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Fundamental Modal Phenomena on Isotropic and
Anisotropic Planar Slab Dielectric Waveguides
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Abstract—The characteristic interactions of discrete modes can have a significant effect on modal coupling and cutoff
supported by planar isotropic and anisotropic dielectric slab properties, and must often be accounted for in electromagnetic
waveguides are analyzed using singularity and critical point gjmjations for design and analysis of guided-wave structures

theory, leading to a rigorous and complete explanation of all d devi | ticul th f isot
modal interactions. Complex frequency-plane singularities as- il evices. In particular, the presence Or anisotropy can

sociated with modes on isotropic waveguides are identified and induce mode coupling in a waveguiding structure that would
discussed, and the absence of mode coupling is proven. For annot admit such coupling when constructed using isotropic
anisotropic planar waveguide having an arbitrarily oriented materials [11]-[13].

optical axis, it is shown that mode coupling is controlled by the = \yntortunately, the dispersion characteristics of all but the

presence of an isolated Morse critical point (MCP) accompanied _. - .
by a pair of complex-conjugate frequency-plane branch points. simplest waveguiding structures (e.g., homogeneously filled

The interaction of space-wave leaky modes on a grounded Parallel conducting plates or closed rectangular waveguides)
anisotropic slab is studied by investigating the evolution of com- must be determined numerically, which obscures the ana-
plex frequency-plane branch point singularities as the orientation |ytical character of the dispersion function. A mathematical
of the optical axis varies. The general theory is presented, and oqe| based on the analysis of critical and singular points
numerical results are provided for some specific waveguides. ; - . -
of the dispersion function can be effectively used for the
Index Terms—Anisotropic waveguide, critical points, isotropic  characterization of the modal spectrum. Of principal interest is
waveguide, leaky modes, planar waveguide, singularity theory, yhe connection of Morse critical points (MCP), fold singular
waveguide modes. . . . .
points, and associated frequency-plane branch-point singular-
ities with observable modal phenomena. The role of the MCP
|. INTRODUCTION in mode-coupling problems has been originally established in
HARACTERIZATION of modal phenomena on isotropic[14] and [15] in the analysis qf spectral characteristics of open
-resonators and open waveguides. It has been observed that two

and anisotropic dielectric waveguides is important iR i i the vicinity of the MCP f ling di
many areas of electromagnetics. In the sinusoidal steady st3 u lons In the vicinity of the ML= 1orm a coupiing diagram
aracteristic for a mode-coupling interaction. This idea has

knowledge of the dispersion behavior of the discrete and cq - | lied to th vsis of i d ling i
tinuous mode spectrum is crucial in the design and analysis N aiso applied to In€ analysis of €igenmode coupling ih open
veguide resonators [16], [17], metal-dielectric cylindrical

waveguides and waveguide circuits. The exploitation of mod4F . D . .
characteristics has lead to a wide array of waveguide-ba: %vegwdes [18], open periodic structures [19], and dielectric
circuit components, such as couplers, circulators, delay lin %){ered str;Jctures [20], [ﬁll' ded on the i tigati f
and filters [1]. Furthermore, various mathematical techniques N recent papers, we have expanded on the investigation o
based on mode matching require knowledge of modal dispéwgularltles' and c;ntmal points in prlnteq-cwcun transm'|55|on

sion behavior, and modal dispersion underlies the physics Ies and dielectric planar slab waveguides. In [22], singular

signal dispersion. In the time domain, modal characteristics Aants and associated frequency-plane branch points were

exploited in a variety of mathematical modeling techniques fgpowh to govern m.od.al bghawor in the v!C|_n|ty of cutoff in
transient wave-layered media interactions [2]-[8]. a variety of transmission line and waveguiding structures. In

Dielectric waveguides are often fabricated using isotropic o[iZS]’ MCPs were shown to provide an alternative to traditional

electrics, although anisotropic dielectrics may be incorporatgaduple?'mggetthhe‘_)rr{/lfor genera(ljl transmlssLor(; Ill?es an_d v;/avgg-
either intentionally or unintentionally. Naturally occurringu' es. In [24] the “even modes supported by an 1Sotropic

anisotropic materials may be intentionally chosen as a wa gnaLway(eth|de w.e;e dStu.?r']et?]’ and c%mplex frgguetljfcyépl_?rr]].e
guide material for a variety of reasons, such as to enha nch points associated wi €se€ modes were identimed. This

polarization-based effects [9]. In addition, waveguide materi toan exp][anatlon of thedapparent tmdogal nolnumqueness'gf
may exhibit processing-induced anisotropy, such as often % yI-even surtace-wave modes supported by a plahar waveguide
ving material loss or gain. In [25] it was shown that branch

curs in forming planar layers for circuit boards [10]. Anisotropy . . . . . .
oints are also associated with critical points which occur in
mode coupling regions, such that mode interactions will have
Manuscript received October 15, 2001; revised February 12, 2002. the form of either mode transformations O_r rr_]Ode gontlnuatlons,
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cutoff). In Section Il we discuss singularities associated with
ZA discrete modes on an isotropic planar waveguide, treating for
I = the first timeTM”-odd modes and both types @f” modes.

2d In this section we also prove the absence of coupling among

s modes, and the absence of modal interaction (in the sense

described later) for proper TE modes. Finally, in Section IV
we use the results for the isotropic waveguide to explain modal
~~~~~~~~~~~~ N phenomena on anisotropic planar waveguides, including modal
~— coupling and transformation effects associated with proper
OPTIC AXIS hybrid surface-wave modes and space-wave leaky modes in the
case of a misaligned optical axis.

Fig. 1. Planar anisotropic dielectric waveguide.
Il. SINGULARITIES AND CRITICAL POINTS OF THEDISPERSION

1.75 FUNCTION
~"EH;  EHp.- o : , -
Considering the two-dimensional (2-D) planar waveguiding
.-~ _HEg structure depicted in Fig. 1, which is invariant along the waveg-
1.50 | |i U S b . . .
. S uiding p-axis(p = /2% + y?), and subsequent to a 2-D Fourier
i S HE transform in space and timép,t) «—— (\,w), source-free
i 125 L V' HE 1 Maxwell's equations and associated boundary conditions can
3 \, be converted to a functional equation for the discrete modes of
~ JEH, the structure
1.00
=== properreal A\ w,e,d)X = 0. 1)
- improper real
075 , —— improper complex In (1) X is the spatial Fourier-transform variable representing
o 5 10 15 20 the modal propagation constant (note thas a radial trans-
Real(0w/2T) (GHz) form variable, and not wavelengthy,is the temporal Fourier-

transform variable representing angular frequency, dnep-
Fig. 2. dDiShpersion curves for( t;le fri]rst four modes of an anisotropic planpesents a modal field distribution, typically current density, elec-
waveguide having permittivity (2), where., = ¢,, = 4¢o, .. = 2.25¢, . . . _
and2d = 2 cm. The optical axis is positioned afi 45° and¢ = 30°. The m(? field, or maQ”e“C field, depend.mg on th? problem formu
modes are hybrid, and couple together due to the asymmetry provided by aon. We consider each of the variables ¢) in the complex

placement of the optical axis. plane, and assume tha&ndd have specified values. The dyadic
permittivity ¢ is given by
TM and TE even and odd modes), and discuss the significant . 0 0
differences k_JetW_een the TM and TE mode classes; 2) prove th_at c=R'0,4)| 0 e, 0 |RO6 ) )
mode coupling (in the usual sense) cannot occur on isotropic 0 0 e
symmetric slab or grounded slab waveguides; 3) prove thv%ere =
modal interactions cannot occur for proper TE modes on . .
cosfcos¢p cosfsing —sinéd

isotropic symmetric slab or grounded slab waveguides; and _ .
4) apply the theory of singular and critical points to explain B(9,9) = —sing cos ¢ 0 3)
modal phenomena on anisotropic planar dielectric waveguides,
making use of the isotropic waveguide results. represents a rotation matrix which fixes the position of the op-
Regarding anisotropic waveguides, we present a rigorotisal axis, andRT is the transpose aRk. Nontrivial solutions of
theory which explains modal phenomena, in particular modgl) are obtained from the implicit dispersion equation
coupling and transformation, associated with the anisotropic
planar waveguide depicted in Fig. 1. For example, typical H(X\w,e d) =det (A(\w,e,d)) =0. (4)
dispersion curves of several low-order modes for this wave-
guide are shown in Fig. 2 for the physical parameteand
d provided in the figure caption. Anisotropy-induced modal H(\w,e d) =C (5)
coupling and transformation betwe€RE’-dominant (HE)
hybrid modes and'M”-dominant (EH) hybrid modes is clearlywhereC € C is a complex-valued constant, i.e., giveandd
shown. Because of the hybrid nature of modes on anisotropialy for certain values ofX, w) is C = 0. By treating ¢, w)
waveguides, in order to describe the complex frequency-plaa® a pair of complex variables, a study of the properties of the
singularities which govern this modal behavior we use thmappingH leads to the analysis of critical points and associated
properties obtained for modes on isotropic waveguides. complex frequency-plane branch points which explain modal
The paper is organized as follows. In Section Il we reviephenomena. We assume that the mapgih@s continuous in
the different types of singularities associated with modéA, w), and that all second partial derivativeskbfexist and are
phenomena (modal coupling, modal transformation, and modaintinuous. For a given formulation this is usually easy to prove.

sinffcos¢ sinfsing cosd

More generallyH is a mappind A\,w, e, d) — C such that
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Sincee andd have specified values, the pair of variablas ( point) orA(\.,w.) > 0 (isolated critical point, extremum) are
w) belongs to one of three possible categories. If not of interest here.
In particular, we are interested in MCPs., w.) = (A, wim)

—8H(gi\\’w) =H\(\,w) =0, LH(g)\,w) = H/ (\w)=0  of the mappingl, which satisfy the set of equations
w
©) [ —0, H,(\ =0
we call(\,w) = (A, w.) acritical point of the mapping . If HA(/\’ZEL(*"’ “; B 0’ oAy =0, 12)
msWm ) <OU.
OH(\ w) OH(\ w)
“on Hy(A,w) # 0, T ow H,(Aw) #0 The Morse lemma [26] shows thAt in the vicinity of a MCP

(7) canbe represented by a quadratic canonical form using a smooth
then(\,w) = (A, w,) is said to be aegular pointof the map- change of variables. The result is the normal form (valid in the

ping H. If vicinity of (\,,,, w,,)) associated with the MCP

( 2 2

=t 20, L 0w)=0 @ A= An)” = W =wn)” = HAmywom) - (13)

w

or o) () leading to the dispersion function

OH(\, w OH(\, w

T:H;(A’w): 0, 0w =H,(},w)#0(9) Mw) =Am £ VHMm,wim) + (w0 — w2 (14)
then (\,w) = (As,ws) is said to be asingular pointof the |t is obvious that the square root in (14) defines a two-valued
mappingH. function in the complex frequency plane unld$é\,,,, w,,) =

Furthermore, if 0, i.e., if the Morse point is also a solution of (4). This situation

arises in the event of a modal degeneracy.

H(\w,gd)=0 (10) From (14) the complex frequency-plane branch paints,
then(\,w) = (Ao, wo) is a solution of (4) leading to modal &€ obtained as complex-conjugate points centered about the
dispersion behavior. In this case we are usually interested'fi@l-valued frequency,, of the MCP @, w)

determiningthe_implicitdispersionfunc_tidm(w07§, d) for the Witz = Wm £ 5V H O @). (15)
modal propagation constant as a function of frequency. In fact,
for anywg one can find a solution. Any frequency contour which passes between the branch

Each modal solution poinig, wo) of (4) will be either a crit- pointswy; and wyo results in mode-coupling in the sense of
ical point, a regular point, or a singular point of the mapplhg the usual coupled-mode theory, i.e., mode transformation
although, conversely, critical, regular, and singular point&of (hyperbolic-type dispersion) behavior, whereas passing above
are not necessarily modal solutions (i.e., they do not necessaofybelow the pairws: » results in modal interaction with no
satisfyH = 0). From a geometric view, one can consider propnode transformation (mode continuation) [25]. At a modal
erties of the surfac@\,w, e, d, H(\,w,e,d)] in the vicinity of degeneracy given by (A, w,,) = 0 (of, say, even and odd
the hyperplané\, w, ¢, d, 0). modes or TM and TE modes, etc.) due to structural symmetry,

At a regular or singular point of the mappirtg the implicit the branch pointsy; » collapse together at the Morse frequency
function theorem states that one can obtain from (4) a uniqug, such that multivalued behavior of the dispersion function
solution for one of the variables\ (or w) in terms of the other in the complex frequency plane vanishes.
variable (v or ). For example, ifH} (\,w,e,d) # 0, then (4) It is important to note that MCP theory can also be shown
admits a unique solutiok(w, ¢, d). Furthermore, if has, for to be locally equivalent to the traditional coupled-mode theory
instance, continuous second derivatives, then so does the s8], a fact that is key to the proof that modes cannot couple on
tion A\(w, g, d). isotropic slab waveguides, as discussed later.

In the following sections, we consider critical and singular
points of importance in modal interaction problems, botR- Fold Singular Points

of which lead to branch-point singularities in the complex Fold singular points (also known as turning or limit points)

frequency plane. (A\f, wy) of the equatior = 0 satisfy the set of equations
A. MCPs H(Ap,wp)=Hy(A,w)l(7 05 =0,
Critical points @, w.) of H may be broadly classified by 6=H\(X\w)l(xa, w0 HL (X w)|(x w7 0. (16)

tudy of the Hessi - .
study ot the Hessian The associated normal form (valid in the vicinity ofg wy)) is

A()\mwc) = H&&ng - H;Iw :ulk (11) [27]

where all partial derivatives are evaluated at,(w.). For A=Ap)* + (w—wp), 8>0,

simplicity we assume that\(\.,w,) is real-valued, which A=)’ —(w—wyp), 6<0 17
is found to occur for critical points of interest on Iossles%ading to the dispersion function

waveguiding structures. Fak(\.,w.) < 0 the critical point )

represents a saddle point, which occurs in regions of modal Mw) =Ap£j\/w—ws, 6>0,

coupling [23]. The caseA(\.,w.) = 0 (nonisolated critical AMw) =Af £ Jw—wy, 6<0. (18)
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The square root in (18) clearly implicates frequency-plarsraightforward to “track” the mode as frequency varies. Deter-
branch points atv = wy, although a more general proof ofmining initial guesses requires some trial-and-error, although
this using the Weierstrass preparation theorem is providedtire propagation constant can usually be found by considering
[22]. It is found that fold singular points and associated frehe vicinity of cutoff, where §, w) is approximately known (for
guency-plane branch points occur in the vicinity of cutoff ofM?” modes the vicinity of X, 0) is also useful).

a variety of guided-wave structures [22]. In particular, these Since the four equations (19) are independent equations for
points correspond to the cutoff points of discrete modes of hilve four mode classes, it follows thatE”-odd, TE?-even,
mogeneously filled parallel plates and, in general, of canoitM?”-odd, andTM”-even modes form mutually independent
ical cylindrical waveguides as resonant eigenvalues of the transade sets, such that no interaction can occur among these mode
verse Laplacian operator defined in the waveguide cross-seets, even in the event of lossy media. However, interactions
tion. In homogeneously filled cylindrical cavities these pointamong modes within a mode set can possibly occur, where
represent resonant frequencies of discrete oscillations. In die distinguish two possible forms of modal interaction. Mode
electric waveguides and printed-circuit transmission lines (m@eupling is when two or more modes exhibit hyperbolic-type
crostrip, slot line, coplanar waveguide, etc.) fold and brandispersion behavior in the sense of the familiar coupled-mode
points describe leaky-wave cutoff behavior. It should also likeory. It is shown in [23] that mode coupling is associated with
noted that in a lossless structure fold singular points are retile presence of a nondegenerate MCP pair in the plane)(
valued (such that the associated branch points reside on the agal that coupled-mode theory is locally equivalent to the theory
frequency axis) separating different modal regimes. arising from an examination of MCPs. From (12) and using
(19) it is easy to prove that a nondegenerate MCP cannot occur
[Il. SINGULARITIES ASSOCIATEDWITH ISOTROPICWAVEGUIDE (there is no solution of (12) witli given by (19)) for modes
MODES on an isotropic slab waveguide. Therefore, mode coupling in
the usual sense cannot occur on an isotropic slab (consistent
S\%lw the fact that mode coupling is usually associated with a
perturbation of some “ideal” structure possessing sufficient
symmetry, in this case the isotropic slab). More generally, it can

If the structure depicted in Fig. 1 is isotropiEM” andTE”
discrete modes may propagate, governed by the disper
equations

Mcven . MCPs form a subset of critical points, this leads to the conclu-
H™ (A w,&,d) =njyp1 + py tanh(pzd) = 0 (19)  sjon thatin isotropic (single-layer) slabs the dispersion curves
wherep; = /X2 — k2, A2 = k2 + k2, k? = n2(w/c)?, and of modes within the same set never intersect and they never
¢ = (pogo) /2. The ;sotropic dmielec'élric ;Iab hés thickness form hyperbolk_:-type pehavior (_mode-coupling)he_ second
no is the refractive index of the slab, amd corresponds to form_ of mod_al mtergcnon (pos_S|ny oceurrng w ithin a mode
the semi-infinite dielectrics placed above and below the slést) IS asspugted with a mpde interchanging with another mode
(n; — 1 for free space), Withia; — n»/n1. The equations upon encwclmg.(or passing through) a complex-frequency
for TE-odd and TM-even modes also describe the modes oR'3"® bra_nch point, gnd 1S Q|scus§ed later. , .
grounded slab having thickneds A detailed analysis of dispersion behavior and associated
The factorp; induces branch points in the complgxplane complex. frgqueqcy-plane smgularlltles for theM”-even f
at\ = +k;. Proper (above cutoff) modes reside on the propg?OdeS IS given in [24]'_ For comp eteness, a summary for
Riemann sheet where Bg) > 0, and improper (below cutoff) the TM”-even modes will be provided here, and the results
modes reside on the improper 7Riemann sheet wheg,Rec extended to the other three mode classes, which behave quite

0. The branch cuts which separate these two sheets are deﬁﬂig&rently. . . o ) .
Modal dispersion behavior is shown in Fig. 3 for an

HYE=cdd(X . e, d) =p1 + pacoth(pad) =0 be easily shown analytically that in isotropic slabs described by
HTE—G"Q“(A,w.e. d) =p1 + ps tanh(pad) = 0 dispersion equations (19), critical points (degenerates 0,
TM—odd o 9 or nondegeneratd] # 0) defined by (6) cannot occur. Since
H (M w,e,d) =n3p1 + p2 coth(pad) =0
)

by isotropic slab having thicknessl = 2 cm characterized by
Re(p1) =0 (20) € = e2 = 2.25¢g ande; = 9 Whenw varies over the positive
real axis. For a given frequeney points(\, w) = ()\Sli)(w) w)
leading to the standard hyperboleplane branch cuts are either regular, singular, or critical points of the mapping
Im(k1)Re(ky) H : (Mw,e,d) — C, and are also solutions of (19) if
Im(A) = W H(\ w,e,d) = 0. As discussed earlier, in the isotropic case

critical points, which relate to modal coupling, do not occur.
IRV < |Re(ky)] - (1) Therefore, all pairs of solution point(sxﬁf)(w),w) of (19)

The solution of (19) leads to the implicitly defined dispersioshown in Fig. 3 are regular points of the mappiHg except
function /\ﬁli)(w), which provides the dispersion behavior fofor the singular points (denoted by stars in Fig. 3) where the
thenth mode on the propér-) orimproper(—) Riemann sheet. improper complex solution becomes an improper real solution
In this papem = 0,2,4,...foreven modes and = 1,3,5,... corresponding to the leaky-wave cutoff.
for odd modes. Complex-valued roots are found numerically by As described in detail in [24], one can envision modes as oc-
a standard secant method root search given a complex-valgading in pairs, and certain mode pairs are connected by fre-
initial guess. Once the mode is found at some frequency itgsiency-plane branch points such that modes in a pair may be
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Fig. 3. Dispersion curves of bound and leaky modes for an isotropic planar waveguide hawing = 2.25¢¢, ¢, = ¢p, and2d = 2 cm. (a)TMr-even
modes. (b)TM?-odd modes. (CI'E*-even modes. (dY E*-odd modes. A star symbol denotes the fold singular point associated with the leaky-wave cutoff.

interchanged by encircling the associated branch point. At afeboutw'? results in the smooth interchange of a mode and its

quency-plane branch point of a mode pair, modes in the pawnjugate, such that'! are first-order branch points for the

coalesce. Three types of mode pairs have been identified [24]h mode and its conjugate. Theé!) branch points are located

leading to the following characterization. on the realw axis for lossless media, near to and at a value less
Modes and their negatives form a Type O mode paihan the well-known cutoff frequency points of discrete modes

(An(w), =\, (w)) such that at a complex frequenm)%o) these e

modes coalesce, obviously at= 0. These branch points can W, = ———— (24)

be determined as 2dy/m; — i

c n 1 and can be found numerically from (16). In isotropic dielectric
- _° D45l (2201 22 ) -
Y T onad (n—1)mr£jl o1 — 1 (22)  slabs thev'" branch points correspond to the leaky-wave cutoff
frequency points.

for TM” modesy # 0, and A given mode), (w) and the next higher-order mode with

0) c ) noy + the same symmetry (even or odd) about the plane= d
Un T oned T +jln ot — 1 (23)  (Fig. 1), —Ani2(w), form a Type 2 mode pair. At a frequency
for TE” modes # 0. For the fundamental evefiE” and w, /,+o Modes in the pair coalesce, and a complete rotation

TM? modes having. = 0, w(()ﬂ) = 0. These points are first- f;lboutwff/)wr2 results in the smooth interchange of theith

order branch points for a mode pair consisting of a mode and&@sdF(» + 2)th modes. As suchqff)n , are first-order branch
negative. points for thenth and—(n + 2)th modes. These branch points
Modes and their conjugates form a Type 1 mode paian also be found numerically from (16). It is easy to show that
(An(w), An(w)) such that at a frequenoy,(f) these modes TE’ proper modes do not possess Type 2 branch points: for
coalesce, obviously on the realaxis. A complete revolution TE” modes with\ # 0, (16) leads t@;d = —1. However, for
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Fig. 4. Complex frequency-plane singularities (dots) of different types, generalized cutoff-frequency loci (solid and dashed lines), gnclbodfifraquencies
for the modes of an isotropic planar waveguide havirg ¢> = 2.25¢¢, &1 = ¢¢, and2d = 2 cm. (a)TM?-even modes. (bf M?-odd modes. (CI'E*-even
modes. (dJTE*-odd modes. Type 2 branch poira\Iréf/)nJr2 do not occur folTE? modes (cases (c) and (d)).

proper modes R@,) > 0. Therefore, Type 2 branch pointsyields three real equations in three real unknows ¢;, and
cannot exist fof'E” proper modes, and the complicated modal,. or A;). The generalized cutoff frequencies extend the concept
interaction possible for TM modes, especially for lossy mediaf modal cutoff to the case of complexand lossy media, and
cannot occur. From duality, if magnetic contrast is includeare described more thoroughly in [24].
this statement no longer holds. Although many of the above described branch points occur
All of these branch points are shown in Fig. 4 for the four difin the complex frequency plane away from the real axis, if they
ferent mode classes. Note that the complex frequency planétig located on or near to the realaxis they will significantly
simpler for théTE” modes compared to tHEM” modes, due to influence time-harmonic dispersion behavior. For instance,
the absence of Type 2 branch pointsTdt” modes. Also shown when material loss or gain is present, g and wf’/)nJrz
in Fig. 4 are the cutoff frequencies’, as well as the general-branch points may migrate across the rea&xis, causing
ized cutoff frequencies given by the solid and dashed lines. Awdal interchange and apparent modal nonuniqueness [24].
discussed in [24], the locus of complex frequencies for whicFhe w,ﬁ,l) branch points leave the real-axis in the event of
a mode crosses theplane branch cuts are called generalizeohaterial loss or gain, explaining dispersion behavior in the
cutoff frequencies, and in the case of redhis reduces to the “spectral-gap” region in these cases. Apart from time-harmonic
usual definition of cutoff frequency. These generalized cutoffave phenomena, if the various branch points migrate in the
frequencies will satisfy (1), along with the additional conditiomomplexw-plane due to changes in the material or geometric
Re(p;) = 0. Unfortunately, this does not lead to an explicit forproperties of the waveguide, transient methods such as [8]
mula for the locus of generalized cutoff frequencies, but rathahich use modal properties are significantly affected.
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(and some others) are shown in Fig. 4(b) and (c), respectively.
Starting with the isotropic case, if,. is fixed at2.25¢, and

€zx = €yy IS INCreased fron.25¢ to 4ep, the waveguide
material obviously becomes anisotropic with = 0°. The
branch point singularities associated with the isotropic modes
shown in Fig. 4(b) and (c) migrate (somewhat uneventfully) in
the complexv-plane, to become located as shown in Fig. 5(a).
An important new feature is that a MCB,, appears for the
anisotropic case. For the isotropic case the MCP does not exist
as discussed previously (it can be thought of as being located
at infinity), and as the material becomes anisotropic the point

wm, Moves in from infinity (toward the origin) along the real-

axis. Forf = 0° this critical point is degenerate, in the sense

that H(\,,,w,,) = 0, and in this case the dispersion curves

given by (14) form (locally) two intersecting straight lines,
(@ indicating that the modes do not couple (pare” and TM”

2.0 : : : modes exist). This is shown in Fig. 5(b).

6.5 7.0 7.5 8.0 8.5
Real(®w /27) (GHz)

; As the optical axis is moved away from a coordinate axis
18 b ™ ] the modes g_ene_rall_y become hybrid_ (although pure _TE and TM
; el modes do still exist if the optical axis is moved in certain planes).
- Some of the branch points in Fig. 5(a) migrate as well, although
1.6 | y 1 . i
a y the most important effect is that the MCP becomes nondegen-
erate, in the sense that(\,,,w,,) # 0, leading to associated
1 branch-point singularities given by (15). The location of the
7 various singularities associated with these first two modes are
12+ Lo ===~ proper real shown in Fig. 6(a) for the optical axis positionedfat= 45°
’ Vo improper real and¢ = 30° (the case ofl = 60° and¢ = 30° is also shown
TEg A ,’I T™; —~+ Morse critical point ) T - T
\ in this figure). The branch points;; » given by (15) are de-
0 5 10 15 20 noted byw(m1 2 in the figure, since they connect the= 0
Real(w/2 ) (GHz) TE-even mode and the = 1 TM-odd mode. These branch
®) points split apart from the MCR,,, as the optical axis moves
Fig.5. {a) Complex | it edwith the first m# = 0°, and reside symmetrically about the rea#xis for
1g. a) Complex requency-plane smgu arities associated wi elirs
modes shown in Fig. 2. The optical axis is positionegl &t 0° (pure uncoupled V&O# 0,7. Since the path of frequency variation passes between
TE” and TM” modes exist). (b) Dispersion curves for the first two modethese points, mode coupling and associated mode transforma-

shown in Fig. 2 when the optical axis is positioneddat= 0°. The location tjon occurs [25]. In this case the dispersion curves for these
of a degenerate MCP given by (12) is shown by the plus sign at the placerﬂodes are shown in Fig. 6(b) (also shown in Fig. 2).

intersection of dISpeI’SIOﬂ curves.

The migration of the MCP and branch points, as well as the
splitting off of the branch points{ 7> from the MCP as the
pure TE and TM modes become ybrld, is shown in Fig. 7. The
solid lines show migration of the branch pointsfor = 2.25¢

If the planar waveguide depicted in Fig. 1 is anisotropic, tHS¢c.. = €4, changes fron2.25¢, (isotropic case, shown in
dispersion equation (4) which governs modal phenomena t#g. 4) toc... = £,, = 4¢o (anisotropic case). The dashed lines
comes more complicated than (19). For this work the disp&how the migration a8 is then changed from°Qto 60 in the
sion equation (4) was obtained numerically using the meth&tgne¢ = 30°. As the material becomes anisotropic the MCP
described in [28]. In Fig. 2 dispersion curves for the first founoves from infinity to the finitev-plane (in Fig. 7w, /27 =
modes of an anisotropic planar waveguide having permittivity6921 GHz fore,, = e,, = 4eo ande.. = 2.25¢¢), and
(2) are shown, where,, = ¢,, = 4e, c.. = 2.25¢, and asf moves away from Qyp,,, migrates as shown (&t = 45°
2d = 2 cm. The optical axis is positioned 4t = 45° and wm /27 = 8.904 GHz and a¥ = 60°, w,,, /27 = 10.179 GHz)
¢ = 30° such that the modes are hybrid, and couple togethand branch pomts;(ml ) associated with the nondegenerate
due to the asymmetry provided by the placement of the optiddICP emerge (these branch points coalesce at the M@Hsif
axis [13] (this asymmetry forms the required perturbation of tHe&rought back to 0).

“ideal” (isotropic) structure to result in mode coupling). Finally as another application we consider the migration

In order to understand the reason for modal couplingf wn/n+2 branch points which cause leaky modes to interact
consider hybrid discrete modéd1; and HEy. These modes (similarly, for the case of an isotropic slab, varying material
are associated with tHeM; and TEy modes on an isotropic loss causes theJ 4o Points to migrate across the real-
waveguide having,, = e,y = €.. = 2.25¢¢. The various axis, causing proper modes to interact, as described in [24]).
w-plane singularities associated with thid1; andTE, modes We consider a grounded anisotropic slab hawihg= 1 cm,

14

Real(\/ky)
E

1.0

IV. SINGULARITIES ASSOCIATEDWITH ANISOTROPIC
WAVEGUIDE MODES
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Fig. 7. Migration (parameterized) in the complex frequency plane of various
@ branch points and the MCP associated with the first two modes shown in Fig. 2.
The solid lines represent migration of the branch points:for = 2.25¢, as
20 T T ' €22 = &4, Changes fron2.25¢, (isotropic case shown in Fig. 4) to,, =
ﬁ £,y = 4&0 (anisotropic case). The dashed lines show the migration of these
; T points a¥ is changed from ©to 6(° in the planep = 30°. As the material
1.8 EH; .-~ 1 becomes anisotropic the MCP moves from infinity to the finitplane, and ag
L d varies and the modes become hybrig, migrates as shown and branch points
- \ 7 Pl wé?’f‘z) associated with the nondegenerate MCP emerge (these branch points
g 16 | | ,/' L 1 coalesce at the MCP wheénh= 0° and the modes decouple).
N KX ’/ ——————— g
i e o HE,
E 14 ¢ \ ,"% 1 1 T T T . T
\ /// II
\\ HEo// /’
"x.\ / /  ---- properreal 0
12 + \ // S e improper real é‘
’\,\ /, EH, -+ Morse critical point O .l |
1.0 L=t : : -
0 5 10 15 20 5
Real(w2 ) (GH2) g 2 1
o0
(b) g 5l _
o
Fig. 6. (a) Complex frequency-plane singularities associated with the first two
modes shown in Fig. 2. The optical axis is positioned at 45° and¢ = 30° -4 1
(coupled hybridHE? andEH? modes exist). Note the presence of the branch 0=20
pointsLuf]";nlf) given by (15) and associated with the nondegenerate MCP. The . . . . .

case off = 60° and¢ = 30° is also shown to demonstrate the evolution 5
of singularities. (b) Dispersion curves for the first two modes shown in Fig. 2

when the optical axis is positioned@t= 45° and¢ = 30°. The location of
the nondegenerate MCP given by (12) is shown by the plus sign in the regio
mode transformation.

20 21 22 23 24 25 26

Real(w /27) (GHz)

r];?& 8. Migration of complex frequency-plane branch poimf;‘}z5
parameterized by# for a grounded anisotropic slab aveguide having
d =1cm, e, = gyy = 2.25¢0, ande.. = 4e¢. As 6 varies the branch

- . . point migrates across the real-frequency axis separating two different modal
Ere = Eyy = 2.2569, ande.. = 4ep. As 0 varies in the jnteraction regimes. The branch point crosses the real-frequency axis at

zz-plane(¢ = 0) the pointa;i% migrates toward the real- %%proximatelw = 83° resulting in degeneracy of the leaky modeH, and
axis, and crosses the axis at approximatehs 83° as shown e

in Fig. 8. The corresponding dispersion behavior is shown

in Fig. 9 ford = 81° (just before the branch point crossesctions, leading to what would otherwise be interpreted as
the realw axis, “’512)6 = 20.7854 — 50.1771 GHz), and in mode nonuniqueness, can be explained by an understanding of
Fig. 10 ford = 85° (just after the branch point crosses th€omplex frequency-plane branch points associated with mode
realw axis,wfj)ﬁ = 20.5194 + j0.1542 GHz). In Fig. 9, where pairs, and their associated migrations as material or geometrical
the frequency path is above the branch pmiﬁﬁ)f)., EH4 and parameters vary.
EHg leaky modes interact but do not interchandggi( and

EHg leaky modes eventually beconi#, and EHg proper V. CONCLUSION

(surface-wave) modes, respectively). In Fig. 10 the frequencyin this paper we have used the theory of critical and sin-
path is below the branch poin 2;6. In this case the leaky modegular points in the complex frequency plane to explain modal
EH, (EHg) analytically continues to become the leaky modphenomena on planar dielectric waveguides. The theory was
EHg (EH,4) associated with the proper mod&s (EH,). first applied to an isotropic dielectric waveguide, where a va-
These figures show that even for lossless media modal inteety of complex plane features were examined. As the isotropic
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Fig. 9. Dispersion curves [(a) phase constant and (b) attenuation constant] for

the leaky modeEH,; andEH, on a grounded anisotropic slab when the opticaFig. 10. Dispersion curves [(a) phase constant and (b) attenuation constant]
axis is posmoned a = 81°, ¢ = 0°. The branch pon’ﬁ;f1 23 is close to and for the Ieaky mode&H, andEH; when the Opt|Ca| axis is pOSItloned(ﬁt

below the real-frequency axis (frequency path). In this case the leaky mod@és, ¢ = 0°. The branch point:{7), is close to and above the real-frequency
EH, andEH; interact but do not interchange. axis corresponding to the analytical continuation of mEd, (EH ) to mode
EH, (EH,).

material in the waveguide was transformed into an anisotropic _ _ _ _

medium, it was shown that the singularities and critical points [6] —— "Asymptotic analysis and numerical evaluation of short pulse ra-
. . . . . . . diation from a point dipole in a grounded dielectric layeEEE Trans.

associated with the isotropic waveguide migrate in the complex  antennas Propagatvol. 41, pp. 762—769, June 1993.

frequency plane. This migration was used to explain modal cou{7] R.A.W. Haddon, “Exact evaluation of the response of a layered elastic

pling, modal transformation, and modal interaction phenomena ~ Medium to an explosive point source using leaking modgsif: Seism.
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