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Modeling of Nonlinear, Spatially-Dispersive Plasmas
and Semiconductors Under Harmonic Excitation

George W. Hanson, Fellow, IEEE

Abstract—The nonlinear, spatially-dispersive response of a semi-
conductor or plasma to large-amplitude time-harmonic electro-
magnetic fields is obtained by solving the nonlinear transport equa-
tion using an harmonic expansion. The conduction response, which
is nonlinear and generally spatially and temporally dispersive, is
given as a hierarchical set of linear second-order differential equa-
tions with non-linear forcing terms. The polarization response is
assumed linear. A simple slab example is shown that admits ana-
lytical solutions for the nonlinear material response to various or-
ders. As the solution order grows, the nonlinear forcing terms grow
in complexity, although the differential equations remain second-
order. In the static limit, the two lowest-order solutions are shown
to identically satisfy the dc transport equation.

Index Terms—Diffusion, nonlinear, plasma, semiconductor.

I. INTRODUCTION

S EMICONDUCTORS and plasmas naturally admit a
nonlinear response to strong fields since their charge

dynamics are governed by a nonlinear transport equation [1],
[2]. Although small input signals engender a linear response,
and allow for linearization of the transport equation, the pres-
ence of large fields necessitates a more complicated nonlinear
analysis [3]. Nonlinear effects in semiconductors and plasmas
are too numerous to describe here, although their existence and
enhancement are important for controlling the flow of light in
optical signal processing [4], [5], self-focusing of light [6], and
harmonic generation [7], to name just a few semiconductor
applications.
In addition to considering nonlinearities, plasmas and semi-

conductors exhibit important spatial dispersion effects that often
necessitate solving both field and transport equations [8]–[11].
In this work, the interaction of a semiconductor or plasma with
a large-amplitude time-harmonic electromagnetic field is exam-
ined, where the effects of both spatial dispersion and nonlineari-
ties are included. The method is based on replacing the material
with equivalent currents via the volume equivalence principle
[13] extended to nonlinear and nonlocal media, and employing
a harmonic expansion similar to [14], [15]. This leads to a hi-
erarchical set of linear second-order differential equations with
non-linear forcing terms. A simple example is presented to il-
lustrate the method.
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Fig. 1. Left side: general material region containing a nonlinear, spatially
and temporally dispersive medium such as a semiconductor or plasma. Right
side: equivalent problem where space is homogeneous and equivalent currents
are nonzero inside .

II. NONLINEAR RESPONSE OF A NONLOCAL
PLASMA/SEMICONDUCTOR

A. General Development

We consider a nonlinear and dispersive material such as
a plasma or semiconductor, having extent , immersed in a
simple linear and nondispersive dielectric background medium
characterized by , and excited by a time-harmonic elec-
tromagnetic field , . Since in what follows the
most important nonlinear charge dynamics pertain to mobile
changes, for convenience we assume the material has a linear
polarization response.
Using the volume equivalence principle, which is

well-known for linear, time-harmonic fields [13] and which
is easily seen to hold in the time-domain for nonlinear, spa-
tially-dispersive media (as shown in Appendix I), we can
remove the material contrast and replace the material in region
with the background material, together with equivalent

currents

(1)

as depicted in Fig. 1. The current contains the gener-
ally non-linear, spatially- and temporally-dispersive response of
charge carriers in region , and is the linear polarization
response (if we assume a simple nondispersive permittivity ,
then and ).
For the nonlinear material, we assume semi-classical trans-

port of a single charge species (electrons), although the method
is easily extended for multiple types of charges (e.g., holes,
ions). We can define a distribution function that sat-
isfies Boltzmann’s equation, the moments of which lead to con-
servation of charge (continuity equation) and conservation of
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momentum (transport equation) [1, Ch. 8]. The resulting conti-
nuity and transport equations are

(2)

and

(3)

where with being the charge of an electron,
is the charge density,

is the number density of mobile charge, and
is the conduction

current density ( is average velocity). Any generation or
recombination mechanisms are included in (2). Note that is
the self-consistent field (applied field plus response field

due to polarization and conduction). In the transport
equation (3) we have ignored gravity, and magnetic field effects
in the Lorentz force, and we assume the kinetic pressure dyad
has been approximated as , where is the scalar
kinetic pressure [1, pp. 149–152, 202]; this approximation
closes the system of equations, and corresponds to ignoring
tangential shear/viscous forces and assuming an isotropic
particle velocity distribution. Finally, we have assumed that
collisions are represented by a phenomenological relaxation
time . The term is associated with spatial dispersion, and
the terms , , and lead to nonlinearities.
Neglecting the spatial dispersion and nonlinear current terms
and replacing with the equilibrium number density
results in the usual Drude conductivity, which can be used
directly in Maxwell’s equations (i.e., in this case one does not
need to solve the coupled transport-field equations).
Since we are considering the non-linear response due to a

large-amplitude time-harmonic input, we assume that the ap-
plied field is , where the
asterisk denotes complex conjugation. We use field expansions
similar to those in [14]–[17],

(4)

where is the scattered (material response) field, in both
Maxwell’s equations, the transport and continuity equations,
and in the definition for current density, . Note
that the order zero quantities are equilibrium values, and so

, and (for a plasma is
the equilibrium density of electrons, i.e., the density of ionized
atoms, and for a semiconductor is the doping density).
Inserting the expansions into the transport equation, multi-

plying out terms and using the linear independence of
, we can equate like frequency terms. As an il-

lustrative example, keeping up to second-order terms for con-
venience, for we obtain the zeroth-order transport equation

(5)

and for we obtain the first-order transport equation

(6)

Higher-order transport equations are obtained analogously, and
we obtain a similar set of equations for negative frequencies and
conjugate variables. For example, for ,

(7)

We assume that for representing any of the expanded vari-
ables,

(8)

we have

(9)

using an appropriate norm , so that the given expansions con-
verge. Notice that in the th order transport equation there are
th order terms, nd order terms, th order terms,
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etc., if all higher-order expansions were included. Furthermore,
the higher-order terms are always associated with conjugate
variables (i.e., down-shifted negative frequency terms). In our
specific case, where we included terms in the expansion up to
second order, the 0th order equation has 0th (e.g.,

), 2nd (e.g., ), and 4th order (e.g., )
terms, the 1st order equation has 1st (e.g., ) and 3rd order
(e.g., ) terms, and the 2nd order equation has only
second order terms (due to the number of terms retained).
Although in general we have an infinite-dimensional system,

at this point we make two approximations. First, we truncate
the series at some finite , and second, using (9) we ignore
the terms of order higher than in the th order equation (e.g.,
we ignore second-order terms in the first order equation). Since
for the th order equation these terms are of order , if
(9) is true (as is the case for the example given below) then
this should be an excellent approximation. These higher-order
terms are always associated with conjugate variables, such that
dropping the nd and higher-order terms in the th order
equation is equivalent to using the expansions (4) without the
conjugate terms.
From this leads to

(10)

where is the Kronecker delta function. We also have the
continuity equation

(11)
leading to1

(12)

and so

(13)

For the polarization response assuming a similar harmonic ex-
pansion for , we have

(14)

The transport equation for is

(15)

Using the continuity equation (12)–(13), the th order
transport equation is2

(16)

1Note that here and in the following is simply ; it does not repre-
sent a functional dependence.
2While this paper was in review [17] appeared, wherein [17, (2)–(3)] are the

same as (16) for , 2.

where is the electric field due to ,

(17)

are the conductivity and diffusion coefficients evaluated at fre-
quency , and where are generally th order nonlinear (ex-
cept for which is linear) source terms involving lower-
order quantities,

(18)

where

(19)

As an example,

(20)

and

(21)

It is easy to see that .
Although we have a nonlinear transport equation, from linear

Maxwell’s equations the th-order field is linear in the
th order currents and ; this is the usual fre-
quency-domain response [13] (at frequency ) due to the th
order currents,

(22)
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where and the Green’s function is
, . This linear association of

with comes from the following. We insert the expansions (4)
into Maxwell’s equations (MEs) for the scattered field (68),

(23)

along with a similar expansion for . Exploiting linear
independence of leads to the equilibrium MEs

(24)

the first order MEs

(25)

the second order MEs

(26)

and so on. Thus, we can interpret the field as the field
due to , the field as the field at due to the response cur-
rent (oscillating at ), the field as the field at associ-
ated with at , and similarly for higher orders (and also
negative frequencies, although we have already dropped these
terms). Thus, the Maxwell equation subsystem is linear in the
various orders of current. A similar method involving harmonic
expansions, leading to sets of harmonic Maxwell’s equations
and Green’s functions for frequencies are considered for
nonlinear magnetic problems in [18], [19]. If one tries to forgo
the transport equation and treat the nonlinearity as a constitu-
tive relation embedded in Maxwell’s equations, then one cannot
generally use the concept of Green’s functions.
The final system of equations to be solved is the coupled

system of integral-differential (14) and (16),

(27)

and

(28)

Fig. 2. Semi-infinite slab having width consisting of nonlinear, dispersive
material.

for . In general, we need to know the relationship between
and . In the special case of a nondispersive permittivity

, , and (28) reduces to

(29)

The system (27)–(28) can be solved starting with , for
which we only need to know . Although appears in
the equations, since charge number density and velocity are
present in , and since , the system (27)–(28)
can be solved for the unknowns using, e.g., the
method of moments (alternatively, one can eliminate from
the equations and work only with ). Once these quantities are
obtained for we can solve the second-order equation using
these (now known) quantities in , and so and can
be determined, and so on for higher-order equations. That is,
we start with and successively solve for higher orders

. For simple problems like the example shown
below, this leads to analytical solutions for the currents.
If we ignore spatial dispersion then (27) and (29)

can be combined upon defining the usual complex permittivity
that includes conductivity, resulting in a single volume/domain
integral equation identical to the usual dielectric scatterer or res-
onator case, except for the nonlinear source term (and for

this is the usual linear source term).

III. ONE-DIMENSIONAL EXAMPLE

Asan illustrative exampleof thedescribedmethod that leads to
an analytical solution, assume a laterally-infinite semiconductor/
plasma extends from to , as depicted in Fig. 2. The
excitation is , and so all vector quantities are now
in the direction,andtheonlyspatialvariation is .Thisgeometry
was considered in [11], where the linear response was evaluated
(see also [12] where a wire-medium slab was considered). For
simplicity, we assume a nondispersive permittivity .
In one-dimension, the Green’s function is

(30)
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and, using Leibnitz’s theorem [20], if

(31)

the scattered field is

(32)

(the same thing happens in the static case for
.). Note also that for

(33)

and so the slab does not scatter a field into the external space.
We first consider the method of solution starting with and
progressing to higher orders.
1) First-Order Response: From (16) for , using

(34)

we have the coupled linear equations

(35)

These can easily be decoupled such that the polarization equa-
tion becomes

(36)

and the conduction equation is

(37)

where

(38)

is a Debye wavenumber [21], [22].
For the conduction equation, the homogeneous solution is

(39)

and the particular solution is

(40)

for being constant in space. Enforcing [9],
the solution is

(41)

Therefore, we know and
. The associated charge is given as

(42)

This first-order response agrees with the results of the linear
analysis in [11].
2) Second-Order Response: Since

(43)

and using (34), we obtain

(44)

such that . The second order conduction
equation becomes

(45)
where

(46)

is a Debye wavenumber associated with second-order effects,
and where

(47)
The homogeneous solution is

(48)

and, using the solution for , the particular solution is

(49)

Evaluating the constants and enforcing the same boundary con-
ditions as for the first-order response, the second-order solution
is

(50)

and for the associated charge,

(51)
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where

(52)

Details for the and higher-order cases will be omitted, but
can be obtained from the th order transport equation

(53)

where are nonlinear source terms involving lower-order so-
lutions and the incident field, and where

(54)

is a th order Debye constant.
3) Quasi-Static and Static Cases: From the above

results, simpler expressions in the low-frequency limit
are easily obtained,

(55)

(56)

and

(57)

In the quasi-static regime the expressions for charge are

(58)

where is proportional to .
As , although converge to finite

values (their small limits),

(59)

Fig. 3. Magnitude of the first two orders of current vs. strength of the applied
electric field at for and , and doping

.

It is easy to show that (59) satisfies the DC transport equation
to second order, as shown in Appendix II.

A. Numerical Results

As a numerical example, we assume a semiconducting slab
having total thickness , , ,
and . Fig. 3 shows the magnitude of the
first two orders of current vs. strength of the applied electric field

at for and , and doping
. The vertical lines denote the value of incident

field where the ; far below this value only
the first-order current is important. For , second-order
effects become important at a somewhat lower value of applied
field than for (for this example, as shown in Fig. 4,
nonlinear effects become important for ).
The value of at which the first two solutions cross and

second-order effects become dominant depends on the location
within the slab, and material, energy, and size parameters ,

, , , and . An analytical formula for the crossing point
can be obtained by equating and , but the resulting
expression is complicated and will be omitted here. However,
a simple expression for the crossing point for charge density is
obtained by equating and ,

(60)

Increasing the layer permittivity shifts the crossing point to
higher field values, as also seen in Fig. 3 for the currents.
Fig. 4 shows the current density versus position at ,

, and doping density , for various values
of the applied field. It can be seen that for the two lower values of
applied field ( and ) the response
is essentially symmetric and the order current is sufficient
(in these two cases only the first and first-plus-second order cur-
rent is shown since higher order currents are negligible). For the
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Fig. 4. Current density versus position at ps and for various
values of the applied field .

three higher values of applied field, ,
up to 4th order currents are shown. It is clear that for a given
strength of the applied field the solution requires higher order
currents, but these converge. Further, for higher field strengths
the current distribution becomes asymmetric. Also shown in the
plot is the solution obtained from Mathematica’s NDSolve rou-
tine [23], where the three coupled equations (transport, conti-
nuity, and wave equations),

(61)

were solved numerically. The main contribution to the non-
linearity is from the squared term, although the nonlinear
product contributes somewhat. In general, the
trend in asymmetry of the current as field strength increases
is produced in both solutions, and for moderate strength fields
the agreement between the presented method and Mathematica
is good. For and the response
from the first three orders of current, , oscillates more
than the Mathematica solution, but using the solution
becomes smoother. For the presented method predicts a
much larger peak near . For higher values of applied
field (not shown) the peak increases in both the analytical and
Mathematica solution, although the analytical solution remains
above the numerical Mathematica solution. The reason for the
discrepancy is unclear; the Mathematica solution was stable
against small changes in the numerical procedure, but never-
theless gave warnings about spatial errors being larger than
tolerance (finer spatial discretization couldn’t be preformed due
to memory limitations). The Mathematica solver wasn’t stable
for , which is why was chosen for this example.
Fig. 5 shows the same result as Fig. 4 except for .

It can be seen that the nonlinearity appears at a larger value of

Fig. 5. Current density versus position at ps and for various
values of the applied field .

applied field than for , consistent with Fig. 3, and that
good convergence of the solution is again obtained.

IV. CONCLUSIONS

In this work, the nonlinear response of a semiconductor
or plasma to large-amplitude, time-harmonic electromagnetic
fields was obtained by solving the nonlinear transport equation
using an harmonic expansion. The polarization response was
assumed linear, and the conduction response was allowed to be
nonlinear, and spatially and temporally dispersive. The method
leads to a hierarchical set of linear second-order differential
equations with non-linear forcing terms. A simple slab example
was shown that admits an analytical solution, and comparison
with Mathematica was shown.

APPENDIX I
VOLUME EQUIVALENCE PRINCIPLE IN THE TIME DOMAIN FOR

GENERAL CURRENTS

In this appendix we show that the well-known volume-equiv-
alence principle [13] can be applied in the time domain, in-
cluding the general (non-linear, spatially- and temporally-dis-
persive) response of charge carriers. In [24] the authors use
a similar time-domain volume-equivalence principle, although
for linear, temporally-dispersive permittivities. In the following,
the term dispersive refers to both spatial and temporal disper-
sion.
We assume a material region containing nonlinear disper-

sive material immersed in a homogeneous simple non-disper-
sive medium characterized by , . We assume a current
in the exterior medium results in incident fields that interact with
the medium in . At any point in space we can write Maxwell’s
equations as

(62)

where we used . For we
have and , and for we
have , and and are unspecified but contain the
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nonlinear dispersive response. Furthermore, the incident fields
satisfy

(63)

By adding and subtracting the term on the
right side of Ampère’s law in (62), we obtain

(64)

for all . We define the scattered fields as the difference between
the total fields , and the incident fields, , ,

(65)

valid for all ; by (63) these are the fields caused by in a
homogeneous space characterized by , , i.e., in the absence
of the material region . Subtracting the curl (63) from (64)
leads to

(66)

If we define equivalent current as

(67)

which is (1), then we have

(68)

valid for all . Thus, the scattered fields can be seen to be caused
by the equivalent currents within the volume , where the entire
space is now homogeneous. Note that for ,

(69)

APPENDIX II
SATISFACTION OF DC TRANSPORT EQUATION

Here we show that the static second-order nonlinear solution
(59) satisfies the dc transport equation to second order. Presum-
able, higher-order solutions would satisfy the dc transport equa-
tion to higher order, but this was not verified analytically.

From (3), the DC transport equation is

(70)

The total electric field (this is simply the inversion of Poisson’s
equation applied to the inhomogeneous slab geometry, as shown
below) is, using (58),

(71)

Plugging into the dc transport equation and multiplying out
terms, we find that first- (proportional to ) and second-order
(proportional to ) terms identically vanish, and we are

left with third and fourth order terms, ,
completing the proof.
To show that the self-consistent electric field is (71), note that

the static potential satisfies

(72)

where inside the slab. The Green’s function satisfies

(73)

leading to

(74)

Therefore, the potential is

(75)

where is a homogeneous solution of (72). To determine the
scattered potential and the total electric field, note that

(76)

such that

(77)

in each region (left, inside, and right of the slab),

(78)

Boundary conditions are

(79)

at and

(80)
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at , and

(81)

such that . This leads to and

(82)

and therefore

(83)

which is (71).
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