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Fundamental Modal Phenomena on Isotropic and
Anisotropic Planar Slab Dielectric Waveguides
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Abstract—The characteristic interactions of discrete modes
supported by planar isotropic and anisotropic dielectric slab
waveguides are analyzed using singularity and critical point
theory, leading to a rigorous and complete explanation of all
modal interactions. Complex frequency-plane singularities as-
sociated with modes on isotropic waveguides are identified and
discussed, and the absence of mode coupling is proven. For an
anisotropic planar waveguide having an arbitrarily oriented
optical axis, it is shown that mode coupling is controlled by the
presence of an isolated Morse critical point (MCP) accompanied
by a pair of complex-conjugate frequency-plane branch points.
The interaction of space-wave leaky modes on a grounded
anisotropic slab is studied by investigating the evolution of com-
plex frequency-plane branch point singularities as the orientation
of the optical axis varies. The general theory is presented, and
numerical results are provided for some specific waveguides.

Index Terms—Anisotropic waveguide, critical points, isotropic
waveguide, leaky modes, planar waveguide, singularity theory,
waveguide modes.

I. INTRODUCTION

CHARACTERIZATION of modal phenomena on isotropic
and anisotropic dielectric waveguides is important in

many areas of electromagnetics. In the sinusoidal steady state,
knowledge of the dispersion behavior of the discrete and con-
tinuous mode spectrum is crucial in the design and analysis of
waveguides and waveguide circuits. The exploitation of modal
characteristics has lead to a wide array of waveguide-based
circuit components, such as couplers, circulators, delay lines,
and filters [1]. Furthermore, various mathematical techniques
based on mode matching require knowledge of modal disper-
sion behavior, and modal dispersion underlies the physics of
signal dispersion. In the time domain, modal characteristics are
exploited in a variety of mathematical modeling techniques for
transient wave-layered media interactions [2]–[8].

Dielectric waveguides are often fabricated using isotropic di-
electrics, although anisotropic dielectrics may be incorporated
either intentionally or unintentionally. Naturally occurring
anisotropic materials may be intentionally chosen as a wave-
guide material for a variety of reasons, such as to enhance
polarization-based effects [9]. In addition, waveguide materials
may exhibit processing-induced anisotropy, such as often oc-
curs in forming planar layers for circuit boards [10]. Anisotropy
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can have a significant effect on modal coupling and cutoff
properties, and must often be accounted for in electromagnetic
simulations for design and analysis of guided-wave structures
and devices. In particular, the presence of anisotropy can
induce mode coupling in a waveguiding structure that would
not admit such coupling when constructed using isotropic
materials [11]–[13].

Unfortunately, the dispersion characteristics of all but the
simplest waveguiding structures (e.g., homogeneously filled
parallel conducting plates or closed rectangular waveguides)
must be determined numerically, which obscures the ana-
lytical character of the dispersion function. A mathematical
model based on the analysis of critical and singular points
of the dispersion function can be effectively used for the
characterization of the modal spectrum. Of principal interest is
the connection of Morse critical points (MCP), fold singular
points, and associated frequency-plane branch-point singular-
ities with observable modal phenomena. The role of the MCP
in mode-coupling problems has been originally established in
[14] and [15] in the analysis of spectral characteristics of open
resonators and open waveguides. It has been observed that two
solutions in the vicinity of the MCP form a coupling diagram
characteristic for a mode-coupling interaction. This idea has
been also applied to the analysis of eigenmode coupling in open
waveguide resonators [16], [17], metal-dielectric cylindrical
waveguides [18], open periodic structures [19], and dielectric
layered structures [20], [21].

In recent papers, we have expanded on the investigation of
singularities and critical points in printed-circuit transmission
lines and dielectric planar slab waveguides. In [22], singular
points and associated frequency-plane branch points were
shown to govern modal behavior in the vicinity of cutoff in
a variety of transmission line and waveguiding structures. In
[23], MCPs were shown to provide an alternative to traditional
coupled-mode theory for general transmission lines and waveg-
uides. In [24] the TM-even modes supported by an isotropic
planar waveguide were studied, and complex frequency-plane
branch points associated with these modes were identified. This
led to an explanation of the “apparent” modal nonuniqueness of
TM-even surface-wave modes supported by a planar waveguide
having material loss or gain. In [25] it was shown that branch
points are also associated with critical points which occur in
mode coupling regions, such that mode interactions will have
the form of either mode transformations or mode continuations,
depending on the path of frequency variation with respect to
the location of the frequency-plane branch points.

In this paper, we 1) extend the results of [24] to include
all possible mode classes on isotropic planar waveguides (all
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Fig. 1. Planar anisotropic dielectric waveguide.

Fig. 2. Dispersion curves for the first four modes of an anisotropic planar
waveguide having permittivity (2), where" = " = 4" , " = 2:25" ,
and2d = 2 cm. The optical axis is positioned at� = 45 and� = 30 . The
modes are hybrid, and couple together due to the asymmetry provided by the
placement of the optical axis.

TM and TE even and odd modes), and discuss the significant
differences between the TM and TE mode classes; 2) prove that
mode coupling (in the usual sense) cannot occur on isotropic
symmetric slab or grounded slab waveguides; 3) prove that
modal interactions cannot occur for proper TE modes on
isotropic symmetric slab or grounded slab waveguides; and
4) apply the theory of singular and critical points to explain
modal phenomena on anisotropic planar dielectric waveguides,
making use of the isotropic waveguide results.

Regarding anisotropic waveguides, we present a rigorous
theory which explains modal phenomena, in particular modal
coupling and transformation, associated with the anisotropic
planar waveguide depicted in Fig. 1. For example, typical
dispersion curves of several low-order modes for this wave-
guide are shown in Fig. 2 for the physical parametersand

provided in the figure caption. Anisotropy-induced modal
coupling and transformation between -dominant (HE)
hybrid modes and -dominant (EH) hybrid modes is clearly
shown. Because of the hybrid nature of modes on anisotropic
waveguides, in order to describe the complex frequency-plane
singularities which govern this modal behavior we use the
properties obtained for modes on isotropic waveguides.

The paper is organized as follows. In Section II we review
the different types of singularities associated with modal
phenomena (modal coupling, modal transformation, and modal

cutoff). In Section III we discuss singularities associated with
discrete modes on an isotropic planar waveguide, treating for
the first time -odd modes and both types of modes.
In this section we also prove the absence of coupling among
modes, and the absence of modal interaction (in the sense
described later) for proper TE modes. Finally, in Section IV
we use the results for the isotropic waveguide to explain modal
phenomena on anisotropic planar waveguides, including modal
coupling and transformation effects associated with proper
hybrid surface-wave modes and space-wave leaky modes in the
case of a misaligned optical axis.

II. SINGULARITIES AND CRITICAL POINTS OF THEDISPERSION

FUNCTION

Considering the two-dimensional (2-D) planar waveguiding
structure depicted in Fig. 1, which is invariant along the waveg-
uiding -axis , and subsequent to a 2-D Fourier
transform in space and time, , source-free
Maxwell’s equations and associated boundary conditions can
be converted to a functional equation for the discrete modes of
the structure

(1)

In (1) is the spatial Fourier-transform variable representing
the modal propagation constant (note thatis a radial trans-
form variable, and not wavelength),is the temporal Fourier-
transform variable representing angular frequency, andrep-
resents a modal field distribution, typically current density, elec-
tric field, or magnetic field, depending on the problem formu-
lation. We consider each of the variables (, ) in the complex
plane, and assume thatand have specified values. The dyadic
permittivity is given by

(2)

where

(3)

represents a rotation matrix which fixes the position of the op-
tical axis, and is the transpose of . Nontrivial solutions of
(1) are obtained from the implicit dispersion equation

(4)

More generally, is a mapping such that

(5)

where is a complex-valued constant, i.e., givenand
only for certain values of (, ) is . By treating ( , )
as a pair of complex variables, a study of the properties of the
mapping leads to the analysis of critical points and associated
complex frequency-plane branch points which explain modal
phenomena. We assume that the mappingis continuous in
( , ), and that all second partial derivatives ofexist and are
continuous. For a given formulation this is usually easy to prove.
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Since and have specified values, the pair of variables (,
) belongs to one of three possible categories. If

(6)
we call a critical point of the mapping . If

(7)
then is said to be aregular pointof the map-
ping . If

(8)

or

(9)

then is said to be asingular pointof the
mapping .

Furthermore, if

(10)

then is a solution of (4) leading to modal
dispersion behavior. In this case we are usually interested in
determining the implicit dispersion function for the
modal propagation constant as a function of frequency. In fact,
for any one can find a solution .

Each modal solution point ( , ) of (4) will be either a crit-
ical point, a regular point, or a singular point of the mapping,
although, conversely, critical, regular, and singular points of
are not necessarily modal solutions (i.e., they do not necessarily
satisfy ). From a geometric view, one can consider prop-
erties of the surface in the vicinity of
the hyperplane .

At a regular or singular point of the mapping the implicit
function theorem states that one can obtain from (4) a unique
solution for one of the variables (or ) in terms of the other
variable ( or ). For example, if , then (4)
admits a unique solution . Furthermore, if has, for
instance, continuous second derivatives, then so does the solu-
tion .

In the following sections, we consider critical and singular
points of importance in modal interaction problems, both
of which lead to branch-point singularities in the complex
frequency plane.

A. MCPs

Critical points ( , ) of may be broadly classified by
study of the Hessian

(11)

where all partial derivatives are evaluated at (, ). For
simplicity we assume that is real-valued, which
is found to occur for critical points of interest on lossless
waveguiding structures. For the critical point
represents a saddle point, which occurs in regions of modal
coupling [23]. The cases (nonisolated critical

point) or (isolated critical point, extremum) are
not of interest here.

In particular, we are interested in MCPs
of the mapping , which satisfy the set of equations

(12)

The Morse lemma [26] shows that in the vicinity of a MCP
can be represented by a quadratic canonical form using a smooth
change of variables. The result is the normal form (valid in the
vicinity of ( , )) associated with the MCP

(13)

leading to the dispersion function

(14)

It is obvious that the square root in (14) defines a two-valued
function in the complex frequency plane unless
, i.e., if the Morse point is also a solution of (4). This situation

arises in the event of a modal degeneracy.
From (14) the complex frequency-plane branch points

are obtained as complex-conjugate points centered about the
real-valued frequency of the MCP ( , )

(15)

Any frequency contour which passes between the branch
points and results in mode-coupling in the sense of
the usual coupled-mode theory, i.e., mode transformation
(hyperbolic-type dispersion) behavior, whereas passing above
or below the pair results in modal interaction with no
mode transformation (mode continuation) [25]. At a modal
degeneracy given by (of, say, even and odd
modes or TM and TE modes, etc.) due to structural symmetry,
the branch points collapse together at the Morse frequency

such that multivalued behavior of the dispersion function
in the complex frequency plane vanishes.

It is important to note that MCP theory can also be shown
to be locally equivalent to the traditional coupled-mode theory
[23], a fact that is key to the proof that modes cannot couple on
isotropic slab waveguides, as discussed later.

B. Fold Singular Points

Fold singular points (also known as turning or limit points)
( , ) of the equation satisfy the set of equations

(16)

The associated normal form (valid in the vicinity of (, )) is
[27]

(17)

leading to the dispersion function

(18)
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The square root in (18) clearly implicates frequency-plane
branch points at , although a more general proof of
this using the Weierstrass preparation theorem is provided in
[22]. It is found that fold singular points and associated fre-
quency-plane branch points occur in the vicinity of cutoff on
a variety of guided-wave structures [22]. In particular, these
points correspond to the cutoff points of discrete modes of ho-
mogeneously filled parallel plates and, in general, of canon-
ical cylindrical waveguides as resonant eigenvalues of the trans-
verse Laplacian operator defined in the waveguide cross-sec-
tion. In homogeneously filled cylindrical cavities these points
represent resonant frequencies of discrete oscillations. In di-
electric waveguides and printed-circuit transmission lines (mi-
crostrip, slot line, coplanar waveguide, etc.) fold and branch
points describe leaky-wave cutoff behavior. It should also be
noted that in a lossless structure fold singular points are real-
valued (such that the associated branch points reside on the real
frequency axis) separating different modal regimes.

III. SINGULARITIES ASSOCIATEDWITH ISOTROPICWAVEGUIDE

MODES

If the structure depicted in Fig. 1 is isotropic, and
discrete modes may propagate, governed by the dispersion
equations

(19)

where , , , and
. The isotropic dielectric slab has thickness,

is the refractive index of the slab, and corresponds to
the semi-infinite dielectrics placed above and below the slab
( for free space), with . The equations
for TE-odd and TM-even modes also describe the modes on a
grounded slab having thickness.

The factor induces branch points in the complex-plane
at . Proper (above cutoff) modes reside on the proper
Riemann sheet where Re , and improper (below cutoff)
modes reside on the improper Riemann sheet where Re
. The branch cuts which separate these two sheets are defined

by

Re (20)

leading to the standard hyperbolic-plane branch cuts

Im
Im Re

Re
Re Re (21)

The solution of (19) leads to the implicitly defined dispersion
function , which provides the dispersion behavior for
the th mode on the proper or improper Riemann sheet.
In this paper for even modes and
for odd modes. Complex-valued roots are found numerically by
a standard secant method root search given a complex-valued
initial guess. Once the mode is found at some frequency it is

straightforward to “track” the mode as frequency varies. Deter-
mining initial guesses requires some trial-and-error, although
the propagation constant can usually be found by considering
the vicinity of cutoff, where ( , ) is approximately known (for

modes the vicinity of (, 0) is also useful).
Since the four equations (19) are independent equations for

the four mode classes, it follows that -odd, -even,
-odd, and -even modes form mutually independent

mode sets, such that no interaction can occur among these mode
sets, even in the event of lossy media. However, interactions
among modes within a mode set can possibly occur, where
we distinguish two possible forms of modal interaction. Mode
coupling is when two or more modes exhibit hyperbolic-type
dispersion behavior in the sense of the familiar coupled-mode
theory. It is shown in [23] that mode coupling is associated with
the presence of a nondegenerate MCP pair in the plane (, ),
and that coupled-mode theory is locally equivalent to the theory
arising from an examination of MCPs. From (12) and using
(19) it is easy to prove that a nondegenerate MCP cannot occur
(there is no solution of (12) with given by (19)) for modes
on an isotropic slab waveguide. Therefore, mode coupling in
the usual sense cannot occur on an isotropic slab (consistent
with the fact that mode coupling is usually associated with a
perturbation of some “ideal” structure possessing sufficient
symmetry, in this case the isotropic slab). More generally, it can
be easily shown analytically that in isotropic slabs described by
dispersion equations (19), critical points (degenerate, ,
or nondegenerate, ) defined by (6) cannot occur. Since
MCPs form a subset of critical points, this leads to the conclu-
sion thatin isotropic (single-layer) slabs the dispersion curves
of modes within the same set never intersect and they never
form hyperbolic-type behavior (mode-coupling). The second
form of modal interaction (possibly occurring within a mode
set) is associated with a mode interchanging with another mode
upon encircling (or passing through) a complex-frequency
plane branch point, and is discussed later.

A detailed analysis of dispersion behavior and associated
complex frequency-plane singularities for the -even
modes is given in [24]. For completeness, a summary for
the -even modes will be provided here, and the results
extended to the other three mode classes, which behave quite
differently.

Modal dispersion behavior is shown in Fig. 3 for an
isotropic slab having thickness cm characterized by

and when varies over the positive
real axis. For a given frequency, points
are either regular, singular, or critical points of the mapping

, and are also solutions of (19) if
. As discussed earlier, in the isotropic case

critical points, which relate to modal coupling, do not occur.
Therefore, all pairs of solution points of (19)
shown in Fig. 3 are regular points of the mapping, except
for the singular points (denoted by stars in Fig. 3) where the
improper complex solution becomes an improper real solution
corresponding to the leaky-wave cutoff.

As described in detail in [24], one can envision modes as oc-
curring in pairs, and certain mode pairs are connected by fre-
quency-plane branch points such that modes in a pair may be
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(a) (b)

(c) (d)

Fig. 3. Dispersion curves of bound and leaky modes for an isotropic planar waveguide having" � " = 2:25" , " = " , and2d = 2 cm. (a)TM -even
modes. (b)TM -odd modes. (c)TE -even modes. (d)TE -odd modes. A star symbol denotes the fold singular point associated with the leaky-wave cutoff.

interchanged by encircling the associated branch point. At a fre-
quency-plane branch point of a mode pair, modes in the pair
coalesce. Three types of mode pairs have been identified [24],
leading to the following characterization.

Modes and their negatives form a Type 0 mode pair
such that at a complex frequency these

modes coalesce, obviously at . These branch points can
be determined as

(22)

for modes, , and

(23)

for modes, . For the fundamental even and
modes having , . These points are first-

order branch points for a mode pair consisting of a mode and its
negative.

Modes and their conjugates form a Type 1 mode pair
such that at a frequency these modes

coalesce, obviously on the real-axis. A complete revolution

about results in the smooth interchange of a mode and its
conjugate, such that are first-order branch points for the

mode and its conjugate. The branch points are located
on the real- axis for lossless media, near to and at a value less
than the well-known cutoff frequency points of discrete modes

(24)

and can be found numerically from (16). In isotropic dielectric
slabs the branch points correspond to the leaky-wave cutoff
frequency points.

A given mode and the next higher-order mode with
the same symmetry (even or odd) about the plane
(Fig. 1), , form a Type 2 mode pair. At a frequency

modes in the pair coalesce, and a complete rotation

about results in the smooth interchange of the

and modes. As such, are first-order branch
points for the and modes. These branch points
can also be found numerically from (16). It is easy to show that

proper modes do not possess Type 2 branch points: for
modes with , (16) leads to . However, for
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(a) (b)

(c) (d)

Fig. 4. Complex frequency-plane singularities (dots) of different types, generalized cutoff-frequency loci (solid and dashed lines), and ordinary cutoff frequencies
for the modes of an isotropic planar waveguide having" � " = 2:25" , " = " , and2d = 2 cm. (a)TM -even modes. (b)TM -odd modes. (c)TE -even
modes. (d)TE -odd modes. Type 2 branch points! do not occur forTE modes (cases (c) and (d)).

proper modes Re . Therefore, Type 2 branch points
cannot exist for proper modes, and the complicated modal
interaction possible for TM modes, especially for lossy media,
cannot occur. From duality, if magnetic contrast is included
this statement no longer holds.

All of these branch points are shown in Fig. 4 for the four dif-
ferent mode classes. Note that the complex frequency plane is
simpler for the modes compared to the modes, due to
the absence of Type 2 branch points for modes. Also shown
in Fig. 4 are the cutoff frequencies , as well as the general-
ized cutoff frequencies given by the solid and dashed lines. As
discussed in [24], the locus of complex frequencies for which
a mode crosses the-plane branch cuts are called generalized
cutoff frequencies, and in the case of realthis reduces to the
usual definition of cutoff frequency. These generalized cutoff
frequencies will satisfy (1), along with the additional condition
Re . Unfortunately, this does not lead to an explicit for-
mula for the locus of generalized cutoff frequencies, but rather

yields three real equations in three real unknowns (, , and
or ). The generalized cutoff frequencies extend the concept

of modal cutoff to the case of complexand lossy media, and
are described more thoroughly in [24].

Although many of the above described branch points occur
in the complex frequency plane away from the real axis, if they
are located on or near to the real-axis they will significantly
influence time-harmonic dispersion behavior. For instance,
when material loss or gain is present, the and
branch points may migrate across the real-axis, causing
modal interchange and apparent modal nonuniqueness [24].
The branch points leave the real-axis in the event of
material loss or gain, explaining dispersion behavior in the
“spectral-gap” region in these cases. Apart from time-harmonic
wave phenomena, if the various branch points migrate in the
complex -plane due to changes in the material or geometric
properties of the waveguide, transient methods such as [8]
which use modal properties are significantly affected.
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(a)

(b)

Fig. 5. (a) Complex frequency-plane singularities associated with the first two
modes shown in Fig. 2. The optical axis is positioned at� = 0 (pure uncoupled
TE andTM modes exist). (b) Dispersion curves for the first two modes
shown in Fig. 2 when the optical axis is positioned at� = 0 . The location
of a degenerate MCP given by (12) is shown by the plus sign at the place of
intersection of dispersion curves.

IV. SINGULARITIES ASSOCIATEDWITH ANISOTROPIC

WAVEGUIDE MODES

If the planar waveguide depicted in Fig. 1 is anisotropic, the
dispersion equation (4) which governs modal phenomena be-
comes more complicated than (19). For this work the disper-
sion equation (4) was obtained numerically using the method
described in [28]. In Fig. 2 dispersion curves for the first four
modes of an anisotropic planar waveguide having permittivity
(2) are shown, where , , and

cm. The optical axis is positioned at and
such that the modes are hybrid, and couple together

due to the asymmetry provided by the placement of the optical
axis [13] (this asymmetry forms the required perturbation of the
“ideal” (isotropic) structure to result in mode coupling).

In order to understand the reason for modal coupling,
consider hybrid discrete modes and . These modes
are associated with the and modes on an isotropic
waveguide having . The various

-plane singularities associated with the and modes

(and some others) are shown in Fig. 4(b) and (c), respectively.
Starting with the isotropic case, if is fixed at and

is increased from to , the waveguide
material obviously becomes anisotropic with . The
branch point singularities associated with the isotropic modes
shown in Fig. 4(b) and (c) migrate (somewhat uneventfully) in
the complex -plane, to become located as shown in Fig. 5(a).
An important new feature is that a MCP appears for the
anisotropic case. For the isotropic case the MCP does not exist
as discussed previously (it can be thought of as being located
at infinity), and as the material becomes anisotropic the point

moves in from infinity (toward the origin) along the real-
axis. For this critical point is degenerate, in the sense
that , and in this case the dispersion curves
given by (14) form (locally) two intersecting straight lines,
indicating that the modes do not couple (pure and
modes exist). This is shown in Fig. 5(b).

As the optical axis is moved away from a coordinate axis
the modes generally become hybrid (although pure TE and TM
modes do still exist if the optical axis is moved in certain planes).
Some of the branch points in Fig. 5(a) migrate as well, although
the most important effect is that the MCP becomes nondegen-
erate, in the sense that , leading to associated
branch-point singularities given by (15). The location of the
various singularities associated with these first two modes are
shown in Fig. 6(a) for the optical axis positioned at
and (the case of and is also shown
in this figure). The branch points given by (15) are de-
noted by in the figure, since they connect the
TE-even mode and the TM-odd mode. These branch
points split apart from the MCP as the optical axis moves
from , and reside symmetrically about the real-axis for

. Since the path of frequency variation passes between
these points, mode coupling and associated mode transforma-
tion occurs [25]. In this case the dispersion curves for these
modes are shown in Fig. 6(b) (also shown in Fig. 2).

The migration of the MCP and branch points, as well as the
splitting off of the branch points from the MCP as the
pure TE and TM modes become hybrid, is shown in Fig. 7. The
solid lines show migration of the branch points for
as changes from (isotropic case, shown in
Fig. 4) to (anisotropic case). The dashed lines
show the migration as is then changed from 0to 60 in the
plane . As the material becomes anisotropic the MCP
moves from infinity to the finite -plane (in Fig. 7,

GHz for and ), and
as moves away from 0, migrates as shown (at ,

GHz and at , GHz)
and branch points associated with the nondegenerate
MCP emerge (these branch points coalesce at the MCP ifis
brought back to 0).

Finally, as another application we consider the migration
of branch points which cause leaky modes to interact
(similarly, for the case of an isotropic slab, varying material
loss causes the points to migrate across the real-
axis, causing proper modes to interact, as described in [24]).
We consider a grounded anisotropic slab having cm,
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(a)

(b)

Fig. 6. (a) Complex frequency-plane singularities associated with the first two
modes shown in Fig. 2. The optical axis is positioned at� = 45 and� = 30

(coupled hybridHE andEH modes exist). Note the presence of the branch
points! given by (15) and associated with the nondegenerate MCP. The
case of� = 60 and� = 30 is also shown to demonstrate the evolution
of singularities. (b) Dispersion curves for the first two modes shown in Fig. 2
when the optical axis is positioned at� = 45 and� = 30 . The location of
the nondegenerate MCP given by (12) is shown by the plus sign in the region of
mode transformation.

, and . As varies in the
-plane the point migrates toward the real-

axis, and crosses the axis at approximately as shown
in Fig. 8. The corresponding dispersion behavior is shown
in Fig. 9 for (just before the branch point crosses
the real- axis, GHz), and in
Fig. 10 for (just after the branch point crosses the
real- axis, GHz). In Fig. 9, where

the frequency path is above the branch point , and
leaky modes interact but do not interchange ( and
leaky modes eventually become and proper

(surface-wave) modes, respectively). In Fig. 10 the frequency
path is below the branch point . In this case the leaky mode

analytically continues to become the leaky mode
associated with the proper mode .

These figures show that even for lossless media modal inter-

Fig. 7. Migration (parameterized) in the complex frequency plane of various
branch points and the MCP associated with the first two modes shown in Fig. 2.
The solid lines represent migration of the branch points for" = 2:25" as
" = " changes from2:25" (isotropic case shown in Fig. 4) to" =

" = 4" (anisotropic case). The dashed lines show the migration of these
points as� is changed from 0 to 60 in the plane� = 30 . As the material
becomes anisotropic the MCP moves from infinity to the finite!-plane, and as�
varies and the modes become hybrid,! migrates as shown and branch points
! associated with the nondegenerate MCP emerge (these branch points
coalesce at the MCP when� = 0 and the modes decouple).

Fig. 8. Migration of complex frequency-plane branch point!
parameterized by� for a grounded anisotropic slab aveguide having
d = 1 cm, " = " = 2:25" , and" = 4" . As � varies the branch
point migrates across the real-frequency axis separating two different modal
interaction regimes. The branch point crosses the real-frequency axis at
approximately� = 83 resulting in degeneracy of the leaky modesEH and
EH .

actions, leading to what would otherwise be interpreted as
mode nonuniqueness, can be explained by an understanding of
complex frequency-plane branch points associated with mode
pairs, and their associated migrations as material or geometrical
parameters vary.

V. CONCLUSION

In this paper we have used the theory of critical and sin-
gular points in the complex frequency plane to explain modal
phenomena on planar dielectric waveguides. The theory was
first applied to an isotropic dielectric waveguide, where a va-
riety of complex plane features were examined. As the isotropic
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(a)

(b)

Fig. 9. Dispersion curves [(a) phase constant and (b) attenuation constant] for
the leaky modesEH andEH on a grounded anisotropic slab when the optical
axis is positioned at� = 81 , � = 0 . The branch point! is close to and
below the real-frequency axis (frequency path). In this case the leaky modes
EH andEH interact but do not interchange.

material in the waveguide was transformed into an anisotropic
medium, it was shown that the singularities and critical points
associated with the isotropic waveguide migrate in the complex
frequency plane. This migration was used to explain modal cou-
pling, modal transformation, and modal interaction phenomena
of discrete hybrid surface waves and space-wave leaky modes
for the case of an anisotropic slab waveguide.
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