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A B S T R A C T   

The coupling between plasmons and external fields can facilitate effective light manipulations. Here, we 
implement time-domain THz spectroscopy in a Voigt reflection geometry to study the transverse-field magneto- 
optical effects in indium antimonide (InSb) at variable temperatures. The obtained results are analyzed by a 
multi-carrier model, which allows the properties of both electrons and holes in undoped InSb to be fully char-
acterized between 5 K and 300 K. At higher temperatures, the change in the thermal carrier density effectively 
modifies the dispersions of the three magneto-plasmon bands and produces strong reflectance modulations that 
can be sensitively tuned by the temperature. At low temperatures when the conduction is dominated by 
extrinsically doped electrons, a transport anisotropy in the (001) plane is detected. These results provide a 
systematic understanding on the magneto-plasmon band structure in InSb and their coupling with THz lights.   

Narrow-gap semiconductors with high electron mobilities and low 
effective masses provide unique material platforms where carrier dy-
namics can effectively mediate the coupling between light and static 
fields [1]. One prototypical example is InSb [2–19], which hosts strong 
magneto-optical (MO) couplings that are tunable by temperature and 
doping [18–23]. In recent years, tailored MO effects in InSb have 
enabled a variety of intriguing functionalities, such as field induced 
transparency [12,22], nonreciprocal polarization rotation or optical 
isolation [18,19,24], and nontrivial photonic topology [11]. Besides 
these successful demonstrations, the interplay between the plasmonic 
charge oscillations and cyclotron resonances in InSb can also produce 
field-controlled reflectivity modulations with superior performances. 
Such effects produced at THz frequencies by intrinsic samples are less 
explored in the existing literature, and thus needs to be systematically 
mapped out, particularly at low temperatures. 

In this work, we measure the THz reflectances of undoped InSb single 
crystals in a Voigt geometry with transverse magnetic fields up to 0.7 T 
and at varied temperatures from 5 K to 300 K. Due to the gapped bulk 
plasmon band structure, the measured reflectance is strongly modulated 
by the external field. The polarity, strength, and bandwidth of the 
modulation can all be flexibly tuned by controlling the plasma frequency 

and the cyclotron frequency separately. The MO effect also sensitively 
traces the transport properties of electrons and holes in InSb, allowing 
the different conduction regions and a low-temperature anisotropy to be 
faithfully and contactlessly captured. These findings not only provide a 
clearer understanding on how the magnetic plasmon bands couple to the 
light reflections, but also yield important material parameters of InSb 
that are valuable for future active THz device developments. 

Under a y-direction magnetic field B, the permittivity of a carrier 
plasma is [1,3,4,6,12,18,25]: 

εr =

⎡

⎣
εt 0 iεg
0 εa 0
− iεg 0 εt

⎤

⎦ (1) 

For a semiconductor such as InSb, with one electron band and two 
hole bands near the Fermi level, the transverse (εt), anomalous (εa), and 

gyrotropic (εg) permittivity elements are: εt = ε∞ −
∑ (ω(j)

p )
2
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, where j=e, lh, hh indicates 

electron, light hole and heavy hole contributions, with corresponding 
effective mass m*

j , density nj, and mobility μj, ε0 is the vacuum 
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permittivity, and ε∞ is the material permittivity at infinite frequency, 
ω(j)

c = eB/m*
j is the cyclotron frequency, Γj = e/μjm*

j is the carrier scat-

tering rate, ω(j)
p =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
nje2/m*

j ε0

√
is the plasma frequency. 

The effective masses of the different carriers in InSb vary as m*
e ≈

m*
lh≪m*

hh. Since the density of impurities in undoped single crystals is 
low, the samples studied in this work are quasi-intrinsic semiconductors 
where ne ≈ nhh + nlh. Under these conditions, the characteristic fre-
quencies associated with the three carrier species follow the relations of 
ω(e)

p ≫ω(hh)
p > ωlh

p and ω(e)
c ≈ ω(lh)

c ≫ω(hh)
c . As a result, the THz responses of 

Fig. 1. Magnetic field induced bulk plasmon band 
gap (a, d, g) The calculated dispersion diagrams of 
TM bulk modes in isotropic (B = 0) and gyrotropic 
(B ∕= 0) plasma media. Room temperature carrier 
properties of an undoped InSb single crystal sample 
are used in this calculation: ne = 1.5 × 1022 m− 3, me* 
= 0.019m0, nhh = 1.49 × 1022 m− 3, mhh* = 0.43m0, 
nlh = 1.38 × 1020 m− 3, mlh* = 0.019m0, ε∞ = 15.7. 
Blue solid curves correspond to the ideal dissipation- 
less cases with μi = ∞ and the dashed curves corre-
spond to realistic cases with finite carrier mobilities 
of μe = μlh = 5 m2 V− 1s− 1 and μhh = 0.01 m2 V− 1s− 1. 
(b, e, h) The calculated Voigt-configuration reflec-
tance at an air/plasma interface. Inset in (b) shows 
the modeling and experiment geometry. (c) The po-
larization of TM mode at B = 0.7T and B = 0 T (inset). 
(f, i) The field-induced reflectance change calculated 
by dividing the nonzero-field reflectance by the zero- 
field value. In all plots, the two field-induced 
bandgaps are highlighted in grey.   

Fig. 2. Field-dependent THz reflectances of undoped InSb (a, b) Reflectance spectra of InSb at 300K and 50K measured under different in-plane magnetic fields. (c, d) 
Corresponding field-induced reflectance changes comparing data obtained with and without a magnetic field. Dashed curves in (a-d) show the fitting results based on 
Eq. (3). 
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the samples are mainly determined by electrons, though at frequencies 
near ω(hh)

c the effects of heavy hole cyclotron resonance is also signifi-
cant. 

Plane waves propagating in such a gyrotropic medium are super-
positions of TE modes (electric field polarizes along the magnetic field 
orientation) and TM modes (electric field polarizes perpendicular to the 
magnetic field). In this work, we focus on the TM modes, which follow 
the dispersion relation of [1,3,4,6,12,18,25]: 

k2
TM = εeff k2

0 =
ε2

t − ε2
g

εt

ω2

c2 (2) 

The polarizations of the TM modes are determined by: Ez/ Ex = −

iεg/εt. At zero field (B = 0), TM modes are linearly polarized (Fig. 1c, 
inset) and only present above the normalized plasma frequency ω*

p =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(ω(j)
p )

2
/ε∞

√

(Fig. 1a). When a nonzero magnetic field is applied, this 
single bulk optical band splits into three (Fig. 1d, g). The lowest band, 
unique in the multi-carrier case, is produced by the field responses of the 
electron-hole hybrid [1]; The middle band is right-elliptically polarized 
(Fig. 1c) and called the cyclotron resonance in-active (CRI) mode [1]. 
The highest band, left-elliptically polarized, is called the cyclotron 
resonance active (CRA) mode. The three bands are separated by two 
bandgaps: BG1 and BG2. As shown in Fig. 1d and g, the positions and 
sizes of the bandgaps are field-dependent. In the large field limit (B→ 
∞), BG1 closes near the heavy hole cyclotron frequency ω(hh)

c , and the 
bottom edge of BG2 asymptotically approaches the electron cyclotron 
frequency ω(e)

c . 
The presence of field-induced bulk optical bandgaps strongly mod-

ulates the reflectance of light incidences that follow the Voigt configu-
ration (inset in Fig. 1b). Solving the wave equation while considering the 
continuity of tangential components of the electric and magnetic fields 
at the boundary, we obtain the reflection coefficient for a TM plane wave 
that incidents normally from a semi-infinite dielectric medium (with an 
isotropic permittivity εd) to a semi-infinite gyrotropic plasma, 

rTM =

̅̅̅̅̅̅̅εeff
√

−
̅̅̅̅̅εd

√

̅̅̅̅̅̅̅εeff
√

+
̅̅̅̅̅εd

√ (3) 

Fig. 1b, e and h plot the reflectance (R = |rTM|
2) spectra for an air/ 

plasma interface (εd = 1) under different field strengths. Near-unity 
reflectances are found inside BG1 and BG2, whereas the reflectances 
in each TM band are significantly suppressed. 

In realistic materials with finite carriers mobilities, the nonzero 
carrier scattering rates lead to modified plasmon dispersions (dashed 
curves, Fig. 1a, d, g). True energy gaps that strictly forbid the bulk 
plasmon propagation no longer exist, but the optical densities of states 
inside the bandgaps remain low. Correspondingly, although the reflec-
tance spectra (dashed curves, Fig. 1b, e, h) deviate from the ideal lossless 
cases, the magneto-optic modulations near the plasmon bandgap are still 
very significant. Fig. 1f and i highlight the field effects by calculating the 
ratio between the nonzero-field reflectance (R(B)) and the zero-field 
reflectance (R(0)). The field-induced reflectance modulation is particu-
larly strong in the frequency window covering the CRI band and BG2. As 
already discussed, the bandwidth of such frequency window increases 
with the external field. 

To study the field-controlled reflectance changes in experiments, we 
perform terahertz time-domain spectroscopy (THz-TDS) measurements 
in Voigt configuration on nominally undoped (001) InSb single crystals 
(MTI Corp.) at different temperatures and fields. Fig. 2a and b show the 
variable-field reflectance spectra obtained at 300 K and 50 K. Here, the 
absolute reflectance R(B) is measured using an Au plate as the reference, 
which has near-constant THz reflectances below 3 THz (More experi-
mental detail can be find in Supplemental Material). Due to the posi-
tioning error associated with the sample exchange and the atmospheric 
light absorptions [12] that varies as the lab humidity fluctuates, minor 
spurious signals in R(B) are inevitable. In comparison, the 
self-referenced field-induced reflectance change spectra R(B)/R(0) tends 
to be more robust (Fig. 2c and d). At 300 K, a single reflectance 
enhancement peak near 2.2 THz is detected (Fig. 2c). As shown by the 
theoretical calculation (Fig. 1f, i), the position of this peak is 
field-independent and determined by ω*

p. At 50 K, this peak moves to 
0.45 THz, indicating a much lower plasma frequency caused by the 
weakened thermal activation of carriers. Since ω*

p is very low at 50 K, 
BG2 becomes well separated from ω*

p even for small magnetic fields. As a 
result, a second peak emerges in R(B)/R(0), which has a field-dependent 
center frequency that traces the position of BG2 (~ω(e)

c ) (Fig. 2d). For 
both temperatures, the observed data can be well fitted by the theoret-
ical model as described by Eq. (3) (dashed line curves, Fig. 2a–d). 

To better visualize the dependences of the light reflection on tem-
perature and field, we plot the experimental data obtained at 5 K ≤ T ≤

300 K and 0 T ≤ B ≤ 0.7 T in forms of temperature-frequency and 
field-frequency diagrams (Fig. 3a, d). For comparison, theoretical 
calculation results are also shown in Fig. 3b and e. On these diagrams, 

Fig. 3. Temperature dependences of the magneto-plasmonic properties (a, b, d, e) Temperature-frequency (a, b) and magnetic field-frequency (d, e) diagrams of the 
THz reflectance. Dashed lines trace the changes in the critical frequencies. (a, d) show the experimental data, and (b, e) show the simulated results. (c, f) 
Temperature-dependent changes in the carrier densities(c), mobilities(f) of electron, heavy hole, light hole. 
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the changes in critical frequencies, including ω(e)
c , ω*

p, and the lower 
edges of CRI, CRA bands (ωCRI(k = 0), ωCRA(k = 0)) are traced by dashed 
lines. 

Clearly, the field-induced reflectance modulations mainly occur 
within the frequency range between ωCRI(k= 0) and ωCRA(k = 0). Such 
frequency window is wider at low temperatures when ω*

p is much 

smaller than ω(e)
c . The width reaches 1.2 THz at 50 K for a field of 0.7 T. 

The reflectance is enhanced by the magnetic field for frequencies above 
ω*

p, and suppressed for frequencies below ω*
p. As the temperature drops 

from 300K to 150 K, since ω*
p is reduced by more than 80%, the polarity 

of field-induced reflectance change alters for a wide range of light fre-
quencies. In comparison, ω(e)

c only depends on the temperature weakly 
due to the small reduction in effective mass [26]. At a fixed temperature, 
R(B)/R(0) is largest when ωp* and ω(e)

c are in resonance. 
Based on the THz reflectance data, temperature-dependent carrier 

parameters in the undoped InSb sample are extracted (Fig. 3c, f). Above 
150 K, the conduction in InSb is dominated by thermally activated 
intrinsic carriers. Consequently, the change in electron and hole den-

sities follows the Arrhenius law (n ∼ exp
(

− Ea
2kT

)

), where the activation 

energy Ea~0.29 eV represent the electronic bandgap size. Below 150 K, 
as the population of the thermally excited intrinsic carriers diminishes, 
extrinsic carriers doped from ionized impurities prevail, leading to the 
nearly constant 1020 m− 3 level low-temperature electron densities. The 
changes in electron and holes mobilities also fall into two temperature 
regimes (Fig. 3f). At higher temperatures (T > 50 K), electron-phonon 
interaction is the dominant venue of carrier scattering in InSb [23]. As 
the phonon density decreases with the reducing temperature, carrier 
mobilities rise. This trend is however reversed for temperatures below 
50 K. Such behavior is due to the scattering between carriers and the 
charged impurity dopants, which dominates over the carrier-phonon 
scattering process at low temperatures and is stronger when the ther-
mal energy is low. 

By rotating the sample in-plane, carrier properties along different 
directions in the (001) plane can be characterized and compared. While 
the THz magneto-reflectance is largely isotropic at room temperature, 
clear anisotropy is observed at low temperatures. As shown in Fig. 4, the 
low temperature carrier mobility is highest along the [110] crystal axis, 
and lowest along the [110] axis (Fig. 4b). The trend of the electron 
density is opposite to the mobility, which minimizes along the [110] axis 
and maximizes along the [110] axis (Fig. 4a). Such uniaxial anisotropy, 
distinct from the Hamiltonian calculated based on the Zincblende cubic 
lattice structure [27], is likely caused by the anisotropic energy profile 
associated with the impurity dopants. Consistent with this attribution, 
similar anisotropy was not observed in experiments where the effects 
related to the impurity doping are weak, such as when high-purity 
samples are used [28] or when intrinsic thermal carriers dominate [10]. 

In summary, we have modeled and characterized the THz reflectance 

of undoped InSb single crystals for a wide range of temperatures and 
fields. Out of the three bulk TM bands, the field-induced reflectance 
modulations mainly come from the two electron dominated ones (CRI 
and CRA), whereas the contribution from the electron-hole hybrid band 
is very weak. By tuning the plasma frequency and cyclotron frequency 
relative to each other, the overall profile of the magneto-reflectance 
spectrum can be flexibly modified, allowing control over both the 
strength and the polarity of the field effect. Additionally, contactless 
measurements of the temperature-dependent carrier parameters in InSb 
are also obtained from 5K to 300K, yielding results highly useful for 
future device design. 

Data availability 

The data that support the findings of this study are available from the 
corresponding author upon request. 
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Additional plots and discussions on the reflectance equation deri-
vation and low temperature bulk band structure are available in the 
supplementary information. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.optmat.2021.110831. 

Fig. 4. Anisotropy of carrier properties in InSb. (a, b) Temperature-dependent electron density (a) and mobility (b) measured at different in-plane sample rotations. 
As shown by the inset of (a), θ marks the angle between the external magnetic field and the [110] lattice axis. 
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