
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 9, SEPTEMBER 2012 4219

Modeling of Spatially-Dispersive Wire Media:
Transport Representation, Comparison With Natural
Materials, and Additional Boundary Conditions

George W. Hanson, Fellow, IEEE, Ebrahim Forati, Student Member, IEEE, and Mário G. Silveirinha, Member, IEEE

Abstract—Natural and artificial wire materials exhibiting spa-
tial dispersion are considered using a transport (drift-diffusion)
model. The connection between drift-diffusion and electron trans-
port in naturalmaterials is highlighted, and then applied to various
forms of wire media, leading to the definition of effective conduc-
tivity and diffusion parameters that characterize the material. It
is shown that the effective material parameters lead to a Debye
length that provides a quantitative measure of the strength of spa-
tial dispersion for wire mediums. Further, it is shown that Pekar’s
additional boundary condition applies in many instances to nat-
ural materials as well as artificial wire media, and can be derived
from elementary electromagnetics.

Index Terms—Diffusion, metamaterial, plasma, wire medium.

I. INTRODUCTION

N ATURAL optical activity, bianisotropy, and excitonic ef-
fects are associated with spatial dispersion (non-locality)

in many natural solids [1]–[3], where the effect is often quite
small far below the plasma frequency at room temperature,
but may be important either at very low temperature (e.g.,
the anomalous skin effect [4]), or near the plasma frequency
(e.g., ordinary metals [3] and excitonic semiconductors). Al-
though many natural materials have plasma frequencies in
the optical or ultra-violet, low-density plasmas and semicon-
ductors, and many artificial materials such as wire media,
have effective plasma frequencies in the GHz or THz range.
Particularly because of the emerging importance of wire media
for GHz through mid-THz applications, the concept of spatial
dispersion has gained great importance in the engineering
electromagnetics community, for both bulk and surface effects
[5]–[14]. Furthermore, it has been shown that wire media may
enable manipulating, transporting and measuring the near-field,
subwavelength imaging, and complex operations such magni-
fication and demagnification [9]–[12].
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Preliminary investigation of the transport model for artificial
materials was presented in [15]. The main ideas of this paper
are 1) to further develop and discuss the transport/drift-diffusion
model for several types of wire metamaterials, both isotropic
and anisotropic, including a new double mesh form, 2) to com-
pare the degree of spatial dispersion in natural and artificial
materials using an effective Debye length as a quantitative mea-
sure, and 3) to discuss a fairly general additional boundary con-
dition that is applicable to a wide class of natural and artifi-
cial materials. We present a simple one-dimensional example
with closed-form solution that highlights these topics, and also
present a new solution of transmission through a double wire
mesh medium.

II. TRANSPORT MODEL OF NATURAL AND
ARTIFICIAL MATERIALS

A. Natural Materials – Plasmas and Semiconductors

For natural materials the drift-diffusion equation arises from
a series of approximations of basic transport processes. In the
following we briefly review the main assumptions in deriving
the drift-diffusion equation for natural materials, since this is
helpful to interpret the range of validity of the formulation. Fur-
thermore, this leads to the transform-domain permittivity (17)
needed in the next section.
We assume semi-classical transport governed by the Boltz-

mann equation, such that for charge species we can define
a distribution function that satisfies Boltzmann’s
equation. Conservation of charge (continuity equation) and
conservation of momentum (transport equation) are derived by
taking moments of Boltzmann’s equation [16, Ch. 8]. The first
moment leads to the continuity equation

(1)

where is the charge density,
is the number density, and

is
the conduction current density ( is average velocity).
The transport equation is obtained from the second moment

of Boltzmann’s equation [16],

(2)

0018-926X/$31.00 © 2012 IEEE



4220 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 9, SEPTEMBER 2012

where , with being the mean-square velocity

of the charge carrier. For plasmas

but for good metals , where is the electron
Fermi velocity. In deriving (2) we have ignored gravity, and
magnetic field effects in the Lorentz force (thus we assume no
large magnetic bias field) compared to the much stronger elec-
tric force. Further, in obtaining (2) the kinetic pressure dyad
has been approximated as , where is the
scalar kinetic pressure [16, pp. 149–152, 202]; this approxima-
tion closes the system of equations, and corresponds to ignoring
tangential shear/viscous forces (off-diagonal elements of )
and assuming an isotropic particle velocity distribution. More
generally, the term is expressed as . Finally, we
have assumed that collisions are represented by a phenomeno-
logical relaxation time .
The transport equation is nonlinear, and the next step in de-

riving the drift-diffusion equation is to linearize the transport
equation, writing

(3)

where is a small deviation from the equilibrium density
(i.e., when , , associated with the equi-
librium Fermi distribution) induced by the small applied field

. The resulting (drift) velocity is small, and
the transport equation becomes, upon discarding second- and
higher-order terms,

(4)
where and the linearized current is

(5)

The charge density is constant in space and time; it is only
for this linearized form that a time-harmonic electric field will
maintain a time-harmonic current (via time-harmonic velocity
), and time-harmonic excess number density . Writing

(6)

(7)

(8)

we have, using , the drift-diffusion equation

(9)

(10)

where

(11)

The term associated with diffusion is clearly nonlocal, since the
gradient samples the charge in a neighborhood of .

The linearized continuity equation is

(12)

and therefore the drift-diffusion equation becomes

(13)

( is the identity dyadic) such that

(14)

Transformation into the spatial transform plane ( ) leads
to , where [15]

(15)

The dielectric response of the material is determined not only
by the drift and diffusion currents associated with the free car-
riers, but also by the polarization current stemming from the os-
cillations of the bound charges. In the following we will assume
that the polarization response is local and isotropic (although a
non-local polarization response can easily be accommodated),

(16)

where is the relative permittivity of the medium.
From Ampère’s law in the spatial transform domain, the com-
plex effective permittivity that accounts for conduction and po-
larization is

(17)

such that the complex effective susceptibility is

(18)
In the next section we show that various forms of wire media
have the same form for the permittivity, allowing the definition
of an effective conductivity and diffusion coefficient for wire
media.
For two charge species (e.g., electrons and ions),

(19)

where the interactions among charge species comes from
being the self-consistent field.We see later that for a double wire
mesh system we obtain the same form for the permittivity.
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It is also sometimes convenient to separate transverse and
longitudinal components with respect to ,

(20)

In particular, the above separation is useful in considering an-
other example of a natural material for which spatial dispersion
is important, an excitonic semiconductor (ESC), wherein exci-
tons (quasi-particles) form from Coulomb-interacting electrons
and holes that are bound into pair states. In this case the longi-
tudinal dielectric function is [17], [18]

(21)

where and is the transition
frequency (frequency to create the exciton). From (20), longitu-
dinal fields satisfy

(22)
such that

(23)

The constitutive relations implicit in (21) and (22) can be made
to be the same if

(24)

(25)

wherein we identify the material’s conductivity and diffusion
parameter. In Section III these materials will be considered fur-
ther.
Finally, taking the divergence of (4) and using the continuity

equation and Gauss’s law, we obtain the charge screening equa-
tion

(26)

where

(27)

is essentially the square of the Debye wavenumber (usually the
Debye wavenumber is defined for such that

[16], [19]). This wavenumber will be of interest in the
following.

B. Artificial Materials

Maxwell’s equations are linear, and so a time-harmonic
current results in a time-harmonic field ( , ) from Ampère’s
and Faraday’s laws, and a time-harmonic total charge from

Fig. 1. Homogeneous, isotropic metamaterial consisting of a triple array of
connected metal wires.

Gauss’s law. However, as noted in the previous section, a
time-harmonic current in a material region implicitly implies
linearized charge transport. Furthermore, at the “microscopic”
level for metamaterials (before homogenization, at the level
of the constituent parts), it is usually assumed that
for conductors, and for dielectrics. Therefore, in the
microstructure of the material we are implicitly making the
same assumptions as listed above for the simplified transport
equation (since we are also ignoring diffusion in
the microstructure, which for the case of metals is typically a
very good approximation). From this starting point the meta-
material architecture (wire medium, split-ring resonator, etc.)
is homogenized, which may lead to new properties not found
in the constituent components, but which must be consistent
with the microstructure assumptions (e.g., if we accounted for
shear forces in the microstructure, we would have a different
permittivity for the metamaterial).
In the following we show that various wire mediums can

be modeled by a drift-diffusion equation at the macroscopic
level, in terms of effective parameters that implicitly arise from
the particular model of the microstructure. In the appendix we
present the coupled integral-differential equations that describe
scattering and resonator problems based on this approach.
1) Isotropic Connected Wire Mesh: Consider a connected

isotropic wire medium (CIWM) as depicted in Fig. 1, con-
structed from imperfectly-conducting wires characterized by

, where and are the plasma
frequency and damping frequency of the metal, respectively.
The permittivity of the homogenized medium is [20]

(28)
where

(29)

is the volume fraction of the wires ( is the
wire radius, is the wire period),
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is the wavenumber in the host medium, is the
plasma wavenumber (

; see [20, (11)] for the exact expres-
sion), and , where

(30)

and where is the zeroth-order Bessel function. As discussed
in [20], this expression is very accurate below the effective
plasma frequency. For the effective plasma frequency is

(31)

although if differs considerably from unity the effective
transverse permittivity is not Drude-like and the effective
plasma frequency is given by a quadratic form obtained from
setting the transverse permittivity to zero. For the
effective plasma frequency is in the low THz except for
the very thinnest wires. The isotropic wire medium permittivity
(28) reduces to the simpler form [21]

(32)

when , i.e., as the wire conductivity becomes infinite.
Equating (17) to (28) we see that the connected wire medium

can be represented by a drift-diffusion model

(33)

for effective conduction current, with effective conductivity and
diffusion coefficient

(34)

(35)

For perfectly-conducting wires,

(36)

where is the phase velocity in the nondis-
persive host. Note that is pure imaginary, and so
this effective conductivity represents an inductive effect due to
the PEC wires. The diffusion coefficient is also
pure imaginary, and, comparing to (11), is analogous to the case

for natural materials. In the PEC case the diffusion
coefficient is insensitive to varying the wire medium period
and weakly sensitive to the value of . The effective conduc-
tivity is sensitive to the wire medium parameters via the plasma
frequency.

Fig. 2. Homogeneous, isotropic metamaterial consisting of two wire meshes
of triply-connected metal wires. The distance between the two nonconnected
networks is .

To complete the analogy, for lossless materials (plasma or
metals), (4) can be written as

(37)

where is the square of the plasma frequency
and is the appropriate electron velocity, for plasma
or for good metals. The analogous transport equation for a
PEC wire mesh is

(38)

where is a typical value. Capacitive loads can be used
to reduce or eliminate spatial dispersion in wire media [7], [22],
although this effect is not considered here.
2) Isotropic Connected Double Wire Mesh: An alternative

topology for the wire mesh network, which in a certain sense
generalizes the one discussed in the previous sub-section, is de-
picted in Fig. 2. This metamaterial consists of two independent
networks (mesh and mesh ), with each network being an
isotropic connected wire mesh, analogous to the one shown in
Fig. 1. The period of each wire mesh is . The electrodynamics
of this artificial medium were discussed in [23], where it was ar-
gued that the effective medium is non-Maxwellian in the sense
that in the low-frequency limit it may support more than two
plane waves for a fixed direction of propagation. However, no
model for the effective dielectric response was proposed in [23].
This will be done in what follows.
The general calculation of the effective response of the

isotropic connected double wire mesh is not a simple matter,
because the two wire meshes can be strongly coupled. Here,
we restrict our attention to the case in which the wire meshes
are interleaved in such a manner that the distance between
adjacent wires in the different meshes is . Moreover, for
simplicity, we only discuss the case wherein the host material
is air ( ), and the wires are PEC.
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For a given external excitation, let and represent
the microscopic (conduction) currents in mesh and , respec-
tively. The macroscopic (averaged) polarization current associ-
ated with mesh is thus , where
is an operator that performs a spatial averaging (

is defined in the same manner). The operator may
represent, for example, an ideal low pass spatial filter that re-
moves the fluctuations of the fields that occur in a scale smaller
than the unit cell [24]. In general, the microscopic currents in-
duced in mesh ( ) depend on the currents induced in mesh
( ). Since in our case the two meshes are (from a geo-

metrical point of view) as far as possible from each other, it is
reasonable to suppose that the fields radiated by the currents in
mesh , , calculated over mesh , are approximately the
same as the fields that would be radiated by the macroscopic
current distribution associated with mesh , . Notice that
such an assumption is equivalent to stating that the two meshes
are not very strongly coupled in the near-field, so that the influ-
ence of one mesh on the other can be regarded as a macroscopic
excitation.
But for any macroscopic external excitation, we know that

the macroscopic response of the mesh is such that
where represents the macroscopic (spatially

averaged) electric field, and is the effective dielectric func-
tion of mesh A (when mesh is absent). Similarly, under the
same conditions, we have , where is
the effective dielectric function of mesh (when mesh is ab-
sent). Therefore, since ,
the effective response of the system formed bymesh andmesh
is simply

(39)

We emphasize that the derived result is exact under the assump-
tion that the action of one mesh on the other can be seen as
a macroscopic excitation, or equivalently that only the smooth
(slowly varying) part of the fields radiated by one of the meshes
influences the currents on the other mesh. It should be clear that
the derived result is the metamaterial analogue of the dielectric
function of a natural material with a conductive response de-
termined by carriers of two species, (19). Obviously, we may
rewrite the effective dielectric function as

(40)

where,

(41)

and

(42)

where and are the plasma wavenumbers of mesh
and , respectively, and and are the parameters that
characterize the effects of spatial dispersion. These parameters
are defined consistently with the formulas of Section II-B.I, and
depend on the values of the wire radii ( and ), which can

be different for the two wire meshes. Evidently, the transverse
permittivity (41) can be recast into the simpler form

(43)

The wave number is the effective plasma wave number,
which is always higher than the plasma wave numbers of the in-
dividual networks, as a result of their electromagnetic coupling.
3) Isotropic Non-Connected Wire Medium: We can also con-

sider a non-connected isotropic wire medium (NCIWM), where
the wires do not intersect [21]. The homogenized permittivity in
this case, for perfectly conducting wires, is

(44)

This case does not fit a simple isotropic diffusion model (9), but
it does fit three scalar diffusion equations. For example, consider
a -directed wire and assume , such that

(45)

where is charge density in the -directed wire. Then, the drift-
diffusion equation is

(46)

such that

(47)

Repeating for wires along the other coordinate directions and
equating to (44),

(48)

The effective conductivity of the connected and non-connected
wire mediums are the same, but the diffusion coefficients differ
by a factor of order one. Therefore, the non-connected wire
medium effective permittivity is

4) Anisotropic Uniaxial Wire Medium: For a uniaxial wire
medium (UWM) consisting of unidirectional, perfectly-con-
ducting parallel wires, as depicted in Fig. 3 the homogenized
permittivity is [5]

(49)

where

(50)
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TABLE I
COMPARISON BETWEEN CONDUCTIVITY AND DIFFUSION CONSTANTS FOR VARIOUS NATURAL AND ARTIFICIAL MATERIALS

TABLE II
COMPARISON BETWEEN CONDUCTIVITY AND DIFFUSION CONSTANTS FOR VARIOUS NATURAL AND ARTIFICIAL MATERIALS AT

Fig. 3. Anisotropic wire medium.

This is the same as for the nonconnected wire medium, except
for the absence of the terms involving and . Therefore,

(51)

For imperfectly-conducting wires characterized by in air
( ), is replaced by , where

(52)

is related to loss [22], with a corresponding change to the ex-
pressions for and . The same expression applies to carbon
nanotubes with a change in the value of [25].

III. COMPARISON OF TRANSPORT PROPERTIES OF NATURAL
AND ARTIFICIAL MATERIALS: QUANTITATIVE MEASURE OF

SPATIAL DISPERSION

It was shown in the previous sections that plasmas, semicon-
ductors (and metals in the hydrodynamic approximation), and
various forms of wire metamaterials can be represented in a
common transport/drift-diffusion framework. It is worth noting
that the diffusion coefficient itself provides a measure of the im-
portance of non-locality, since in the limit the material

is local. Since artificial materials often have significant spatial
dispersion effects at relatively low frequencies, it is worthwhile
to compare the conductivity and diffusion coefficient for some
representative materials, both natural and artificial. The conduc-
tivity and diffusion coefficient for semiconductors and plasmas
are given in (11).
In the following, for semiconductors (SC) we assume

, , and . For
metal we assume gold, with ,

, and .
For the wire medium (connected (CIWM) and non-connected
(NCIWM); perfectly conducting wires are denoted by PEC)) we
assume , and , so that
( ). For the imperfectly-conducting wires,

where and
. Table I shows results at , and Table II

at .
It can be seen that the normalized diffusion coefficient

is relatively small for the semiconductor and gold materials, and
relatively large and imaginary for the wire media, thus con-
firming the importance of spatial dispersion for wire media.
However, more important than the individual and values
is the Debye wavenumber , (27), which is associated with
charge screening and which occurs in the longitudinal problem
described in Section V, discussed later. The Debye length is

, and the Debye length normalized to wavelength is
shown in the tables. The real-part of the Debye length provides
a measure of the distance over which fields are screened by mo-
bile charges. It can be seen that for the wire media, fields are not
screened well (although as decreases, screening improves as
shown in Section V), leading to important spatial dispersion/dif-
fusion effects well into the bulk of thematerial (at least hundreds
of wavelengths into thematerial). For the natural materials listed
in the tables and macroscopic size regions, diffusion effects will
only be important very near the material boundaries, but for
nanoscopic material regions diffusion can influence fields in the
interior (shown in the example in Section V).
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TABLE III
EFFECTIVE PARAMETERS FOR ZnSe NEAR THE PLASMA FREQUENCY

TABLE IV
EFFECTIVE PARAMETERS FOR ZnSe NEAR THE TRANSITION FREQUENCY

For the case of the excitonic semiconductor ZnSe, ,
, , and

. Table III shows the effective conductivity and
diffusion coefficient near the plasma frequency, and Table IV
shows the same quantities near the exciton transition frequency.
It can be seen that the diffusion coefficient is very large for

the excitonic semiconductor, similar to the wire medium case,
in agreement with the well-known fact that spatial dispersion is
important for these materials.

IV. ADDITIONAL BOUNDARY CONDITIONS

In any realistic problem of wave propagation involving
either natural or structured materials one needs to consider
the effect of interfaces, and in particular in the framework of
macroscopic electrodynamics it is essential to know how the
macroscopic fields are coupled in different media. In a local,
isotropic medium, two plane waves may propagate, and the
usual boundary conditions on tangential electric and magnetic
fields are sufficient to solve for fields in regions of space
containing heterogeneous materials. However, in non-local
materials additional waves may propagate, necessitating the
use of additional boundary conditions (ABCs) when solving
problems involving interfaces. In the literature, many ABCs
have been proposed. In the following, we show that one of the
earliest ABCs, proposed by Pekar for excitonic semiconductors
[26], is identical to the ABC usually used for plasmas and
semiconductors, and even, if properly applied, to the newly
developed ABCs for wire media. Furthermore, this condition
follows from the usual boundary condition on current, and thus
can be derived from elementary electromagnetics. With a slight
change in notation, we propose this ABC for general materials
when one additional boundary condition is necessary, and pro-
vided it is expected from microscopic considerations that the
current associated with mobile carriers vanishes at the pertinent
interface (which is not always the case; e.g., the condition holds
neither for a wire medium attached to a metallic plate, nor for a
semi-infinite wire medium embedded in a semiconductor).
The susceptibility (18) leads to the polarization response

(53)

where we separate out the polarization response from the con-
duction charge response. Although the differentiation between
bound and unbound (free, conduction) charge is somewhat arti-
ficial from a macroscopic point of view at nonzero frequencies,
in what follows it remains a useful idea. For a natural material,

represents the response of “mobile” charges associated
with the conductivity of the medium. For an artificial wire ma-
terial, is an effective parameter, but we can still divide the
response into a local polarization response and everything else,
which we will call conduction.
In 1957 Pekar proposed an additional boundary condition for

excitonic semiconductors, such that the excitonic part of polar-
ization, i.e., the contribution to the polarization related exclu-
sively to excitons, should go to zero at the boundary with a di-
electric,

(54)

The condition is applied inside the material, and leads to
two ABCs (for the parallel and perpendicular components).
When only one ABC is needed, a natural condition is that the
normal component of excitonic polarization goes to zero at the
boundary, which is

(55)

In this case, excitons are the only mobile charges (at the fre-
quencies of exciton absorption). From (53), the above condition
is the same as

(56)

which makes sense physically since the presence of diffusion
will not allow a singular surface of mobile charges. Although
widely used for excitonic materials, we show below that the
Pekar condition (56) condition is actually quite general, and ap-
plies in many cases to both natural materials (plasma and semi-
conductors) and wire media.
For natural semiconductors and plasmas, the usual ABC is

that total (local plus nonlocal) conduction current goes to zero at
an interface with a dielectric [27]–[30]. This is clearly the same
as (56). For an array of parallel wires (uniaxial wire medium),
the ABC is that conduction current at the ends of the wires goes
to zero at the boundary with a dielectric [31]. This also holds
for other more complex topologies of connected [20] and non-
connected [32] wire mesh mediums. Specifically, in general for
each sub-lattice of parallel wires that is severed at the interface
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one is required to impose that , where is the polar-
ization vector associated exclusively with the conduction cur-
rents and is a unit vector that determines the direction of the
considered sub-lattice of wires [32]. For the case of a 1D-wire
medium this is equivalent to the homogenized fields satisfying
the condition [31]

(57)

where is the relative permittivity of the non-conducting
exterior medium. Next we show that (57) is the same as (56).
Writing on either side of the boundary

(using ), and using the fact that
normal is continuous across the boundary,

(58)
Assuming that the outside region is nonconducting

, and setting at the boundary
we have

(59)

which is the wire medium ABC. For this is
the same as continuity of normal . Therefore, we propose that
Pekar’s ABC for “conductive” polarization is quite general, and
applies to plasmas (andmetals in the hydrodynamic limit), semi-
conductors, and wire media adjacent to another medium that
cannot sustain the flow of the mobile carriers.
Furthermore, the ABC (56) can be derived from the well-

known large-scale form of the continuity equation,

(60)

where is a surface current and is a surface charge, nei-
ther associated with bound-charge polarization. If both regions
have finite conductivity (including zero conductivity), then

. In the presence of diffusion, a surface charge can
not exist (physically, this makes sense, and mathematically, if
were singular then would have a higher-order singularity

that is not present in or in the drift-diffusion equation
(e.g., (9)). Thus, . If the outside
region is a dielectric, then , which is the same
as (56). Therefore, the Pekar condition (56) is essentially the
well-known condition on normal conduction current assuming
the presence of diffusion.
The previous discussion was for exterior mediums that are

non-conducting. Particularly for a uniaxial wire medium the
case of termination in a ground plane is of interest. In this
case, rather than ( ) at the interface, for a
PEC ground plane the microscopic boundary condition is [8],
[33]–[35]

(61)

Fig. 4. Planar slab medium with impressed quasi-static field. (a) natural mate-
rial, (b) wire medium.

which is the same as . Furthermore, for a wire
medium terminated at an imperfectly-conducting thin plane
characterized by a surface conductivity , the boundary
condition is [36]

(62)

Thus, we can write a more general ABC as

(63)

where and for a nonconducting exterior medium,
and for a wire medium connected to a PEC

plane, and and is a constant for a wire medium
terminated in an imperfect conductor. The condition (63) has
also been proposed as a generalization of Pekar’s condition
for excitonic semiconductors [2, p. 353]. Other generalized
additional boundary conditions that apply to the case where the
wire medium is terminated with lumped loads were formulated
in [37].

V. LONGITUDINAL EXCITATION EXAMPLE

As an example of the above ideas, we consider a planar slab
of material excited by a purely longitudinal (with respect to the
slab normal) impressed field, like what would be found between
the plates of a capacitor. Since such a dynamical field is not a
free solution of Maxwell’s equations, in general it may need to
be created by some distributed source, or it can be considered
as a quasi-static excitation.
The slab has width , and is immersed in vacuum. Fig. 4(a)

depicts a natural material characterized by , , and , and
Fig. 4(b) depicts a wire medium (before homogenization),
consisting of parallel wires. For this excitation, the three-di-
mensional wire mesh (connected or nonconnected) provides
the same response.
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Starting with the general form of susceptibility in wavevector
space (18), we assume for generality the case of two charge
species (19) or a double mesh wire medium (39)–(40),

(64)

where and refer to the relevant quantities for natural
or artificial materials for charge species/wire meshes and .
Using

(65)

and considering the longitudinal response ( ,
and similar for ),

(66)
Converting to the space domain,

(67)
where is the total (incident, , plus scattered, ) field
and where are second-order differential operators,

(68)

The one-dimensional Green’s function is

(69)

and the scattered field due to current is [38]

(70)
Using Leibnitz’s theorem [39], if then

(71)

such that

(72)

(and the same thing happens in the static case for
.) Note also that for

(73)

and so the slab does not scatter a field. This can also be seen
simply by noting that for a longitudinal field and

. Hence, Maxwell’s equations can be satisfied only if

. Thus in the air region
(the field is nonzero only in the regions where one places the
distributed source). On the other hand, in the WM we have

, or equivalently
, which yields .

Inserting into (67), the differential
equation for polarization becomes

(74)

where

(75)

(76)

(77)

and where with replaced by . Since
is constant in space, we arrive at

(78)

In this case we need two additional boundary conditions (one
for each charge species/wire mesh network).
At this point we will finish the example assuming the special

case of a single charge species/single wire mesh (setting
, , ), such that

(79)

where is the Debye wavenumber,

(80)

Note that if spatial dispersion is absent and the solution
of (79) (after rearranging to accommodate ) is constant
inside the slab,

(81)

For ,

(82)
Enforcing by symmetry, , and en-
forcing the ABC leads to

(83)

which is also the result if .
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Fig. 5. Conductive part of the polarization for a semiconductor with
, , , , ,
, and , for charge (doping) number density

, , and . Higher doping leads to better screening.

For finite and not zero, the solution of (79) is even in and
is given by

(84)

and enforcing the ABC ( ) leads to

(85)

In the following we show the conductive part of the polariza-
tion

(86)

for several different materials, with . Fig. 5
shows the response in a semiconducting material slab at

, for , , ,
, and , for charge (doping) number

density , , and .
It can be seen that as doping increases, the response is less

affected by diffusion (conduction dominates), and the response
becomes more metal-like, as expected. Considering the values
in Table I, even though the diffusion coefficient is independent
of doping, as doping increases conduction increases, the Debye
wavenumber increases, and the Debye length decreases, such
that screening becomes more effective. Fig. 6 shows the same
structure, but for fixed , at several different
temperatures. In this case, since (we assume that is
independent of temperature, i.e., that the free electron density

Fig. 6. Conductive part of the polarization for a semiconductor with
, , , , ,

and , for charge (doping) number density at
several different temperatures. Higher temperature leads to more diffusion.

is at all temperatures), we see that diffusion becomes more
effective at higher temperatures, as expected.
Fig. 7(a) shows the same semiconductor structure at

, for two doping densities in the vicinity of .
These correspond to frequencies below ( ,

) and above ( ,
) the plasma frequency .

There are subwavelength ripples in the field for frequencies near
to, and on both sides of the plasma frequency (also observed for
metals near the plasma frequency [3]), but sufficiently far above
the plasma frequency the field is smooth (not shown). Fig. 7(b)
shows the total field both inside and outside the slab for the same
two frequencies as in Fig. 7(a), and Fig. 7(c) shows the same
quantities as Fig. 7(a), except for (i.e., multiplying the
diffusion coefficient by 0.1). It can be seen that diminished dif-
fusion results in better field screening, as expected. In the limit
that , the field is constant inside the slab, given by (81).
Fig. 8 shows the response of a connected isotropic wire

medium made from PEC wires, , , wire
period , , and , wire radius ,
and slab width . It can be seen that
as the wire period becomes larger, diffusion becomes more
important (since decreases strongly with increasing period).
However, far-subwavelength ripples similar to those shown in
Fig. 7(a)–(c) are not induced for the PEC wire medium since
the Debye wave number is purely real, as can be seen from
(27) and (36) and from Tables I–II. From (79) it is seen that
this implies that depends on as a damped exponential,
and to have ripples one needs to be complex valued, which
happens for semiconductors and other natural materials, but
not for PEC wire media.

VI. ISOTROPIC CONNECTED DOUBLE WIRE MESH EXAMPLE

To further illustrate the richness of the physics of spatially
dispersive media, next we extend the analysis of the previous
section, and consider the scattering of a (transverse) plane wave
by a semi-infinite half space filled with the connected double
wire mesh (metamaterial of Fig. 2). Comparing (19) and (39),
it is evident that with an appropriate definition of variables, the
following is also valid for a two-component plasma.
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Fig. 7. (a) Conductive part of the polarization for a semiconductor with
, , , , ,
, and , for charge (doping) number density
and 15 . (b) Total electric field outside and inside the slab

for the same two frequencies as in Fig. 6(a). (c) Same as (a) except .
Diffusion is reduced and screening is more effective than at .

A. Plane Wave Modes

To begin with, we characterize the plane wave solutions
supported by the unbounded effective medium. Equation (40)
implies that the plane wave normal modes can be classified
as transverse modes (with polarization perpendicular to the
wavevector ), and longitudinal modes (with polarization
parallel to the wavevector ). The effective permittivity seen
by the transverse modes is , whereas the permittivity seen
by the longitudinal modes is . Thus, the dispersion
characteristic of the transverse modes is given by,

(87)

whereas the dispersion equation of the longitudinal modes is

(88)

Fig. 8. Conductive part of the polarization for a PEC connected isotropic wire
medium, having , , ,
for several different wire periods, , , and . As the wire
period becomes larger, diffusion becomes more important.

Solving the dispersion characteristic of the longitudinal modes
with respect to it is found that

(89)

It is manifest from the above result that the effective medium
supports two distinct longitudinal modes, with different propa-
gation constants. This is rather unusual since both natural one-
component plasmas and connected isotropic wire media with a
single metallic network (Fig. 1) typically support a single lon-
gitudinal mode [20], [29], [40]. Even more curious, it can be
checked that in the limit and ,
so that the two networks become identical, the two longitudinal
modes have the dispersions

(90)

Thus, in this situation, one of the longitudinal modes has no
cut-off, and can propagate at arbitrarily low frequencies! This
is quite odd, but it is actually consistent with the photonic band
structure calculations reported in Fig. 1 of [23]. Hence, our ef-
fective medium model seems to reproduce some of the key fea-
tures of the photonic band structure of the material. The reason
for the emergence of a propagating longitudinal mode is clearly
related to the fact that the metamaterial is formed by two non-
connectedmetallic networks, which may be set at different elec-
tric potentials.

B. The Reflection Problem

Suppose now that a transverse plane wave propagating in
free space ( ) impinges on a semi-infinite block of the
connected double wire mesh ( ). The incoming magnetic
field is along the -direction, and the direction of propagation
is in the plane, so that the incident wave is transverse mag-
netic ( )-polarized (inset of Fig. 8). Evidently, an incident
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wave may in general excite both the transverse and longitu-
dinal modes supported by the wire medium. For the geometry
under study three modes can be excited: two longitudinal modes
and a TM-polarized transverse mode (the wire medium supports
an additional mode with transverse electric ( ) polarization,
which is not coupled to the incident field).
Taking into account that the macroscopic magnetic field as-

sociated with the longitudinal modes vanishes, and supposing
that the amplitude of the incoming magnetic field is normalized
to unity, it follows that the magnetic field in all space is of the
form (the -variation of the field is suppressed)

(91)

where is the reflection coefficient, (
for a propagating incoming plane wave that illumi-

nates the interface along the direction ), is the propaga-
tion constant along of the transverse mode in the wire medium,
and is an unknown constant. From (87), we can write that

.
On the other hand, the electric field depends not only on the

transverse fields but also on the longitudinal fields in the wire
medium. Since for transverse plane waves we can write

, it follows that

(92)

In the above, is the wavevector in

free-space, and ,
, 2, are the wave vectors associated with the transverse and

longitudinal modes in the artificial plasma, respectively. The
constants and represent the unknown complex ampli-
tudes of the longitudinal modes in the wire medium. The wave
number is determined by noting that is a solution of
the dispersion (89).

C. Additional Boundary Conditions

To determine the unknown coefficients, we need to impose
boundary conditions at the interface . The continuity of
the magnetic field and of the tangential ( -component) of the
electric field yield

(93)

Clearly, since we have two extra modes (the longitudinal waves)
two additional boundary conditions are required to determine
all the unknowns. This is understandable from the discussion
of Section IV: since here we have two independent networks
(which is the metamaterial analogue of a natural material in
which the conduction properties are determined by two carrier

species) it is necessary that the -component of the conduction
current transported by each individual network vanishes at the
interface. Since we assume that , it is obvious that this
can be guaranteed simply by

(94)

where is the contribution from mesh to the conductive
polarization of the effective medium and is defined in the
same manner.
Using the fact that for each eigenmode
, i.e.,

(95)
with and

, and that the total field in
the wire medium is a superposition of three modes, it follows
from that

(96)

with . This ABC is equivalent to

(97)
Obviously, it is possible to write a similar equation for the net-
work ,

(98)
where we put ,

, and . Equa-
tions (97) and (98) arise from the two required additional
boundary conditions. By solving the linear system defined by
(93), (97) and (98), it is possible to determine all the unknowns
and obtain the solution of the scattering problem.

D. Numerical Example and Discussion

The fact that the connected double wire mesh supports a prop-
agating mode for arbitrarily low frequencies, suggests that it
may be possible to couple energy from the free-space region
into the metamaterial, even if the frequency is below the effec-
tive plasma frequency. To assess such a counterintuitive pos-
sibility, we numerically solved the linear system formulated in
the previous subsection for the case of a metamaterial such that
the radii of the two networks is and .
The computed fractional reflected power (reflectivity), , is
depicted in Fig. 9 as a function of frequency for different an-
gles of incidence. As seen, for frequencies below the effective
plasma frequency ( ) the wave is nearly per-
fectly reflected. However, within our homogenization model,
the transmission into the artificial plasma, even if tiny, is not
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Fig. 9. (a) Reflectivity ( ) as a function of the normalized frequency
for: (i) (solid blue line), (ii) (dashed green line) and
(iii) (dot-dashed black line). The dashed vertical line represents the
effective plasma wave number . (b) Similar to (a) but for the transmis-
sivity ( ). The inset in (a) shows the geometry of the problem.

exactly zero due to a residual excitation of the propagating lon-
gitudinal mode. Indeed, panel (b) of Fig. 9 shows that the frac-
tional transmitted power (transmissivity) can surpass 2% for fre-
quencies well below the effective plasma frequency. The level
of transmission is stronger for wide incident angles (the max-
imum of transmission typically occurs close to ). In-
deed, it is well known that for normal incidence the longitu-
dinal modes cannot be excited. To conclude, we point out that
a non-zero transmission into the metamaterial is only possible
if the two networks are different ( ). It can be shown
that if the two metallic networks are identical the propagating
longitudinal mode is impossible to excite with a macroscopic
external excitation.

VII. CONCLUSIONS

In this work, we have shown that similar to semiconductors
and metals, the nonlocal response of wire media can be under-
stood in terms of a drift-diffusion transport model. We have
highlighted the many similarities and the differences between
spatially dispersive natural media and artificial wire media, and
we have introduced an effective Debye wavenumber/length as a
quantitative measure of spatial dispersion. It was shown that for
several geometries Pekar’s ABC can describe the response of
wire media, but, very importantly, it must be enforced only on
the conductive component of the total polarization induced in
the wire medium. We have presented a simple one-dimensional
example with closed-form solution that highlights these topics.
Finally, we have proposed a novel effective medium model to
describe the double isotropic wire medium, and illustrated how
this model can be instrumental in the solution of a scattering
problem.

APPENDIX
SCATTERING/RESONATOR PROBLEMS BASED ON THE

TRANSPORT MODEL FOR WIRE MEDIA

It was shown in the paper that the transport equation for
mobile charges in a natural material, with a local polarization
model, leads to an effective permittivity tensor (17) that has
the same form as that obtained for a variety of artificial wire
materials. Therefore, the transport/drift-diffusion model can be
used to model artificial wire materials in various applications,
such as for scattering or resonator problems. The general trans-
port-based scattering/resonator problem is based on (13) and
(16) using the self-consistent field due to both polarization
and conduction currents, and applying the necessary additional
boundary conditions. For an isotropic wire-medium scatterer
having volume immersed in a homogeneous background
having permittivity , the coupled equations to be solved are

(99)

(100)

for , where is the wavenumber in the background envi-
ronment and , where . For
a resonator problem natural modes are obtained from ,
and for a uniaxial wire medium (99) become simplified some-
what. The formulation (99)-(100) is very attractive compared
to a real-space convolution form

since in that case one obtains a six-fold integral equa-
tion (three associated with the convolution and three associ-
ated with relating the electric field to current), whereas in the
transport model one obtains a three-dimensional integral equa-
tion. General two- and three-dimensional wire medium scat-
tering problems based on (99)-(100) will be reported in a sepa-
rate work.
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