially
for metamaterials and particularly for spatially-dispersive
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Fig. 1. Depiction of an isotropic connected wire medium having period and
wire diameter .

materials. It is common to model materials which, upon ho-
mogenization, are nonlocal, in terms of a momentum-space
wavevector-dependent conductivity and/or permittivity. This
leads to convolution-type integral equations (IEs) in the space
domain, and in three-dimensions the solution of these equations
necessitates solving six-fold integrals (three over the convo-
lution variables and three over the space variables), or even
nine-fold integrals if the space-domain material parameters
cannot be obtained in analytical form. The difficulty of doing
this is likely the reason that the problem of scattering from
three-dimensional wire medium objects such as spheres has not
been presented.
In this work, building on [15] and [16], we show that for an

ICWM the problem can be formulated as a three-fold integro-
differential equation, which is much faster to solve, and we pro-
vide for the first time results for scattering from a three-dimen-
sional wire medium object, an ICWM sphere. We confirm the
presented theory experimentally by measurements of the ex-
tinction cross section of several ICWM spheres, fabricated on
a rapid-prototyping machine. We show that their measured ex-
tinction cross sections compare well with simulation results as-
suming a nonlocal homogenized material response (recast as a
drift-diffusion equation involving “local” material parameters;
a different “local” model that nevertheless encompasses spa-
tial dispersion is given in [17]). We examine experimentally the
point at which the homogenization theory breaks down as wire
period is increased. The integro-differential equation method is
also applied to one- and two-dimensional scattering problems,
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Fig. 2. Volume equivalence principle for nonlocal materials. Left side: the orig-
inal problem of a nonlocal medium having volume immersed in a local back-
ground medium. Right: the equivalent problem of a homogeneous local medium
having, within the volume , nonzero polarization and conduction currents.

and the results are verified by comparison with previous results.
In the following we are considering nonmagnetic isotropic wire
media, and the time convention (suppressed) is .

II. CONVENTIONAL/DIRECT APPROACH FOR NONLOCAL
SCATTERING PROBLEMS

Before describing the transport-based integro-differential
equation, in this a section we describe what might be called the
direct integral equation method for nonlocal materials, where
we use the term direct since it results from the basic definition
of nonlocal response. We use the volume equivalence principle
to replace a nonlocal medium (characterized by
and/or relative permittivity and having domain )
embedded in an infinite local medium characterized by
with a homogeneous space characterized by but having
equivalent volume conduction and polarization cur-
rents in the domain , as shown in Fig. 2. Note that although
the volume equivalence principle is usually applied to local and
linear materials, it is easy to show that it applies to very general
nonlocal and even nonlinear materials [18]. Although we use
the material parameters for a translationally invariant medium,
the additional boundary condition described below rigorously
accounts for the material boundary [19].
For example, assume the case of a material having a non-

local conduction and polarization response,
and , where we assume

the spatial transform pair . The corresponding space-do-
main relations are

(1)

(2)

where (1) is a generalized ohm’s law for the effective conduc-
tion response and (2) gives a similar relationship for the effec-
tive polarization response. Given that the relationship between
current and field is given in terms of a three-fold integral

(3)

where is the dyadic Green’s function defined as (63) in
Appendix D, then the convolution-type integral equations to be
solved are

(4)

and

(5)

for all , where .
Equations (4) and (5) are what we term the direct convolution

form integral equations, since they arise directly from the con-
volution forms (1)–(2). These involve computationally inten-
sive six fold integrals. Furthermore, determining the space-do-
main material parameters and from the momentum
representations and represents another three-fold in-
tegration unless the inversion to the space domain can be per-
formed analytically. In the absence of that ability, the IEs in-
volve nine-fold integrals, which may be impossible to compute
from a practical standpoint.
It is worth noting that in the much simpler local isotropic case

we have and ,
such that

(6)

and

(7)

for all . These can simply be added together to form a
single, three-fold IE

(8)

where is the combined composite
complex conductivity that describes all conduction and polar-
ization effects. Perhaps more often, (8) is expressed in terms of
a combined effective relative permittivity

as

(9)
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for all , which is the usual volume integral equation for
local penetrable scatterers [20].
Returning to the nonlocal case, we consider an ICWM con-

structed from imperfectly-conducting wires characterized by
, where and are the plasma

frequency and damping frequency of the metal, respectively.
When homogenization is appropriate (i.e., when the wire pe-
riod is much smaller than wavelength [21]), both conduction
and polarization effects can be contained in a single nonlocal
relative permittivity [1]

(10)

where

(11)

is the volume fraction of the wires, is the
wire radius, is the wire period,
is the wavenumber in the dielectric supporting the wires,

is the plasma wavenumber given by
; see

([1], (11)) for the exact expression, and ,
where

(12)

and where is the zeroth-order Bessel function. As discussed
in [1], this expression is very accurate below the effective
plasma frequency, which, for is

(13)

If differs considerably from unity the effective transverse
permittivity is not Drude-like and is given by a quadratic form
obtained from setting the transverse permittivity to zero. The
isotropic wire medium permittivity (10) reduces to the simpler
form [22]

(14)

when , i.e., as the wire conductivity becomes infinite.
The direct (conventional) method would consist of determining

and using that in the six-fold IE (5); it appears that scat-
tering from three-dimensional wire media has not been consid-
ered, likely because of this complication.

III. INTEGRO-DIFFERENTIAL EQUATION—THE
DRIFT-DIFFUSION APPROACH

In [15], a transport treatment of a nonlocal wire medium was
developed, leading to a drift diffusion equation that relates con-
duction current, electric field, and charge density as

(15)

in which is the conductivity and is the diffusion parameter.
Although the material parameters and are wavevector-in-
dependent, (15) is a nonlocal expression since the gradient sam-
ples the spatial region near the point [16]. For the ICWM, the
equivalent conductivity and diffusion parameters are [15]

(16)

(17)

In this formulation, the response of the wire medium is the con-
duction response, and if the wires are in the same material as
the background environment there is no polarization
response, in which case, using (15), Maxwell’s equations, and
continuity equation, we obtain

(18)

for all . We refer to this as the drift-diffusion (DD) result.
This integro-differential formulation involves only three-fold
integrals, and differentiation. For solutions involving the ex-
pansion of the conduction current in a set of basis functions,
taking the derivative of the basis functions is very easy to
implement; obviously, the chosen basis function should be
twice-differentiable.
If the wires are supported by a material having permittivity

different than the background permittivity, thenwe need to solve
the coupled DD system [15]

(19)

(20)

for all , where

(21)

In terms of complexity, these are three-fold equations, although
they are coupled as also occurs for the local case of both permit-
tivity and permeability contrast [23]. Note that these equations
reduce to the usual local integral equations when .
In solving both the convolution-form IEs (4)–(5) and the

transport-based DD form (18) or (19)–(20) the additional
boundary condition that needs to be enforced is (see, e.g., [24],
[1], [15])

(22)

where is the unit vector normal to the surface of the region .
In Sections IV-A and IV-B, we solve one-dimensional and

two-dimensional examples involving both polarization and con-
duction current, and in the three-dimensional sphere examples
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Fig. 3. Wire medium slab with host relative permittivity of in air.

we assume and therefore need to consider only con-
duction current, to avoid unnecessary complications and con-
centrate on the validation of the method. For the one-dimen-
sional example the new approach leads to a closed form ana-
lytical solution even though there are coupled polarization and
conduction currents. In Section IV-B, we show that for a two-di-
mensional wire medium slab the new approach gives the same
results as the analytical solution in [1]. In Section IV-C, we
apply the formulation to the three-dimensional problem of a
sphere of wire medium with different size and wire parame-
ters, and we compare the result with a nonlocal Mie theory and
measurement. The strong advantage of this new formulation is
that for geometries other than spheres the integro-differential
formulation yields a tractable method only involving three-fold
integrals (of course, nonlocal Mie theory can only be used to
validate the sphere geometry).

IV. EXAMPLES

A. One-Dimensional Example

A one-dimensional example based on the new transport for-
mulation was considered in [15], and here we briefly summarize
the result, as well as compare with a different method of solu-
tion. Consider a slab of ICWM extending to infinity in the -
and -directions, and extending from L to L in the z direction,
as shown in Fig. 3.
We assume a quasi-static incident field which is constant

and -directed; this can be considered to be the field between
capacitor plates far-removed from the slab. The wires are im-
mersed in a dielectric host medium having relative permittivity
. For this geometry, solving the DD equations (19)–(21) leads

to (23) and (24) for equivalent conduction current and charge
density inside the wire medium slab (see Appendix A),

(23)

(24)

in which and are given by (16) and (17), respectively. For
perfect electrical conductor (PEC) wires, (23) and (24) simplify
to

(25)

(26)

There does not seem to be a previous one-dimensional wire
medium case with which to compare this solution. However,
to demonstrate the applicability of this method we can con-
sider a different diffusive (i.e., spatially-dispersive) material, an
n-type semiconductor. This has been considered in [25] under
the same excitation as in Fig. 3. There, the solution was ob-
tained by numerically solving coupled transport-Poisson (TP)
equations. Here we consider the same material except using the
proposed drift-diffusion model. For a semiconducting slab, (23)
and (24) are valid using [16]

(27)

(28)

where is the effective electron mass, is the donor doping
density, is temperature in Kelvin, is Boltzmann’s constant,
and is the damping frequency. We consider a slab having
thickness nm and THz, with

THz, ( is the free-space electron
mass), K, and V/m, which corresponds to
the example in [25].
Fig. 4 shows the real part of the charge distribution for three

different dopant concentrations using (24) and its comparison
with the results reported in [25] using a numerical solution of
the coupled transport-Poisson equations. It is evident that the
two methods are in complete agreement.

B. 2-D Example

As a two dimensional example, consider the geometry de-
picted in Fig. 5, where a TM-polarized wave is obliquely inci-
dent with angle of on a slab of wire medium with equivalent
parameters and .
After reducing (18) to two dimensions and using the colloca-

tion method we can find the induced current inside the slab and
thus the scattered (reflected and transmitted) field. The reduced
2-D equations are

(29)



3568 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 7, JULY 2013

Fig. 4. Real part of the charge distribution inside a nonlocal semiconductor slab
for three different dopant densities using the drift diffusion formulation and the
coupled transport-Poisson formulation [25].

Fig. 5. Wire medium slab infinite in the - and -directions.

(30)

where

(31)

(32)

These were solved using the basis functions

(33)

(34)

Fig. 6. Comparison of the transmission coefficient of a wire medium slab using
the integro-differential drift diffusion method and the wave expansion method
of [1].

Fig. 7. Internal field of a wire medium slab using the integro-differential
drift diffusion method and the wave expansion method of [1].

Fig. 6 shows the transmission coefficient as a function of
for a slab thickness of 276 nm, THz, ,

wire period nm, nm, and wire permittivity
using the drift diffusion formulation and the

wave expansion method detailed in [1]; that approach [1] was
to use (10) for permittivity and to define induced and scattered
fields inside and outside of the slab with unknown coefficients,
and match the boundary conditions.
As a more general example, let us assume that the host dielec-

tric of the wire medium has permittivity . In this case
we need to solve the coupled system of equations (19)–(21).
The resulting two-dimensional formulation and basis function
expansions are given in Appendix B. The internal electric fields
of this slab are shown in Figs. 7 and 8, which demonstrate that
the presented method is in complete agreement with the method
of [1].

C. 3-D Example (Spherical Objects)

The two-dimensional example has been solved in the past
using other methods. The most significant aspect of the pre-
sented formulation is the ability to solve three-dimensional
wire-medium problems, which have not been previously
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Fig. 8. Internal field of a wire medium slab using the integro-differential
drift diffusion method and the wave expansion method of [1].

Fig. 9. Wire medium spheres fabricated using a rapid prototyping machine. All
spheres have 50-mm diameter except the far-right sphere, which has diameter
25 mm.

treated. Towards this end, we consider spherical geometries
since they are perhaps the simplest three-dimensional case, and
they also admit a nonlocal Mie solution [26] which can be used
for comparison. Of course, the presented integro-differential
formulation is applicably to three-dimensional objects having
arbitrary geometries, whereas the nonlocal Mie solution we use
for comparison is only applicable to spheres.
1) Formulation: We consider an isotropic wire medium with

an air host, and solve (18). In Appendix C, it is shown that any
realizable electromagnetic vector quantity inside a nonlocal ma-
terial can be expanded in terms of

(35)

(36)

(37)

in which

(38)

(39)

(40)

(41)

where is the associated Legendre polynomial and is
the radial vector in spherical coordinates; .

These set of functions form a complete set in space
where . The functions can be set to zero
for expansions of magnetic fields, but are necessary for electric
fields and conduction current expansions for .
Assuming that the incident field is -directed and is propa-

gating in the -direction, we may simplify (38) and (39) as [27]

(42)

(43)

Therefore, a complete expansion for the conduction current is

(44)

After inserting (44) into (18) and using the point matching tech-
nique, the unknown expansion coefficients , can
be found (more details are provided in Appendix D).
The obtained current is then used to calculate the scattered

field using (21). The extinction cross section of the object
can be found using the optical theorem [28], which expresses the
extinction cross section of an arbitrarily shaped object in terms
of the forward scattered electric field:

(45)

where is the far scattered field in the forward direction co-po-
larized with the incident field, and is the wavenumber in the
host medium external to the scatterer. The optical theorem is
usually proved for objects consisting of local materials, but it is
simple to repeat the same derivation for nonlocal materials.
2) Simulation and Measurement Results: For comparison

with the presented theory, wire medium spheres were fabri-
cated using a rapid prototyping machine (dimension Elite 3-D
Printer). The resulting “wires” are P430 ABSplus, which is a
plastic material with (measured in our lab at 2.7 GHz
using a split post dielectric resonator (SPDR) [29]). The re-
sulting wire mesh is self-supporting, and is coated with silver
paint [30] to form conducting wires. This process results in a
several micron thick conductive layer on the insulating “wire”
support, so we can consider the resulting wires as PEC at mi-
crowave frequencies.
Six different wire medium spheres are examined in this sec-

tion, as shown in Figs. 9–11. For convenience, we designate
each sphere with a three part label in which
#1 is the sphere diameter, #2 is the wire period, and #3 is the wire
diameter, all in millimeters. For example, D50a4d1 indicates a
sphere with diameter 50 mm, wire period 4 mm, and wire diam-
eter 1 mm.
Note for purposes to be discussed later we fabricated two dif-

ferent D50a12d2 spheres as shown in Fig. 11. To distinguish
between these we labeled one of them with an extra “C” at its
end (i.e., D50a12d2C), which indicates that it has wires crossing
at the center. Fig. 11 clarifies the difference between D50a12d2
and D50a12d2C.
The experimental configuration is shown in Fig. 12, con-

sisting primarily of an anechoic box (C), two x-band horns (A),
and an E8361A Agilent network analyzer (D). A Styrofoam
pedestal (F) is used to support the sphere, and strings (B) are
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Fig. 10. Close-up of the 50-mm and 25-mm wire medium spheres, both having
period 4 mm.

Fig. 11. Close-up of the D40a12d2 and D40a12d2C spheres. Both have the
same diameter, period, and wire thickness, but the latter sphere (C) has wires
crossing at the center, whereas the other sphere does not.

Fig. 12. Measurement setup. A: x-band horn antennas, B: strings for alignment,
C: microwave absorbers, D: E8361A Network analyzer, E: height adjustment,
F: WM sphere on a Styrofoam pedestal.

used to align the object between the horns. After measuring the
forward scattered field using a 25-mm diameter brass sphere for
calibration, the optical theorem (45) is used to find the extinction
cross section, which is the same as the scattering cross section
in our case since the spheres are considered lossless. In order
to validate the measurement setup, we considered a variety of
metal and plastic spheres of different sizes. In all cases very

Fig. 13. Normalized measured and theoretical extinction cross sections of the
D50a4d1 wire medium sphere and of a plastic sphere.

good agreement with the known extinction cross section was
found (one such validation is shown in Fig. 13).
Fig. 13 shows the result of the measurement for the D50a4d1

sphere, and its comparison with the integro-differential DD
method (18) using eight expansion terms, a nonlocal Mie
theory solution [26] (some simple algebra allows us to express
the parameters in [26] in terms of the diffusion constant and
conductivity used here. For convenience, the final expressions
for the nonlocal Mie coefficients are given in Appendix E), and
a finite-difference time domain commercial code (Lumerical,
[31]). We also show the result from a local Mie theory (setting

), which is not expected to be accurate but which we in-
clude just to show the influence of spatial dispersion. In Fig. 13,
we also include, as validation of the measurement procedure, a
comparison between measurement and Mie theory [27] for an
ABSplus solid plastic sphere (which is a local material), also
fabricated by the rapid prototyping machine. Measurements
are only shown for 7–14 GHz, which is the approximate range
of the horn antennas. Results are normalized by twice the
geometric cross-sectional area of the spheres ( is the
radius of the sphere), which is the high-frequency asymptotic
value for PEC spheres [27].
From Fig. 13 it can be seen that the integro-differential DD

formulation is in excellent agreement with the nonlocal Mie re-
sult (which can be considered to be an exact analytical solution
for the homogenized problem), and these are in good agreement
with the measurement. The local treatment of the wire medium
(e.g., ignoring the wavevector dependence of the permittivity,
or, equivalently, setting the diffusion parameter ) is seen
to be in poor agreement with the nonlocal theory and measure-
ment, highlighting the importance of spatial dispersion for this
problem.
The FDTD commercial package was run on a 142 node com-

puter cluster for the actual wire mesh sphere. However, it did
not generate very accurate results, although great effort was
made to obtain a convergent solution. Extensive numerical tests
of spheres at various frequencies and for different wire periods
showed that in some cases the FDTD solution more closely re-
sembled the local solution, and in other cases it more closely
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Fig. 14. Normalized measured and theoretical extinction cross sections of the
D25a4d1 sphere.

resembled the nonlocal solution—the FDTD solution was often
between the local and nonlocal results. We are not sure why the
FDTD solution was inaccurate, although it can be noted that the
geometry is relatively complex. Lumerical technical support in-
dicated that our FDTD model was correct, and should produce
accurate results. Grid spacing was 0.1 mm, which is at
14 GHz. We attempted to use other commercial codes for com-
parison as well, but these were not installed on the cluster and
we did not have enough memory to run the simulations.
As a rough estimate of computation times, the Mie solution

can be considered as essentially instantaneous, the integro-dif-
ferential equation solution requires a few minutes for calcula-
tion, and the FDTD method typically takes 6–8 hours on the
142-node computer cluster.
Fig. 14 shows similar results for the D25a4d1 sphere; note

that in this case the normalized cross-section approaches its
asymptotic value at approximately 5 GHz, as compared to 2
GHz for the larger sphere. Also, since this sphere is smaller,
we only need four terms in (44) to solve the integro-differen-
tial DD equation. For this smaller sphere the agreement be-
tween nonlocal theory and measurement is still fairly good, but
is somewhat poorer than for the larger 50-mm sphere. We at-
tribute this to the fact that the larger sphere forms a relatively
smoother spherical surface compared to the 25-mm sphere, in
the sense that the ratio of wire period to cross-section circum-
ference is larger for the smaller sphere. As a result,
the small sphere has a relatively rougher surface than the larger
sphere, resulting in something of a “stair casing” effect.

V. EFFECT OF WIRE PERIOD: BREAKDOWN OF

HOMOGENIZATION

The derivation of the equivalent diffusion parameter and con-
ductivity of the ICWM in [15] is based on the ICWM permit-
tivity [1]. This is derived assuming that where is the
wire lattice period and is the wave number. The Bragg con-
dition leads to , which leads to the Bragg
frequency . We expect the homogenized model to
break down as the wire period increases enough to violate this
Bragg condition. Furthermore, it is discussed in [15] that (10)

Fig. 15. Normalized measured and theoretical extinction cross sections of the
D50a8d2, D50a12d2, and D50a12d2C spheres. Because of the large wire pe-
riods, homogenization theory becomes inapplicable in most of the measurement
range.

looses accuracy above the effective plasma frequency (13) [al-
though a more complicated nonlocal permittivity can be used
instead of (10), restoring accuracy above the plasma frequency
[1], here we simply use (10)]. In the following, different wire pe-
riods are considered and measurement results demonstrate that
the homogenization approximation indeed starts to breakdown
with increasing period, as expected.
To consider the breakdown of the homogenized isotropic per-

mittivity, Fig. 15 shows measurement results for the D50a8d2,
D50a12d2, and D50a12d2C spheres for the incident wave angle

(wires are parallel to , , and axes). Although
not previously discussed, for the smaller period ( mm)
spheres considered above the angle of the incident wave with
respect to the wire orientation did not affect the measurement
results, verifying that the material acts like an isotropic wire
medium as expected (this is discussed in further detail below).
However, for larger periods this is not the case, and so here we
specify the orientation angle with respect to the wire axes. Com-
paring with Fig. 13, it is evident from Fig. 15 that for larger
wire periods the agreement between theory and measurement
becomes poorer at a much lower frequency than for the
mm wire sphere, due to the lower plasma and Bragg frequen-
cies. For mm and mm these are GHz
and GHz, and for mm and mm,

GHz and GHz. For comparison, in
Fig. 13 where the homogenization model is valid parameters are

mm, mm, GHz, and GHz.
Similarly, in Fig. 14, mm, mm, GHz,
and .
Finally, we consider the angle dependence of the wire

medium spheres. Fig. 16 shows the measured extinction cross
section for the D50a8d2, D50a12d2, and D50a12d2C spheres
for different angles of the incident field with respect to the wire
orientation. Two wire orientations are considered, and

(wires are aligned along the , , and axes).
Clearly, for the larger period spheres there is considerable angle
dependence, whereas for the mm period sphere there is
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Fig. 16. Normalized measured extinction cross section of the D50a4d2,
D50a8d2, D50a12d2, and D50a12d2C spheres showing the angle dependence
for the spheres having larger periods.

no angle dependence except at the highest measurement fre-
quencies. Furthermore the D50a12d2, and D50a12d2C spheres,
which have the same wire period and diameter but differ in
their wire placement, show different responses. Again, this
is indicative of a breakdown of homogenization theory when
frequencies approach the plasma and Bragg frequencies.

VI. CONCLUSION

A new integro-differential equation was proposed for solving
scattering problems involving wire media, allowing the first
treatment of three-dimensional wire medium objects. The in-
tegro-differential equation was shown to be efficient and accu-
rate via comparisons with other results for the 2-D case, and
nonlocal Mie theory and measurements for the 3-D case. In the
1-D case the integro-differential equation led to an analytical
solution. For 3-D spheres, the effect of wire period and diam-
eter was investigated experimentally in a range of parameters
that demonstrated the expected breakdown of homogenization
for large wire period.

APPENDIX

A. Proof of (24)

Reducing (19)–(21) to one dimension,

(46)

Using (70) and (71) of [15], (21) simplifies to

(47)

and upon substituting (47) into (19) and (20) and simplifying,

(48)

The solution of (48) subject to the boundary condition
is (23), from which (24) is found

by use of the continuity equation.

B. 2-D Coupled Polarization and Conduction Currents

For the case of a conduction and polarization response, the
reduction of (19)–(21) to two-dimensions is

(49)

(50)

where . The basis functions used were

(51)

(52)

C. Scalar Functions (38) and (39)

In [32] it is shown that if are eigenvectors of the
scalar Helmholtz equation with eigenvalues of and , re-
spectively, then , and function as in (35)–(37) will form
a complete set of functions in their respective space of func-
tions satisfying the same boundary conditions (note that the pilot
vector is set to be ). Also, [32]

(53)

(54)

Therefore, we need to show

(55)

(56)
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Starting from the drift diffusion equation (17) and using
Maxwell’s equations, it is straightforward to show

(57)

(58)

(59)

By comparing (58) with (53), it is evident that is (56) since
can be expanded in terms of and functions.
If we substitute for in (59) (we can do this since the

and functions in the expansion make the left hand side of
(59) zero),

(60)

and using (54)

(61)

so that

(62)

Comparing (62), (57), and (54) results in (55).

D. Solution of (18)

Since the basis functions in (44) are obtained so that they
satisfy the wave equation for nonlocal materials, we can solve
(18) for one component (for example, the or component)
to obtain the unknown coefficients in (44). Here we pick the
directed component for two reasons:
1) none of the terms in (18) will be set to zero;
2) the depolarizing dyadic contribution vanishes (as shown
below), simplifying the calculation.

The dyadic Green’s function is

(63)

where . In the volume integral in (18), if we find the
principal value of the integral by excluding a disc with thickness
around point the inside the sphere of radius , the in-

tegrals become , and the
depolarizing dyadic will be [33] , and therefore

.
Plugging (44) into (18) and simplifying, we have

(64)

in which

(65)

(66)

(67)

(68)

E. Nonlocal Mie Coefficients

The nonlocal Mie coefficients from [26] are

(69)

in which

(70)

(71)

where , and is the ra-
dius of the sphere, is the relative permittivity of the dielectric
host environment of the wires, is the relative permittivity of
the medium surrounding the sphere, is the spherical Bessel
function, and is the spherical Hankel function of the second
kind. The usual local Mie theory is obtained by setting .
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