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e cts of Anisotropy on Planar Antiresonant 
eflecting Optical Waveguides 

Bishwabandhu Ray and George W. Hanson 

Abstract- In this paper, propagation characteristics of some 
planar antiresonant reflecting optical waveguides (ARROW’S) 
comprised of anisotropic media are studied using an integral 
equation approach. The integral equation method is rigorous 
and general, with the added advantage that multiple layers of 
crystalline material with arbitrary anisotropy can be accom- 
modated in a straightforward manner. The integral equation 
method is applied to study basic propagation characteristics of 
the ARROW structure where one or more dielectric layers are 
allowed to be anisotropic. Practically, the presence of anisotropy 
may be unintentional, due to material fabrication or processing 
techniques, or it may be intentionally utilized to allow integration 
of anisotropy-based devices and waveguiding structures on a 
single semiconducting substrate. Propagation characteristics and 
field distributions are shown for a uniaxially anisotropic ARROW 
where the material’s optic axis is rotated in each of the three 
principal geometrical planes of the structure. It is found that even 
moderately large levels of anisotropy do not significantly affect 
the propagation characteristics of the ARROW if either the optic 
axis of the material is aligned with one of the geometrical axes 
of the waveguide, or if the optic axis is rotated in the equatorial 
plane. In these cases, pure TEo modes can propagate, resulting 
in a low-loss structure. In the event of misalignment between the 
geometrical axes and the material’s optic axis in the transverse 
or polar planes, the influence of even small levels of anisotropy is 
quite pronounced. In this case, pure TEo modes do not exist, and 
attenuation loss increases significantly due to the hybrid nature 
of the fundamental mode. 

I. INTRODUCTION 

PTICAL waveguides integrated on semiconductor sub- 
strates allow for the possibility of integrating active and 

passive optical devices, and for incorporating electrical and 
optical circuits on a single substrate. Due to the large refractive 
index of semiconducting materials, it is difficult to confine 
light to a conventional optical waveguide core, resulting in 
large propagation loss due to the lack of total internal reflection 
at the waveguide/semiconductor interface. One method of 
obtaining a low-loss structure is to isolate the waveguide 
core from the semiconductor with a thick layer of transparent 
matenal. This method may not be desirable from a fabrication 
or utilization standpoint. An alternative waveguiding structure, 
the antiresonant reflecting optical waveguide (ARROW) has 
been developed to provide a low-loss optical waveguide on a 
semiconducting substrate [ 11. The ARROW structure posses 
several desirable features [2]. It has a large waveguiding core 
to facilitate efficient coupling to optical fibers, while providing 
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essentially single-mode propagation by the loss discrimination 
of higher order modes. It is also relatively insensitive to the 
thickness and refractive index of its constituent layers, as 
long as the antiresonant condition is approximately satisfied. 
Basic propagation characteristics and applications of ARROW 
structures have been presented in [ll-[9]. 

In all of the previous investigations, the material layers 
have been isotropic. There are several reasons for studying 
the effect of anisotropy on ARROW characteristics. ARROW- 
type waveguides have recently been utilized in structures 
that are more complicated than those previously considered, 
including acousto-optic applications [ 101 and in structures with 
deposited metal strips [ 111 to enhance polarization discrimi- 
nation. As the range of materials and geometries that utilize 
ARROW characteristics increases, it is important to ascertain 
the effect of anisotropy, either intentional or unintentional, on 
propagation characteristics. For instance, anisotropy caused 
by material processing or fabrication techniques, although 
unintended, may be present in an integrated optical circuit. 
Examples include residual strain in grown heterostructure 
layers, strain caused by metallic strip loading or in three- 
dimensional channel guides, leading to birefringence due to 
the photoelastic effect, and electro-optic induced birefringence 
in crystallin materials due to stray electric fields [12]. 

It is also of interest to study anisotropic ARROW structures 
since many anisotropic materials have desirable qualities in 
the optical regime. These materials often possess low-loss and 
large electro-optic and photoelastic effects, which form the 
basis of many applications. The incorporation of materials 
with naturally occurring or intentionally induced anisotropy 
in hybrid or monolithic integrated optical circuits leads to 
greater flexibility and functionality. For instance, a hybrid inte- 
grated optical circuit is described in [13], utilizing silicon and 
LiNbO3. It may be possible to construct new or more efficient 
anisotropy-based devices on semiconductor substrates in an 
ARROW configuration, using more complicated materials. 

In this paper, a general numerical method is developed 
to study inhomogeneous anisotropic waveguides, with spe- 
cific application to ARROW structures. Although analytical 
methods exist to study planar anisotropic waveguides (see 
[14], for instance), the method presented here is relatively 
simple to implement, and anisotropic media with graded-index 
or stepwise-constant inhomogeneities can be accommodated 
easily. The method follows from a polarization-type integral 
equation (IE) using the relatively simple Green’s function for 
an isotropic homogeneous half-space. The IE is converted into 
a homogeneous matrix equation, and a root search is performed 
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to determine the value of the propagation constant which 
forces the matrix determinate to vanish. Similar IE's have 
been used to study three dimensional waveguiding geometries, 
including isotropic rectangular step-index, graded-index and 
rib waveguides [ 151-[ 171, and anisotropic channel *waveg- 
uides [ 181, [ 191. For three-dimensional waveguides, the matrix 
entries need to be determined by numerically performing 
spectral inverse Fourier transform integrals. An advantage of 
applying this technique to planar two-dimensional structures 
as described here is that the matrix entries are determined 
analytically, so that relativity complicated structures can be ef- 
ficiently analyzed. Although applied to the source-free problem 
here, the IE method also easily accounts for forced problems, 
and has been used to study excitation of guided and radiation 
modes of conventional three-layer, asymmetric isotropic planar 
waveguides [20], [21], and to determine Green's function 
components for multilayered anisotropic structures [22]. 

11. THEORY 

Consider the planar ARROW waveguiding structure shown 
in Fig. 1. An isotropic substrate material with E = cs and 
an isotropic cover layer having E = EO occupy z < 0 and 
z > D, respectively, where D = d l  + d2 + d,. A general 
inhomogeneous anisotropic region occupies the space between 
cover and substrate. In the absence of the anisotropic region, 
the electric f i td  in the region z > 0 due to a polarization 
source (3 = J / j w )  is given by [23] 

where various components of the Green's dyadic are given 
in the Appendix. The above expression is for the field in the 
two-dimensional Fourier transform domain, 

--w 
M . " 1  

where the dependence on the transverse wavenumber IC, has 
been suppressed. Since the structures of interest here are 
invariant in 5, with waves propagating in the y-direction as 
e - J k y y ,  we set IC, = 0. To account for an anisotropic region 
as shown in Fig. 1, consider Ampere's law for the anisotropic 
region of interest, V x = jw? + j w y ( z )  . E' where p'" 
represents an impressed pola$zation. Adding and subtracting 
the term jweoe'leads to V x h = j w ( F  fgeq) +jwtoE'vvhere 
geq = [?(z) -  EO^ .e'. With the appropriate identification of the 
equivalent polarization current, the inhomogeneous anisotropic 
region without polarization currents can be replaced with 
a homogeneous free space region containing the unknown 
polarization currents. An integral equation can be formed by 
forcing the total electric field in the free-space region (formally 
occupied by the anisotropic media) to equal the impressed 

Cover r" 
core 

1'st Cladding 

dl ,?I 
t- 

Fig. 1. Anisotropic ARROW waveguiding structure. 

field plus the scattered field maintained by the equivalent 
polarization current, 

U 

E'(IC,,z) - py,z 12'). [ 7 ( z ' )  - €011. E'((t,,z')dz' 

= Z"(IC,,Z).-.V 0 < x < D. (3) 

Since we are interested in natural surface-wave modes of the 
structure, the impressed field term, Zi(ICy, z ) ,  is set to zero. 
The value of the propagation constant k ,  which satisfies (3) 
is the desired surface-wave propagation constant. 

The above integral equation is solved using a pulse-function, 
method of moments (MoM)/Galerkin procedure [24]. The 
unknown field over the range 0 5 z 5 D is expanded in 
a set of pulse functions as 

N 

p=z,y,z n=l 

where 

(4) 

w, is the width of the nth pulse, and U; is an unknown 
amplitude. Testing with J, dzp,,(z)8, for 8 = 3,$, i results 
in a ( 3 N )  x ( 3 N )  matrix system, [Z(k,)][u] = 0. Waveguide 
modes are obtained by a root search for the complex value of 
the propagation constant IC, which results in DET[Z(IC,)] = 0. 
Field profiles are obtained from the nullspace of the matrix 
[Z(ICy)] evaluated at the resonant wavenumber. 

Extensive numerical tests were performed to validate the 
above theory [25]. Propagation constants and field profiles 
were compared to results obtained using the standard transcen- 
dental eigenvalue equation and analytical field expressions for 
the first several TE and TM modes of a simple three-layer 
symmetric and asymmetric slab waveguide [26]. Forward and 
backward propagation constants for an asymmetric slab mag- 
netoopic waveguide were compared to results in [27]. Results 
for a uniaxial symmetric slab waveguide were compared to 
those in [28] where propagation constants were determined 
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as a function of rotation of the material's optic axis in the 
transverse (2-z), equatorial (z-y), and polar (z-y) planes. 
Results were also compared to those in [2] for an isotropic 
ARROW structure. In all cases results based upon the above 
theory were seen to agree closely with previously published 
results. 

111. APPLICATION TO ARROW 
The integral equation method developed above was ap- 

plied to the ARROW structure shown in Fig. 1. Geometrical 
properties and electrical characteristics were chosen similar 
to values listed in [2]-[5] in order to provide the most 
direct comparison to the familiar isotropic structure. Various 
anisotropy ratios (AR = no/n,, with no, ne the ordinary and 
extraordinary refractive indiexes, respectively) were chosen to 
demonstrate the effect on propagation characteristics. In the 
following figures, the isotropic substrate was assumed to be 
silicon with n3 = 3.85, and the isotropic cover layer was air. 
The wavelength was chosen to be 0.633 pm, with structural 
parameters dc = 4 pm, d2 = 2 pm, and d l  = 0.08862 pm. 
The relative permittivity of layer i had the general form 

where R(B,q5) is an orthogonal rotation matrix which rotates 
the crystal coordinate system relative to the waveguiding 
coordinate system. The matrix RT is the transpose of matrix 
R, and ( e ,  g5) are the usual spherical angles which rotate the 
optic axis of layer 2, as shown in Fig. 1. Waves were assumed 
to propagate as e - j ' y y  where ky satisfies the homogeneous 
form of (3). In all cases the extraordinary refractive indexes 
were ne,2 = ne,c = 1.46, ne,l = 2.3, and the values of no, 6',4 
varied for each layer. These values, along with the thicknesses 
listed above, correspond to an ARROW structure operated at 
first antiresonance in the isotropic limit, no = ne [2]-[5]. 

Although results are not shown here, it was found that when 
the core and cladding layers of the ARROW are anisotropic 
with the optic axis aligned with one of the geometrical axes 
(6' = 4 = 0" for instance), propagation characteristics are 
approximately the same as for isotropic media. Attenuation 
did not increase even for relatively large levels of anisotropy, 
e.g., AR = 1.2. This is because pure TE! modes can exist for 
these structures, and the electric field e'= ?ez is sensitive to 
the refractive index in the 2-direction only. The antiresonance 
effect for TE modes seems to occur as in the isotropic case. 
This indicates, assuming no misalignment between the crystaI 
and waveguiding coordinate systems, that anisotropic materials 
may be utilized in ARROW configurations where propagation 
characteristics can be controlled by the 2-component of the 
refractive index. 

In the following, propagation characteristics of low-order 
TE, TM, and hybrid modes are studied for a uniaxially 
anisotropic ARROW where the optic axis is rotated in the three 
principal geometrical planes. Field distributions are shown to 
illustrate the various mode transformations which occur under 
optic axis rotation, and to aid in interpreting the plots of 
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Flg. 2. Attenuaaon (a) and effective refractive index (b) versus orientation of 
optic axis in transverse (z-z) plane for various values of AR Mode evolution 
TEo + TNIo (no dots) and T M o  + TEo (dots) occurs with increasing angle 
e. d = oo. 

propagation Characteristics. Although the method presented is 
general, the simple case of all layers being anisotropic with 
the same value of AR is studied here. Practically, it is the 
presence of anisotropy in the core region which provides the 
strongest influence over propagation characteristics. It is found 
that, unlike in the preceding case where the optic axis aligns 
with one of the geometrical axes, attenuation is significantly 
increased when misalignment occurs in the transverse and 
polar planes due to the hybrid nature of the modes. In the 
equatorial plane, pure TE modes can exist, and low loss 
propagation occurs as in the isotropic ARROW. 

Fig. 2 shows the effect on propagation characteristics of 
rotating the optic axis in the transverse (2-2)  plane (6' varies, 
4 = 0") for various anisotropy ratios. Attenuation is shown 
in Fig. 2(a), and effective refractive index is shown in Fig. 
2(b). In the attenuation plots, the set of curves increasing 
(decreasing) from left to right represent the evolution of modes 
TEo 4 TMo T M o  --f TEo as the optic axis is rotated in 
the transverse plane from B = 0" to B = 90". This mode 
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Fig. 3. Field component e, (a) and e, (b) versus position and ro- 
tation angle in the traverse plane for w 4 'MO mode evolution as 
0 = Oo + go", 4 = O D ,  AR=1.03. 

transformation, with the corresponding flat dispersion behavior 
shown in Fig. 2(b), is identical to that observed in 1281 for a 
single uniaxial slab under rotation in the transverse plane. It 
is seen that attenuation significantly increases for 8 J: O", 
90". This is because a pure TEo mode cannot exist, and the 
resulting hybrid-mode field is not confined to the core by the 
antiresonance effect. As the T E o  mode evolves into the T M o  
mode, the attenuation tends toward that of the TMo mode 
in an isotropic ARROW. It should be noted that very small 
levels of anisotropy lead to TE -+ TM mode evolution with a 
corresponding increase in attenuation. 

The effective refractive index, Re{k,}/ko where ko = 
2r/X0, for the (0" -+ 90") T&-+TMo cases are constant 
as a function of 8, but depend on the x-component of core 
refractive index nnm,c = 1.46 AR at 8 = OD, in agreement 
with [28]. The 0" t 9O0, TMo -+ TEo cases (or equivalently 
90" + O', TEo-fTMo cases) overlap each other, since for 
8 = 90" r ~ , , ~  = 1.46, independent of AR value. 

In order to help explain the above attenuation and dispersion 
behavior, three dimensional plots of the electric field versus 
position in the waveguide and rotation angle are shown in 
Fig. 3, Fig. 3(a) and (b) show the field components e,, e, 
as the optic axis is rotated from the z-axis to the z-axis 
(0 = 0" 4 90", 4 = 0') for AR = 1.03. It can be seen that 
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Fig. 4. Attenuation (a) and effective refiactive index @) versus orientation 
of optic axis in polar (z-y) plane for various values of AR. Mode evolution 
T b  --* TM1 (no dots) and 'MI+ TJ& (dots) occurs with increasing angle 
4, l9 = goo. 

as the rotation angle increases, the e, component decreases 
while the e, component increases, and the mode undergoes a 
smooth transition TEo 3 TMo. Similar behavior was observed 
for the mode evolution TMo- TEo. 

The effect of rotating the optic axis in the polar (x-y) plane 
(0 = 90",4 varies) is shown in Fig. 4. In the attenuation 
plots of Fig. 4(a), the set of curves increasing (decreasing) 
from left to right represent the evolution of modes TEo ---f 
TMl(TM1 4 TEo) as the optic axis is rotated in the polar 
plane from (b = 0" to 4 = 90'. This mode transformation, 
and the corresponding dispersion behavior shown in Fig. 4(b), 
is similar to that observed in [28] for a single uniaxial slab 
under rotation in the polar plane. It is seen that attenuation 
significantly increases if the optic axis is not aligned with one 
of the waveguiding axes in this plane. As for rotations in the 
transverse plane, a pure TEo mode cannot exist under rotations 
in the polar plane, resulting in a hybrid TE-TM mode with 
larger attenuation. The sharp spikes in the attenuation plot 
are due to the intersection of the effective refractive index 
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(c) (d) 

Fig. 5 Field component e,  (a) and e,  (b) versus positlon and rotation angle in the polar plane for mo -r TMo mode evolution as 4 = Oo 3 90°, 6' = O o ,  
AR = 103. Field component e, (c) and ez (d) versus position and rotation angle in the polar plane for TM1 + TEo mode evolution as 
q5 = 0' i 90°, 0 = O o ,  AR = 1.03. 

curve for a particular modal evolution with another hybrid 
mode. At these points a degeneracy exists where the real 
part of the propagation constants are equal. These crossings 
occur primarily for rotations in the polar plane, but also in the 
transverse plane for some higher order modes. The lspersion 
curves in [28] clearly show this where modes up to TE4/TM4 
are considered. The effective refractive index curves shown in 
Fig. 4(b) for the TEo tf TM1 mode evolutions show similar 
behavior to the simple single-slab uniaxial case in [28]. The 
points of mode degeneracy which lead to the spikes in the 
attenuation curves for AR = 1.03 can be clearly seen. The 
peak at q5 M 32" in the TEo+TMl attenuation curve is due to 
the refractive index curve crossing the T M 3  3 TM3 modal 
evolution, a portion of which is shown in the figure. The 
peak at q5 M 51" in attenuation is due to the refractive index 
curve crossing the TM2+ TE1 modal evolution. The peak 
at q5 M 86" in the TMI +TEo attenuation curve is due to 
the refractive index curve crossing the TMo 3 TMo modal 
evolution. These three points are marked with an X in Fig. 
4(b). Similar behavior was found for AR = 1.02, but the mode 
intersections are not shown here. 

Three-dimensional field plots are shown in Fig. 5 for the 
modal evolution T E O -  TM1 and TM1 + TEo. It can be 
seen that peaks in attenuation correspond to increases in the 
cladding field at certain angles. The spike at q5 M 32' in the 
TEo  + TM1 attenuation curve described above, due to the 
mode crossing the T M 3  4 TM3 modal evolution, can be seen 
in Fig. 5@). The degeneracy at q5 M 51" due to the crossing 
with the T M z  +TE1 mode can also be seen in Fig. 5(b) as a 
disturbance in the field pattern. The TM2 - TE1 mode crosses 
the T E o  ++ T M 1  mode of interest a second time at 6 M 83", 
which can be seen in Fig. 5(a). The TM1 + TEoattenuation 
curve spike at q5 M 86" due to intersection with the TM0 4 

TMo mode is clearly seen in Fig. 5(d). 
It is seen from the propagation characteristics and field 

behavior that the evolution of the TEo mode to a TM mode 
is very different in the transverse and polar planes, and is 
asymmetric for rotations in different directions in the same 
plane. 

Finally, the effect of rotation in the equatorial (2-y) or 
decoupled plane is shown in Fig. 6. At all values of rotation 
in this plane, pure TEo may exist, and the attenuation curves 
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Fig. 6. Attenuation (a) and effective refractive index (b) versus orientation 
of optic axis in the equatorial z-y plane for various values of AR. Pure TEo 
(no dots) and TM1 (dots) modes exist for all angles of rotation 8, $ = 900. 

are constant with angular rotation. For completeness, TMo 
modes are also shown, for which the dispersive behavior of the 
effective refractive index is in agreement with the single-slab 
uniaxial case [28] .  

The above figures are intended to show modal evolution as 
a function of optic axis rotation. The excitation problem is not 
considered, such as mode coupling from an input waveguide to 
the ARROW structure. Since the ARROW waveguide only has 
low loss for the TEo mode, feeding waveguides would present 
a TE-polarized mode. This mode would couple most strongly 
to the TEo mode if the optic axis is oriented such that it can 
exist. In the event of a hybrid mode, the input excitation would 
probably couple most strongly to the mode with the largest TE 
component, although this was not studied here. 

In summary, when the crystal and waveguiding axes coin- 
cide, even moderately large levels of anisotropy do not signif- 
icantly alter the propagation characteristics of the anisotropic 
ARROW waveguide from its isotropic counterpart, since pure 
TEo modes may exist. This is also true for optic axis rotations 
in the equatorial plane. In the event that the optic axis is rotated 

about the geometrical axes in the transverse or polar planes, or 
some combination of the two, even small levels of anisotropy 
strongly affect the attenuation constant due to the hybrid nature 
of the resulting modes. 

IV. CONCLUSION 

The effect of anisotropy on the propagation characteristics of 
planar antiresonant reflecting optical waveguides (ARROW’S) 
has been studied using an integral equation (IE) approach. 
An IE formulation has been developed which is applicable 
to generally inhomogeneous anisotropic media, with specific 
application to the stratified ARROW structure where one or 
more dielectric layers are allowed to be anisotropic. It was 
found that even moderately large levels of anisotropy do 
not significantly affect the propagation characteristics of the 
ARROW if the optic axis of the material is aligned with 
one of the geometrical axes of the waveguiding structure, or 
for optic axis rotations in the equatorial plane. This indicates 
that anisotropic media may be incorporated into ARROW- 
type configurations on semiconducting substrates, allowing for 
greater flexibility and functionality. In the event of optic axis 
misalignment in the transverse or polar planes, the influence 
of anisotropy is quite pronounced. In this case, attenuation 
loss increases due to the hybrid (TEcTM) nature of the 
fundamental mode. This effect may be less pronounced for 
rotation in the transverse plane (TEo -+ TMo) for the ARROW- 
B configuration, since that geometry has reduced TMo mode 
loss [ 2 ] .  
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where 

Rt - p c  - ps N2Pc - Ps  , = 2(N2 - 1 ) P C  

[17] N. H. G. Baken, M. B. J. Diemeer, A. M. Van Splunter, and H. 
Blok, “Computational modeling of diffused channel waveguides using a 
domain integral equation,” J. Lightwave Technol., vol. 8, pp. 576-585, 
Apr. 1990. 
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